Skip to main content

Identification and Analysis of Genes Associated with Inherited Retinal Diseases

  • Protocol
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients’ somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger W, Kloeckener-Gruissem B, Neidhardt J (2010) The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29(5):335–375. https://doi.org/10.1016/j.preteyeres.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  2. Neveling K, den Hollander AI, Cremers FP, Collin RW (2013) Identification and analysis of inherited retinal disease genes. Methods Mol Biol 935:3–23. https://doi.org/10.1007/978-1-62703-080-9_1

    Article  CAS  PubMed  Google Scholar 

  3. Glockle N, Kohl S, Mohr J, Scheurenbrand T, Sprecher A, Weisschuh N, Bernd A, Rudolph G, Schubach M, Poloschek C, Zrenner E, Biskup S, Berger W, Wissinger B, Neidhardt J (2014) Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 22(1):99–104. https://doi.org/10.1038/ejhg.2013.72

    Article  CAS  PubMed  Google Scholar 

  4. den Hollander AI, Black A, Bennett J, Cremers FP (2010) Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120(9):3042–3053. https://doi.org/10.1172/JCI42258

    Article  CAS  Google Scholar 

  5. Roosing S, Thiadens AA, Hoyng CB, Klaver CC, den Hollander AI, Cremers FP (2014) Causes and consequences of inherited cone disorders. Prog Retin Eye Res 42:1–26. https://doi.org/10.1016/j.preteyeres.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  6. Valle D, Kaiser-Kupfer MI, Del Valle LA (1977) Gyrate atrophy of the choroid and retina: deficiency of ornithine aminotransferase in transformed lymphocytes. Proc Natl Acad Sci U S A 74(11):5159–5161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitchell GA, Brody LC, Looney J, Steel G, Suchanek M, Dowling C, Der Kaloustian V, Kaiser-Kupfer M, Valle D (1988) An initiator codon mutation in ornithine-delta-aminotransferase causing gyrate atrophy of the choroid and retina. J Clin Invest 81(2):630–633. https://doi.org/10.1172/jci113365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343(6256):364–366. https://doi.org/10.1038/343364a0

    Article  CAS  PubMed  Google Scholar 

  9. McWilliam P, Farrar GJ, Kenna P, Bradley DG, Humphries MM, Sharp EM, McConnell DJ, Lawler M, Sheils D, Ryan C et al (1989) Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics 5(3):619–622

    Article  CAS  PubMed  Google Scholar 

  10. Cremers FP, van de Pol DJ, van Kerkhoff LP, Wieringa B, Ropers HH (1990) Cloning of a gene that is rearranged in patients with choroideraemia. Nature 347(6294):674–677. https://doi.org/10.1038/347674a0

    Article  CAS  PubMed  Google Scholar 

  11. Collin RW, van den Born LI, Klevering BJ, de Castro-Miro M, Littink KW, Arimadyo K, Azam M, Yazar V, Zonneveld MN, Paun CC, Siemiatkowska AM, Strom TM, Hehir-Kwa JY, Kroes HY, de Faber JT, van Schooneveld MJ, Heckenlively JR, Hoyng CB, den Hollander AI, Cremers FP (2011) High-resolution homozygosity mapping is a powerful tool to detect novel mutations causative of autosomal recessive RP in the Dutch population. Invest Ophthalmol Vis Sci 52(5):2227–2239. https://doi.org/10.1167/iovs.10-6185

    Article  CAS  PubMed  Google Scholar 

  12. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239. https://doi.org/10.1056/NEJMoa0802268

    Article  CAS  PubMed  Google Scholar 

  13. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG (2008) Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19(10):979–990. https://doi.org/10.1089/hum.2008.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248. https://doi.org/10.1056/NEJMoa0802315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860. https://doi.org/10.1016/S0140-6736(17)31868-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwards TL, Jolly JK, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Black GC, Webster AR, Lotery AJ, Holder GE, Xue K, Downes SM, Simunovic MP, Seabra MC, MacLaren RE (2016) Visual acuity after retinal gene therapy for choroideremia. N Engl J Med 374(20):1996–1998. https://doi.org/10.1056/NEJMc1509501

    Article  PubMed  PubMed Central  Google Scholar 

  17. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, Lotery AJ, Downes SM, Webster AR, Seabra MC (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137. https://doi.org/10.1016/S0140-6736(13)62117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scholl HP, Moore AT, Koenekoop RK, Wen Y, Fishman GA, van den Born LI, Bittner A, Bowles K, Fletcher EC, Collison FT, Dagnelie G, Degli Eposti S, Michaelides M, Saperstein DA, Schuchard RA, Barnes C, Zein W, Zobor D, Birch DG, Mendola JD, Zrenner E, Group RIS (2015) Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin: Retinol Acyltransferase (LRAT). PLoS One 10(12):e0143846. https://doi.org/10.1371/journal.pone.0143846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koenekoop RK, Sui R, Sallum J, van den Born LI, Ajlan R, Khan A, den Hollander AI, Cremers FP, Mendola JD, Bittner AK, Dagnelie G, Schuchard RA, Saperstein DA (2014) Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet 384(9953):1513–1520. https://doi.org/10.1016/S0140-6736(14)60153-7

    Article  CAS  PubMed  Google Scholar 

  20. Pasadhika S, Fishman GA, Stone EM, Lindeman M, Zelkha R, Lopez I, Koenekoop RK, Shahidi M (2010) Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis. Invest Ophthalmol Vis Sci 51(5):2608–2614. https://doi.org/10.1167/iovs.09-3734

    Article  PubMed  PubMed Central  Google Scholar 

  21. Siemiatkowska AM, Collin RW, den Hollander AI, Cremers FP (2014) Genomic approaches for the discovery of genes mutated in inherited retinal degeneration. Cold Spring Harb Perspect Med 4(8). https://doi.org/10.1101/cshperspect.a017137

    Article  PubMed  PubMed Central  Google Scholar 

  22. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5(10):e254. https://doi.org/10.1371/journal.pbio.0050254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Myllykangas S, Natsoulis G, Bell JM, Ji HP (2011) Targeted sequencing library preparation by genomic DNA circularization. BMC Biotechnol 11:122. https://doi.org/10.1186/1472-6750-11-122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broadgate S, Yu J, Downes SM, Halford S (2017) Unravelling the genetics of inherited retinal dystrophies: past, present and future. Prog Retin Eye Res 59:53–96. https://doi.org/10.1016/j.preteyeres.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  25. Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, Kotsopoulos SK, Samuels ML, Hutchison JB, Larson JW, Topol EJ, Weiner MP, Harismendy O, Olson J, Link DR, Frazer KA (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27(11):1025–1031. https://doi.org/10.1038/nbt.1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin X, Tang W, Ahmad S, Lu J, Colby CC, Zhu J, Yu Q (2012) Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities. Hear Res 288(1):67–76

    Article  CAS  PubMed  Google Scholar 

  27. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P (2014) Library construction for next-generation sequencing: overviews and challenges. BioTechniques 56(2):61–64, 66, 68, passim. https://doi.org/10.2144/000114133

    Article  CAS  Google Scholar 

  28. Absalan F, Ronaghi M (2007) Molecular inversion probe assay. Methods Mol Biol 396:315–330. https://doi.org/10.1007/978-1-59745-515-2_20

    Article  CAS  PubMed  Google Scholar 

  29. Jacob CO, Reiff A, Armstrong DL, Myones BL, Silverman E, Klein-Gitelman M, McCurdy D, Wagner-Weiner L, Nocton JJ, Solomon A, Zidovetzki R (2007) Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum 56(12):4164–4173. https://doi.org/10.1002/art.23060

    Article  CAS  PubMed  Google Scholar 

  30. Turner EH, Lee C, Ng SB, Nickerson DA, Shendure J (2009) Massively parallel exon capture and library-free resequencing across 16 genomes. Nat Methods 6(5):315–316. https://doi.org/10.1038/nmeth.f.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Igartua C, Turner EH, Ng SB, Hodges E, Hannon GJ, Bhattacharjee A, Rieder MJ, Nickerson DA, Shendure J (2010) Targeted enrichment of specific regions in the human genome by array hybridization. Curr Protoc Hum Genet Chapter 18:Unit 18 13. doi:https://doi.org/10.1002/0471142905.hg1803s66

    Article  Google Scholar 

  32. Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, Abaan HO, Albert TJ, Program NCS, Margulies EH, Green ED, Collins FS, Mullikin JC, Biesecker LG (2010) Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res 20(10):1420–1431. https://doi.org/10.1101/gr.106716.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O’Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338(6114):1619–1622. https://doi.org/10.1126/science.1227764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118. https://doi.org/10.1038/nmeth.1419

    Article  CAS  PubMed  Google Scholar 

  35. Mardis ER (2011) A decade's perspective on DNA sequencing technology. Nature 470(7333):198–203. https://doi.org/10.1038/nature09796

    Article  CAS  PubMed  Google Scholar 

  36. Fukunaga R, Matsumoto T, Aoyagi Y, Matsuda D, Tanaka S, Okadome J, Morisaki K, Maehara Y (2014) Thoracic stent graft with distal fenestration for the superior mesenteric artery for treatment of thoracic aortic aneurysm. Ann Vasc Dis 7(2):152–155. https://doi.org/10.3400/avd.cr.13-00119

    Article  PubMed  PubMed Central  Google Scholar 

  37. Levy SE, Myers RM (2016) Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet 17:95–115. https://doi.org/10.1146/annurev-genom-083115-022413

    Article  CAS  PubMed  Google Scholar 

  38. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  39. Meienberg J, Bruggmann R, Oexle K, Matyas G (2016) Clinical sequencing: is WGS the better WES? Hum Genet 135(3):359–362. https://doi.org/10.1007/s00439-015-1631-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knoppers BM, Zawati MH, Senecal K (2015) Return of genetic testing results in the era of whole-genome sequencing. Nat Rev Genet 16(9):553–559. https://doi.org/10.1038/nrg3960

    Article  CAS  PubMed  Google Scholar 

  41. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, Shang L, Boisson B, Casanova JL, Abel L (2015) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112(17):5473–5478. https://doi.org/10.1073/pnas.1418631112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chesworth BM, Hamilton CB, Walton DM, Benoit M, Blake TA, Bredy H, Burns C, Chan L, Frey E, Gillies G, Gravelle T, Ho R, Holmes R, Lavallee RL, MacKinnon M, Merchant AJ, Sherman T, Spears K, Yardley D (2014) Reliability and validity of two versions of the upper extremity functional index. Physiother Can 66(3):243–253. https://doi.org/10.3138/ptc.2013-45

    Article  PubMed  PubMed Central  Google Scholar 

  43. Genome of the Netherlands Consortium (2014) Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet 46(8):818–825. https://doi.org/10.1038/ng.3021

    Article  CAS  Google Scholar 

  44. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16(6):545–552. https://doi.org/10.1016/j.gde.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  46. Whiteford N, Haslam N, Weber G, Prugel-Bennett A, Essex JW, Roach PL, Bradley M, Neylon C (2005) An analysis of the feasibility of short read sequencing. Nucleic Acids Res 33(19):e171. https://doi.org/10.1093/nar/gni170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5(5):335–344. https://doi.org/10.1038/nrg1325

    Article  CAS  PubMed  Google Scholar 

  48. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA (2012) Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13:375. https://doi.org/10.1186/1471-2164-13-375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salmela L, Walve R, Rivals E, Ukkonen E (2017) Accurate self-correction of errors in long reads using de Bruijn graphs. Bioinformatics 33(6):799–806. https://doi.org/10.1093/bioinformatics/btw321

    Article  CAS  PubMed  Google Scholar 

  50. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569. https://doi.org/10.1038/nmeth.2474

    Article  CAS  PubMed  Google Scholar 

  51. McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D, Petrov DA, Fiston-Lavier AS (2014) Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS One 9(9):e106689. https://doi.org/10.1371/journal.pone.0106689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ajay SS, Parker SC, Abaan HO, Fajardo KV, Margulies EH (2011) Accurate and comprehensive sequencing of personal genomes. Genome Res 21(9):1498–1505. https://doi.org/10.1101/gr.123638.111

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alkuraya FS (2013) The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 132(11):1197–1211. https://doi.org/10.1007/s00439-013-1344-x

    Article  CAS  PubMed  Google Scholar 

  54. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abu Safieh L, Aldahmesh MA, Shamseldin H, Hashem M, Shaheen R, Alkuraya H, Al Hazzaa SA, Al-Rajhi A, Alkuraya FS (2010) Clinical and molecular characterisation of Bardet-Biedl syndrome in consanguineous populations: the power of homozygosity mapping. J Med Genet 47(4):236–241. https://doi.org/10.1136/jmg.2009.070755

    Article  CAS  PubMed  Google Scholar 

  56. Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD, McKibbin M, Stern R, Raymond FL, Sandford R, Malik Sharif S, Karbani G, Ahmed M, Bond J, Clayton D, Inglehearn CF (2006) Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 78(5):889–896. https://doi.org/10.1086/503875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collin RW, Littink KW, Klevering BJ, van den Born LI, Koenekoop RK, Zonneveld MN, Blokland EA, Strom TM, Hoyng CB, den Hollander AI, Cremers FP (2008) Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83(5):594–603. https://doi.org/10.1016/j.ajhg.2008.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zarrei M, MacDonald JR, Merico D, Scherer SW (2015) A copy number variation map of the human genome. Nat Rev Genet 16(3):172–183. https://doi.org/10.1038/nrg3871

    Article  CAS  PubMed  Google Scholar 

  59. Conrad DF, Hurles ME (2007) The population genetics of structural variation. Nat Genet 39(7 Suppl):S30–S36. https://doi.org/10.1038/ng2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pirooznia M, Goes FS, Zandi PP (2015) Whole-genome CNV analysis: advances in computational approaches. Front Genet 6:138. https://doi.org/10.3389/fgene.2015.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen W, Hayward C, Wright AF, Hicks AA, Vitart V, Knott S, Wild SH, Pramstaller PP, Wilson JF, Rudan I, Porteous DJ (2011) Copy number variation across European populations. PLoS One 6(8):e23087. https://doi.org/10.1371/journal.pone.0023087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pang AW, MacDonald JR, Pinto D, Wei J, Rafiq MA, Conrad DF, Park H, Hurles ME, Lee C, Venter JC, Kirkness EF, Levy S, Feuk L, Scherer SW (2010) Towards a comprehensive structural variation map of an individual human genome. Genome Biol 11(5):R52. https://doi.org/10.1186/gb-2010-11-5-r52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8(8):639–646. https://doi.org/10.1038/nrg2149

    Article  CAS  PubMed  Google Scholar 

  64. Buchanan JA, Scherer SW (2008) Contemplating effects of genomic structural variation. Genet Med 10(9):639–647 https://doi.org/10.1097GIM.0b013e318183f848

    Article  PubMed  Google Scholar 

  65. Haer-Wigman L, van Zelst-Stams WA, Pfundt R, van den Born LI, Klaver CC, Verheij JB, Hoyng CB, Breuning MH, Boon CJ, Kievit AJ, Verhoeven VJ, Pott JW, Sallevelt SC, van Hagen JM, Plomp AS, Kroes HY, Lelieveld SH, Hehir-Kwa JY, Castelein S, Nelen M, Scheffer H, Lugtenberg D, Cremers FP, Hoefsloot L, Yntema HG (2017) Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur J Hum Genet 25(5):591–599. https://doi.org/10.1038/ejhg.2017.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Combs R, McAllister M, Payne K, Lowndes J, Devery S, Webster AR, Downes SM, Moore AT, Ramsden S, Black G, Hall G (2013) Understanding the impact of genetic testing for inherited retinal dystrophy. Eur J Hum Genet 21(11):1209–1213. https://doi.org/10.1038/ejhg.2013.19

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bujakowska KM, Fernandez-Godino R, Place E, Consugar M, Navarro-Gomez D, White J, Bedoukian EC, Zhu X, Xie HM, Gai X, Leroy BP, Pierce EA (2017) Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet Med 19(6):643–651. https://doi.org/10.1038/gim.2016.158

    Article  PubMed  Google Scholar 

  68. Eisenberger T, Neuhaus C, Khan AO, Decker C, Preising MN, Friedburg C, Bieg A, Gliem M, Charbel Issa P, Holz FG, Baig SM, Hellenbroich Y, Galvez A, Platzer K, Wollnik B, Laddach N, Ghaffari SR, Rafati M, Botzenhart E, Tinschert S, Borger D, Bohring A, Schreml J, Kortge-Jung S, Schell-Apacik C, Bakur K, Al-Aama JY, Neuhann T, Herkenrath P, Nurnberg G, Nurnberg P, Davis JS, Gal A, Bergmann C, Lorenz B, Bolz HJ (2013) Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PLoS One 8(11):e78496. https://doi.org/10.1371/journal.pone.0078496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hehir-Kwa JY, Pfundt R, Veltman JA (2015) Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert Rev Mol Diagn 15(8):1023–1032. https://doi.org/10.1586/14737159.2015.1053467

    Article  CAS  PubMed  Google Scholar 

  70. Pang AW, Macdonald JR, Yuen RK, Hayes VM, Scherer SW (2014) Performance of high-throughput sequencing for the discovery of genetic variation across the complete size spectrum. G3 (Bethesda) 4(1):63–65. https://doi.org/10.1534/g3.113.008797

    Article  CAS  Google Scholar 

  71. Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, Lionel AC, Thiruvahindrapuram B, Macdonald JR, Mills R, Prasad A, Noonan K, Gribble S, Prigmore E, Donahoe PK, Smith RS, Park JH, Hurles ME, Carter NP, Lee C, Scherer SW, Feuk L (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 29(6):512–520. https://doi.org/10.1038/nbt.1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Newman S, Hermetz KE, Weckselblatt B, Rudd MK (2015) Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet 96(2):208–220. https://doi.org/10.1016/j.ajhg.2014.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464(7289):704–712. https://doi.org/10.1038/nature08516

    Article  CAS  PubMed  Google Scholar 

  74. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11(3):241–247. https://doi.org/10.1038/ng1195-241

    Article  CAS  PubMed  Google Scholar 

  75. Boonstra FN, van Nouhuys CE, Schuil J, de Wijs IJ, van der Donk KP, Nikopoulos K, Mukhopadhyay A, Scheffer H, Tilanus MA, Cremers FP, Hoefsloot LH (2009) Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci 50(9):4379–4385. https://doi.org/10.1167/iovs.08-3320

    Article  PubMed  Google Scholar 

  76. Al-Maghtheh M, Vithana E, Tarttelin E, Jay M, Evans K, Moore T, Bhattacharya S, Inglehearn CF (1996) Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11) and association with a unique bimodal expressivity phenotype. Am J Hum Genet 59(4):864–871

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoffmann K, Lindner TH (2005) easyLINKAGE-plus – automated linkage analyses using large-scale SNP data. Bioinformatics 21(17):3565–3567. https://doi.org/10.1093/bioinformatics/bti571

    Article  CAS  PubMed  Google Scholar 

  78. Ruschendorf F, Nurnberg P (2005) ALOHOMORA: a tool for linkage analysis using 10K SNP array data. Bioinformatics 21(9):2123–2125. https://doi.org/10.1093/bioinformatics/bti264

    Article  PubMed  Google Scholar 

  79. Terwillinger D, Ott J (1994) Handbook for human genetic linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  80. Nyholt D (2008) Statistical genetics: gene mapping through linkage and association. In: Neale BM, Ferreira M, Medland SE, Posthuma D (eds) Principles of linkage analysis. Taylor & Francis Group, New York, pp 113–134

    Google Scholar 

  81. Movassat M, Mueller WF, Hertel KJ (2014) In vitro assay of pre-mRNA splicing in mammalian nuclear extract. Methods Mol Biol 1126:151–160. https://doi.org/10.1007/978-1-62703-980-2_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hicks MJ, Lam BJ, Hertel KJ (2005) Analyzing mechanisms of alternative pre-mRNA splicing using in vitro splicing assays. Methods (San Diego, Calif) 37(4):306–313. https://doi.org/10.1016/j.ymeth.2005.07.012

    Article  CAS  Google Scholar 

  83. Osoegawa K, de Jong PJ (2004) BAC library construction. Methods Mol Biol 255:1–46. https://doi.org/10.1385/1-59259-752-1:001

    Article  CAS  PubMed  Google Scholar 

  84. Sangermano R, Khan M, Cornelis SS, Richelle V, Albert S, Garanto A, Elmelik D, Qamar R, Lugtenberg D, van den Born LI, Collin RWJ, Cremers FPM (2018) ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res 28:100–110. PMID: 29162642

    Article  PubMed  Google Scholar 

  85. Parfitt DA, Lane A, Ramsden C, Jovanovic K, Coffey PJ, Hardcastle AJ, Cheetham ME (2016) Using induced pluripotent stem cells to understand retinal ciliopathy disease mechanisms and develop therapies. Biochem Soc Trans 44(5):1245–1251. https://doi.org/10.1042/BST20160156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sangermano R, Bax NM, Bauwens M, van den Born LI, De Baere E, Garanto A, Collin RW, Goercharn-Ramlal AS, den Engelsman-van Dijk AH, Rohrschneider K, Hoyng CB, Cremers FP, Albert S (2016) Photoreceptor progenitor mRNA analysis reveals exon skipping resulting from the ABCA4 c.5461-10T-->C mutation in stargardt disease. Ophthalmology 123(6):1375–1385. https://doi.org/10.1016/j.ophtha.2016.01.053

    Article  PubMed  Google Scholar 

  87. Lukovic D, Artero Castro A, Delgado AB, Bernal Mde L, Luna Pelaez N, Diez Lloret A, Perez Espejo R, Kamenarova K, Fernandez Sanchez L, Cuenca N, Corton M, Avila Fernandez A, Sorkio A, Skottman H, Ayuso C, Erceg S, Bhattacharya SS (2015) Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci Rep 5:12910. https://doi.org/10.1038/srep12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoshida T, Ozawa Y, Suzuki K, Yuki K, Ohyama M, Akamatsu W, Matsuzaki Y, Shimmura S, Mitani K, Tsubota K, Okano H (2014) The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain 7:45. https://doi.org/10.1186/1756-6606-7-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, Riker MJ, Drack AV, Braun TA, Stone EM (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. eLife 2:e00824. https://doi.org/10.7554/eLife.00824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. https://doi.org/10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  92. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  93. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67. https://doi.org/10.1093/nar/gkp215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pertea M, Lin X, Salzberg SL (2001) GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res 29(5):1185–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11(2–3):377–394. https://doi.org/10.1089/1066527041410418

    Article  CAS  PubMed  Google Scholar 

  96. Sobreira N, Schiettecatte F, Valle D, Hamosh A (2015) GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 36(10):928–930. https://doi.org/10.1002/humu.22844

    Article  PubMed  PubMed Central  Google Scholar 

  97. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868. https://doi.org/10.1093/nar/gkv1222

    Article  CAS  PubMed  Google Scholar 

  98. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v.2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. https://doi.org/10.1002/humu.21438

    Article  CAS  PubMed  Google Scholar 

  99. Cremers FP, den Dunnen JT, Ajmal M, Hussain A, Preising MN, Daiger SP, Qamar R (2014) Comprehensive registration of DNA sequence variants associated with inherited retinal diseases in Leiden open variation databases. Hum Mutat 35(1):147–148. https://doi.org/10.1002/humu.22458

    Article  PubMed  PubMed Central  Google Scholar 

  100. Baux D, Blanchet C, Hamel C, Meunier I, Larrieu L, Faugere V, Vache C, Castorina P, Puech B, Bonneau D, Malcolm S, Claustres M, Roux AF (2014) Enrichment of LOVD-USH bases with 152 USH2A genotypes defines an extensive mutational spectrum and highlights missense hotspots. Hum Mutat 35(10):1179–1186. https://doi.org/10.1002/humu.22608

    Article  CAS  PubMed  Google Scholar 

  101. Cornelis SS, Bax NM, Zernant J, Allikmets R, Fritsche LG, den Dunnen JT, Ajmal M, Hoyng CB, Cremers FP (2017) In Silico functional meta-analysis of 5,962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum Mutat 38(4):400–408. https://doi.org/10.1002/humu.23165

    Article  CAS  PubMed  Google Scholar 

  102. Bujakowska K, Audo I, Mohand-Said S, Lancelot ME, Antonio A, Germain A, Leveillard T, Letexier M, Saraiva JP, Lonjou C, Carpentier W, Sahel JA, Bhattacharya SS, Zeitz C (2012) CRB1 mutations in inherited retinal dystrophies. Hum Mutat 33(2):306–315. https://doi.org/10.1002/humu.21653

    Article  CAS  PubMed  Google Scholar 

  103. Messchaert M, Haer-Wigman L, Khan MI, Cremers FPM, Collin RWJ (2018) EYS mutation update: in silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 39(2):177–186

    Article  CAS  PubMed  Google Scholar 

  104. Mackay DS, Borman AD, Sui R, van den Born LI, Berson EL, Ocaka LA, Davidson AE, Heckenlively JR, Branham K, Ren H, Lopez I, Maria M, Azam M, Henkes A, Blokland E, Qamar R, Webster AR, Cremers FPM, Moore AT, Koenekoop RK, Andreasson S, de Baere E, Bennett J, Chader GJ, Berger W, Golovleva I, Greenberg J, den Hollander AI, Klaver CCW, Klevering BJ, Lorenz B, Preising MN, Ramsear R, Roberts L, Roepman R, Rohrschneider K, Wissinger B (2013) Screening of a large cohort of Leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations. Hum Mutat 34(11):1537–1546. https://doi.org/10.1002/humu.22398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cassa CA, Tong MY, Jordan DM (2013) Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. Hum Mutat 34(9):1216–1220. https://doi.org/10.1002/humu.22375

    Article  PubMed  PubMed Central  Google Scholar 

  106. Abouelhoda M, Faquih T, El-Kalioby M, Alkuraya FS (2016) Revisiting the morbid genome of Mendelian disorders. Genome Biol 17(1):235. https://doi.org/10.1186/s13059-016-1102-1

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136(6):665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vail PJ, Morris B, van Kan A, Burdett BC, Moyes K, Theisen A, Kerr ID, Wenstrup RJ, Eggington JM (2015) Comparison of locus-specific databases for BRCA1 and BRCA2 variants reveals disparity in variant classification within and among databases. J Community Genet 6(4):351–359. https://doi.org/10.1007/s12687-015-0220-x

    Article  PubMed  PubMed Central  Google Scholar 

  109. Peng YQ, Tang LS, Yoshida S, Zhou YD (2017) Applications of CRISPR/Cas9 in retinal degenerative diseases. Int J Ophthalmol 10(4):646–651. https://doi.org/10.18240/ijo.2017.04.23

    Article  PubMed  PubMed Central  Google Scholar 

  110. Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, Beales PL, Dietz HC, Fisher S, Katsanis N (2006) Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439(7074):326–330. https://doi.org/10.1038/nature04370

    Article  CAS  PubMed  Google Scholar 

  111. Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, Mein CA, Froguel P, Scambler PJ, Lewis RA, Lupski JR, Katsanis N (2003) Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet 72(5):1187–1199. https://doi.org/10.1086/375178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kajiwara K, Berson EL, Dryja TP (1994) Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264(5165):1604–1608

    Article  CAS  PubMed  Google Scholar 

  113. Liu YP, Bosch DG, Siemiatkowska AM, Rendtorff ND, Boonstra FN, Moller C, Tranebjaerg L, Katsanis N, Cremers FP (2017) Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy. Ophthalmic Genet 38(2):127–132. https://doi.org/10.3109/13816810.2016.1151898

    Article  CAS  PubMed  Google Scholar 

  114. Vithana EN, Abu-Safieh L, Pelosini L, Winchester E, Hornan D, Bird AC, Hunt DM, Bustin SA, Bhattacharya SS (2003) Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Vis Sci 44(10):4204–4209

    Article  PubMed  Google Scholar 

  115. Venturini G, Rose AM, Shah AZ, Bhattacharya SS, Rivolta C (2012) CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet 8(11):e1003040. https://doi.org/10.1371/journal.pgen.1003040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work of M.K. is supported by the Rotterdamse Stichting Blindenbelangen, the Stichting Blindenhulp, the Stichting tot Verbetering van het Lot der Blinden, and the Stichting Blinden-Penning (to F.P.M.C and S.R.). The work of Z.F. is supported by the Foundation Fighting Blindness USA Project Program Award grant no. PPA-0517-0717-RAD (to F.P.M.C. and S.R.). The work of M.K. and S.C. is supported by the RP Fighting Blindness, UK, grant no. GR591 (to F.P.M.C.). The work of S.C. is supported by the Fighting Blindness, Ireland (to F.P.M.C. and S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Roosing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Khan, M., Fadaie, Z., Cornelis, S.S., Cremers, F.P.M., Roosing, S. (2019). Identification and Analysis of Genes Associated with Inherited Retinal Diseases. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_1

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics