Skip to main content

Regulation of Angiogenesis by the Organ Microenvironment

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Most deaths from cancer are caused by metastases that are resistant to conventional therapies (1–3). The major barrier to the treatment of metastases is the biological heterogeneity of cancer cells in primary and secondary neoplasms. This heterogeneity is exhibited in a wide range of biologic characteristics, such as cell-surface receptors, enzymes, karyotypes, cell morphologies, growth properties, sensitivities to various therapeutic agents, and in the ability to induce angiogenesis, and to invade and produce metastasis (3–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugarbaker, E. V. (1979) Cancer metastasis: a product of tumor-host interactions. Curr. Probl. Cancer 3, 1–59.

    Article  PubMed  CAS  Google Scholar 

  2. Weiss, L. (1985) Principles ofMetastasis. Academic, Orlando, FL.

    Google Scholar 

  3. Fidler, I. J. (1990) Critical factors in the biology of human cancer metastasis: Twenty-eighth G. H. A. Clowes Memorial Award Lecture. Cancer Res. 50 6130–6138.

    Google Scholar 

  4. Fidler, I. J. and Poste, G. (1985) Cellular heterogeneity of malignant neoplasms: implications for adjuvant chemotherapy. Semin. Oncol. 12, 207–221.

    PubMed  CAS  Google Scholar 

  5. Folkman, J. and Klagsburn, M. (1987) Angiogenic factors. Science 235, 444–447.

    Article  Google Scholar 

  6. Aukerman, S. L. and Fidler, I. J. (1991) Heterogeneous nature of metastatic neoplasms: relevance to biotherapy, in Principles of Cancer Biotherapy (Oldham, R. K., ed.), Marcel Dekker, New York, pp. 23–53.

    Google Scholar 

  7. Folkman, J. (1986) How is blood vessel growth regulated in normal and neoplastic tissue? G. H. A. Clowes Memorial Award Lecture. Cancer Res. 46, 467–473.

    PubMed  CAS  Google Scholar 

  8. Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447.

    Article  PubMed  CAS  Google Scholar 

  9. Liotta, L. A. (1986) Tumor invasion and metastasis: role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res. 46, 1–7.

    Article  PubMed  CAS  Google Scholar 

  10. Fidler, I. J. and Kripke, M. L. (1980) Tumor cell antigenicity, host immunity and cancer metastasis. Cancer Immunol. Immunother. 7, 201–205.

    Google Scholar 

  11. Radinsky, R. (1993) Paracrine growth regulation ofhuman colon carcinoma organ-specific metastasis. Cancer Metastasis Rev. 12, 345–361.

    Article  PubMed  CAS  Google Scholar 

  12. Price, J. E., Tarin, D., and Fidler, I. J. (1988) Influence of organ microenvironment on pigmentation of a metastatic murine melanoma. Cancer Res. 48, 2258–2264.

    PubMed  CAS  Google Scholar 

  13. Auerbach, W. and Auerbach, R. (1994) Angiogenesis inhibition: a review. Pharmaceut. Ther. 63, 265–311.

    Article  CAS  Google Scholar 

  14. Ellis, L. M. and Fidler, I. J. (1996) Angiogenesis and metastasis. Eur. J. Cancer 32A, 2451–2460.

    Article  Google Scholar 

  15. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31.

    Article  PubMed  CAS  Google Scholar 

  16. Liotta, L. A., Kleinerman, J., and Saidel, G. M. (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1003.

    PubMed  CAS  Google Scholar 

  17. Weidner, N., Folkman, J., Pozza, F., Bevilacqua, P., Allred, E. N., Moore, D. H., Meli, S., and Gaspanni, G. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early stage breast carcinoma. J. Natl. Cancer Inst. 84, 1875–1887.

    Google Scholar 

  18. Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W., and Folkman, J. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409.

    PubMed  CAS  Google Scholar 

  19. Weidner, N. and Folkman, J. (1996) Tumoral vascularity as a prognostic factor in cancer, in Important Advances in Oncology (DeVita, V. T., Hellman, S., and Rosenberg, S. A., eds.), Lippincott-Raven, Philadelphia, pp. 167–190.

    Google Scholar 

  20. Klagsbrun, M. and D’Amore, P. A. (1991) Regulators ofangiogenesis. Ann. Rev. Physiol. 53, 217–239.

    Article  CAS  Google Scholar 

  21. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.

    Article  PubMed  CAS  Google Scholar 

  22. Gerlowski, L. E. and Jain, R. K. (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305.

    Article  PubMed  CAS  Google Scholar 

  23. Folkman, J. and Ingber, D. (1992) Inhibition of angiogenesis. Semin. Cancer Biol. 3, 89–96.

    PubMed  CAS  Google Scholar 

  24. Taraboletti, G., Roberts, D., Liotta, L. A., and Giavazzi, R. (1990) Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J. Cell Biol. 111, 765–772.

    Google Scholar 

  25. Sidky, Y. A. and Borden, E. C. (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 47, 5155–5161.

    PubMed  CAS  Google Scholar 

  26. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression ofmetastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  PubMed  Google Scholar 

  27. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  PubMed  Google Scholar 

  28. Folkman, J. (1995) Clinical applications ofresearch on angiogenesis. N. Engl. J. Med. 333,1753–1763.

    Google Scholar 

  29. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  30. Bouck, N., Stellmach, V., and Hsu, S. C. (1996) How tumors become angiogenic. Adv. Cancer Res. 69, 135–174.

    Article  PubMed  CAS  Google Scholar 

  31. Dameron, K. M., Volpert, O. V., Tanisky, M. A., and Bouk, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1502–1504.

    Article  Google Scholar 

  32. Hanahan, D., Christofori, G., Naik, P., and Arbeit, J. (1996) Transgenic mouse models of tumor angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 32A, 2386–2393.

    Google Scholar 

  33. Fidler, I. J. (1970) Metastasis: quantitative analysis ofdistribution and fate oftumor cell emboli labeled with 125l-5-iododeoxyuridine. J. Natl. Cancer Inst. 45, 773–782.

    PubMed  CAS  Google Scholar 

  34. Price, J. E., Aukerman, S. L., and Fidler, I. J. (1986) Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res. 46, 5172–5178.

    PubMed  CAS  Google Scholar 

  35. Fidler, I. J., Gersten, D. M., and Riggs, C. W. (1977) Relationship of host immune status to tumor cell arrest, distribution, and survival in experimental animals. Cancer 40, 46–55.

    Article  PubMed  CAS  Google Scholar 

  36. Hart, I. R., Talmadge, J. E., and Fidler, I. J. (1981) Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth. Cancer Res. 41, 1281–1287.

    PubMed  CAS  Google Scholar 

  37. Fidler, I. J. and Talmadge, J. E. (1986) Evidence that intravenously derived murine pulmonary metastases can originate from the expansion of a single tumor cell. Cancer Res. 46, 5167–5171.

    PubMed  CAS  Google Scholar 

  38. Paget, S. (1889) Distribution of secondary growths in cancer of the breast. Lancet1, 571–573.

    Article  Google Scholar 

  39. Hart, I. R. and Fidler, I. J. (1980) Role of organ selectivity in the determination of metastatic patterns of B 16 melanoma. Cancer Res. 40, 2281–2287.

    PubMed  CAS  Google Scholar 

  40. Fidler, I. J. (1973) Selection of successive tumor lines for metastasis. Nature 242, 148,149.

    Google Scholar 

  41. Nicolson, G. L. and Dulski, K. M. (1986) Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int. J. Cancer 38, 289–294.

    Article  PubMed  CAS  Google Scholar 

  42. Raz, A., Hanna, N., and Fidler, I. J. (1981) In vivo isolation of a metastatic tumor cell variant involving selective and nonadaptive processes. J. Natl. Cancer Inst. 66 183–194.

    Google Scholar 

  43. Fidler, I. J. and Hart, I. R. (1982) Biological diversity in metastatic neoplasms: origin and implications. Science 217 998–1003.

    Google Scholar 

  44. Fidler, I. J. and Kripke, M. L. (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197 893–895.

    Google Scholar 

  45. Fidler, I. J. (1994) Experimental orthotopic models of organ-specific metastasis by human neoplasms. Adv. Mol. Cell Biol. 9, 191–215.

    Article  Google Scholar 

  46. Fidler, I. J. (1995) Modulation of the organ microenvironment for treatment of cancer metastasis. J. Natl. Cancer Inst. 87, 1588–1592.

    Article  PubMed  CAS  Google Scholar 

  47. Ewing, J. (1928) Neoplastic Diseases, 6th ed., Saunders, Philadelphia.

    Google Scholar 

  48. Tarin, D., Price, J. E., Kettlewell, M. G. W., Souter, R. G., Vass, A. C. R., and Crossley, B. (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 44,3584–3592.

    PubMed  CAS  Google Scholar 

  49. Naito, S., von Eschenbach, A. C., Giavazzi, R., and Fidler, I. J. (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res. 46, 4109–4 115.

    Google Scholar 

  50. Naito, S., von Eschenbach, A. C., and Fidler, I. J. (1987) Different growth pattern and biologic behavior of human and renal cell carcinoma implanted into different organs of nude miuce. J. Natl. Cancer Inst. 78,377–385.

    PubMed  CAS  Google Scholar 

  51. Singh, R. K., Bucana, C. D., Gutman, M., Fan, D., Wilson, M. R., and Fidler, I. J. (1994) Organ sitedependent expression of basic fibroblast growth factor in human renal cell carcinoma cells. Am. J. Pathol. 145, 365–374.

    Google Scholar 

  52. Morikawa, K., Walker, S. M., Jessup, J. M., and Fidler, I. J. (1988) In vivo selection ofhighly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 48, 1943–1948.

    PubMed  CAS  Google Scholar 

  53. Morikawa, K., Walker, S. M., Nakajima, M., Pathak, S., Jessup, J. M., and Fidler, I. J. (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 48, 6863–6871.

    PubMed  CAS  Google Scholar 

  54. Fidler, I. J., Naito, S., and Pathak, S. (1990) Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice. Cancer Metastasis Rev. 9, 149–165.

    Article  PubMed  CAS  Google Scholar 

  55. Fidler, I. J. (1991) Orthotopic implantation of human colon carcinoma into nude mice provides a valuable model for the biology and therapy of cancer metastasis. Cancer Metastasis Rev. 10, 229–243.

    Article  PubMed  CAS  Google Scholar 

  56. Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D., and Fidler, I. J. (1990) Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J. Natl. Cancer Inst. 82, 1890–1898.

    Google Scholar 

  57. Fabra, A., Nakajima, M., Bucana, C. D., and Fidler, I. J. (1992) Modulation of the invasive phenotype of human colon carcinoma cells by organ specific fibroblasts of nude mice. Differentiation 52,101–110.

    Google Scholar 

  58. Gohji, K., Nakajima, M., Fabra, A., Bucana, C. D., von Eschenbach, A. C., Tsuruo, T., and Fidler, I. J. (1994) Regulation of gelatinase production in metastatic renal cell carcinoma by organ-specific fibroblasts. Jpn. J. Cancer Res. 85, 152–160.

    Article  PubMed  CAS  Google Scholar 

  59. Gohji, K., Fidler, I. J., Tsan, R., Radinsky, R., von Eschenbach, A. C., Tsuruo, T., and Nakajima, M. (1994) Human recombinant interferons-3 and -γ decrease gelatinase production and invasion by human KG-2 renal-carcinoma cells. Int. J. Cancer 58, 380–384.

    Google Scholar 

  60. Kato, N., Nawa, A., Tamakoshi, K., Kikkawa, F., Suganuma, N., Okamoto, T., et al. (1995) Suppression of gelatinase production with decreased invasiveness of choriocarcinoma cells by human recombinant interferon-β. Am. J. Obstet. Gynecol. 172, 601–606.

    Article  PubMed  CAS  Google Scholar 

  61. Nickoloff, B. J., Mitre, R. S., Varoni, J., Dixit, V. M., and Polverini, P. J. (1994) Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am. J. Pathol. 144, 820–828.

    PubMed  CAS  Google Scholar 

  62. Singh, R. K., Llansa, N., Bucana, C. D., Sanchez, R., Koura, A., and Fidler, I. J. (1996) Cell densitydependent regulation of basic fibroblast growth factor expression in human renal cell carcinoma cells. Cell Growth Differ. 7, 397–404.

    PubMed  CAS  Google Scholar 

  63. Kitadai, Y., Ellis, L. M., Takahashi, Y., Bucana, C. D., Anzai, H., Tahara, T., and Fidler, I. J. (1995) Multiparametric in situ mRNA hybridization analysis to detect metastasis-related genes in surgical specimens of human colon carcinomas. Clin. Cancer Res. 1, 1095–1102.

    PubMed  CAS  Google Scholar 

  64. Kitadai, Y., Ellis, L. M., Tucker, S. L., Green, G. F., Bucana, C. D., Cleary, K. R., et al. (1996) Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma. Am. J. Pathol. 149, 1541–1551.

    PubMed  CAS  Google Scholar 

  65. Ezekowitz, R. A. B., Mulliken, J. B., and Folkman, J. (1992) Interferon alfa-2a therapy for lifethreatening hemangiomas of infancy. N. Engl. J. Med. 326, 1456–1463.

    Article  PubMed  CAS  Google Scholar 

  66. White, C. W., Sondheimer, H. M., Crouch, E. C., Wilson, H., and Fan, L. L. (1989) Treatment of pulmonary hemangiomatosis with recombinant interferon-a-2a. N. Engl. J. Med. 320, 1197–1200.

    Article  PubMed  CAS  Google Scholar 

  67. Orchard, P. J., Smith, C. M., Woods, W. G., Day, D. L., Dehner, L. P., and Shapiro, R. (1989) Treatment of heamangioendotheliomas with interferon-a. Lancet 2, 565–567.

    Google Scholar 

  68. Ezekowitz, A., Mulliken, J., and Folkman, J. (1991) Interferon alpha therapy of haemangiomas in newborns and infants. Br. J. Haematol. 79, 67, 68.

    Google Scholar 

  69. Ricketts, R. R., Hatley, R. M., Corden, B. J., Sabio, H., and Howell, C. G. (1994) Interferon-a-2a for the treatment of complex hemangiomas of infancy and childhood. Ann. Surg. 6, 605–614.

    Google Scholar 

  70. Ohlms, L. A., Jones, D. T., McGill, T. J. I., and Healy, G. B. (1994) Interferon-α-2A therapy for airway hemangiomas. Ann. Otol. Rhinol. Laryngol. 103, 1–8.

    PubMed  CAS  Google Scholar 

  71. Groopman, J. E., Gottlieb, M. S., Goodman, J., Mitsuyasu, R. T., Conant, M. A., Prince, H., et al. (1984) Recombinant alpha-2 interferon therapy for Kaposi’s sarcoma associated with the acquired immunodeficiency syndrome. Ann. Intern. Med. 100, 671–676.

    Article  PubMed  CAS  Google Scholar 

  72. Real, F. X., Oettgen, H. F., and Krown, S. E. (1986) Kaposi’s sarcoma and the acquired immunodeficiency syndrome: treatment with high and low doses of recombinant leukocyte A interferon. J. Clin. Oncol. 4, 544–551.

    PubMed  CAS  Google Scholar 

  73. Rios, A., Mansell, P. W., Newell, G. R., Reuben, J. M., Hersh, E. M., and Gutterman, J. U. (1985) Treatment of acquired immunodeficiency syndrome-related Kaposi’s sarcoma with lymphoblastoid interferon. J. Clin. Oncol. 3, 506–512.

    PubMed  CAS  Google Scholar 

  74. Mitsuyasu, R. T. (1991) Interferon alpha in the treatment of AIDS-related Kaposi’s sarcoma. Br. J. Haematol. 79, 69–73.

    Article  PubMed  Google Scholar 

  75. Legha, S. S. (1997) The role of interferon alfa in the treatment of metastatic melanoma. Semin. Oncol. 24, 24–31.

    Google Scholar 

  76. Tucker, S. B. (1993) Interferon-alpha treatment of basal cell and squamous cell skin tumors. Cancer Bull. 45, 270–274.

    Google Scholar 

  77. Stadler, W. M., Kuzel, T. M., Raghavan, D., Levine, E., Vogelzang, N. J., Roth, B., and Dorr, F. A. (1997) Metastatic bladder cancer: advances in treatment. Eur. J. Cancer 33, 23–26.

    Article  Google Scholar 

  78. O’Brien, T. S., Smith, K., Cranston, D., Fuggle, S., Bicknell, R., and Harris, A. L. (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br. J Urol. 76,311–314.

    Article  PubMed  Google Scholar 

  79. Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., Hayes, D. F., and Folkman, J. (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl. Cancer Inst. 86, 356–361.

    Article  PubMed  CAS  Google Scholar 

  80. Singh, R. K., Gutman, M., Bucana, C. D., Sanchez, R., Llansa, N., and Fidler, I. J. (1995) Interferons alpha and beta downregulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 4562–4566.

    Article  PubMed  CAS  Google Scholar 

  81. Singh, R. K., Bucana, C. D., Llansa, N., Sanchez, R., and Fidler, I. J. (1996) Cell density-dependent modulation ofbasic fibroblast growth factor expression by human interferon-β. Int. J. Oncol. 8, 649–656.

    PubMed  Google Scholar 

  82. Herlyn, M. (1990) Human melanoma: development and progression. Cancer Metastasis Rev. 9, 101–109.

    Article  PubMed  CAS  Google Scholar 

  83. Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., and Fidler, I. J. (1994) Expression of interleukin-8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 54, 3242–3247.

    PubMed  CAS  Google Scholar 

  84. Gutman, M., Singh, R. K., Xie, K., Bucana, C. D., and Fidler, I. J. (1995) Regulation of IL-8 expression in human melanoma cells by the organ environment. Cancer Res. 55, 2470–2475.

    PubMed  CAS  Google Scholar 

  85. Singh, R. K., Gutman, M., Llansa, N., and Fidler, I. J. (1996) Interferon-β prevents the upregulation of interleukin-8 expression in human melanoma cells. J. Interferon Cytokine Res. 16, 577–584.

    Article  PubMed  CAS  Google Scholar 

  86. Oliveira, I. C., Sciavolino, P. J., Lee, T. H., and Vilcek, J. (1992) Downregulation of interleukin-8 gene expression in human fibroblast: unique mechanism of transcriptional inhibition by interferon. Proc. Natl. Acad. Sci. USA 89, 9049–9053.

    Article  PubMed  CAS  Google Scholar 

  87. Schnyder-Candrian, S., Strieter, R. M., Kunkel, S. L., and Walz, A. (1995) Interferon-a and interferonγ downregulate the production of interleukin-8 and ENA-78 in human monocytes. J. Leukoc. Biol. 57, 929–935.

    PubMed  CAS  Google Scholar 

  88. Sidky, Y. A. and Auerbach, R. (1976) Lymphocyte-induced angiogenesis in tumor-bearing mice. Science 192, 1237, 1238.

    Google Scholar 

  89. Meininger, C. J. and Zetter, B. R. (1992) Mast cells and angiogenesis. Semin. Cancer Biol. 3, 73–79.

    PubMed  CAS  Google Scholar 

  90. Fidler, I. J. (1980) Lymphocytes are not only immunocytes. Biomedicine 32, 1–3.

    PubMed  CAS  Google Scholar 

  91. Fidler, I. J., Gersten, D. M., and Kripke, M. L. (1979) Influence of immune status on the metastasis of three murine fibrosarcomas of different immunogenicites. Cancer Res. 39, 3816–3821.

    PubMed  CAS  Google Scholar 

  92. Miguez, M., Davel, L., and deLustig, E. S. (1986) Lymphocyte-induced angiogenesis: correlation with the metastatic incidence of two murine mammary adenocarcinomas. Invasion Metastasis 6, 313–320.

    PubMed  CAS  Google Scholar 

  93. Freeman, M. R., Schneck, F. X., Gagnon, M. L., Corless, C., Soker, S., Niknejad, K., Peoples, G. E., and Klagsbrun, M. (1995) Peripheral blood T-lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res. 55, 4140–4145.

    PubMed  CAS  Google Scholar 

  94. Polverini, P. Cotran, R., Gimbrone, N., and Unanue, E. (1977) Activated macrophages induce vascular proliferation. Nature 269 804, 805.

    Google Scholar 

  95. Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., and Sorg, C. (1994) Macrophages and angiogenesis. J. Leukocyte Biol. 55, 410–422.

    PubMed  CAS  Google Scholar 

  96. Takahashi, K., Mulliken, J. B., Kozakewich, H. P. W., Rogers, R. A., Folkman, J., and Ezekowitz, R. A. B. (1994) Cellular markers that distinguish the phases ofhemangioma during infancy and childhood. J. Clin. Invest. 93, 2357–2364.

    Article  PubMed  CAS  Google Scholar 

  97. Glowacki, J. and Mulliken, J. B. (1982) Mast cells in hemangiomas and vascular malformations. Pediatrics 70, 48–51.

    PubMed  CAS  Google Scholar 

  98. Srivastava, A., Laidler, P., Davies, R. P., Horgan, K., and Hughes, L. E. (1988) Prognostic significance of tumor vascularity in intermediate thickness (0.76–4.0 mm thick) skin melanoma: a quantitative histologic study. Am. J. Pathol. 133, 419–423.

    PubMed  CAS  Google Scholar 

  99. Ruiter, D. J., Bhan, A. K., Harrris, T. J., Sober, A. J., and Mihm, M. C., Jr. (1982) Major histocompatibility antigens and the mononuclear inflammatory infiltrate inbenign nevomelanocytic proliferation and malignant melanoma. J. Immunol. 129, 2808–2815.

    PubMed  CAS  Google Scholar 

  100. Brocker, E. G., Rechenbeld, C., Hamm, H., Ruiter, D. J., and Sorg, C. (1992) Macrophages in melanocytic naevi. Arch. Dermatol. Res. 284, 127–131.

    Google Scholar 

  101. Gutman, M., Singh, R. K., Yoon, S., Xie, K., Bucana, C. D., and Fidler, I. J. (1994) Leukocyte-induced angiogenesis and subcutaneous growth of B 16 melanoma. Cancer Biother. 9, 163–170.

    Article  PubMed  CAS  Google Scholar 

  102. Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R., and Ellis, L. M. (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55, 3964–3968.

    Google Scholar 

  103. Takahashi, Y., Bucana, C. D., Liu, W., Yoneda, J., Kitadai, Y., Cleary, K. R., and Ellis, L. M. (1996) Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J. Natl. Cancer Inst. 88, 1146–1151.

    Article  PubMed  CAS  Google Scholar 

  104. Uze, G., Lutgalla, G., and Morgensen, K. E. (1995) a and β interferons and their receptor and their friends and relations. J. Interferon Cytokine Res. 15, 3–26.

    Google Scholar 

  105. Yaar, M., Karassik, R. L., Schnipper, L. E., and Gilchrest, B. A. (1985) Effects of alpha and beta interferons on cultured human keratinocytes. J. Invest. Dermatol. 85, 70–74.

    Article  PubMed  CAS  Google Scholar 

  106. Tamm, I., Lin, S. L., Pfeffer, L. M., and Sehgal, P. B. (1987) Interferons a and β as cellular regulatory molecules, in Interferon9 (Gresser, I., ed.), Academic, London, pp. 13–74.

    Google Scholar 

  107. Rossi, G. (1985) Interferons and cell differentiation, in Interferon6 (Gresser, I., ed.), Academic, London, pp. 31–68.

    Google Scholar 

  108. Chatterjee, D. and Savarese, T. M. (1992) Posttranscriptional regulation of c-myc proto-oncogene expression and growth inhibition by recombinant human interferon-β ser17 in a human colon carcinoma cell line. Cancer Chemother. Pharmacol. 30, 12–20.

    Article  PubMed  CAS  Google Scholar 

  109. Reznitzky, D., Yarden, A., Zipori, D., and Kimchi, A. (1986) Autocrine β-related interferon controls c-myc suppression and growth arrest during hematopoietic cell differentiation. Cell 46, 31–40.

    Article  Google Scholar 

  110. de Maeyer-Guignard, J. and de Maeyer, E. (1985) Immunomodulation by interferons: recent developments, in Interferon6 (Gresser, I., ed.), Academic, London, pp. 69–91.

    Google Scholar 

  111. Strander, H. (1986) Interferon treatment of human neoplasia: effects on the immune system. Adv. Cancer Res. 46 36–57.

    Google Scholar 

  112. Gresser, I., Carnaud, C., Maury, C., Sala, A., Eid, P., Woodrow, D., Maunoury, M.-T., and Belardelli, F. (1991) Host humoral and cellular immune mechanisms in the continued suppression of Friend erythroleukemia metastasis after interferon a/β treatment in mice. J. Exp. Med. 173, 1193–1203.

    Article  PubMed  CAS  Google Scholar 

  113. Gresser, I. (1989) Antitumor effects of interferon. Acta Oncol. 28, 347–353.

    Article  PubMed  CAS  Google Scholar 

  114. Ferrantini, M., Proietti, E., Santodonato, L., Gabriele, L., Peretti, M., Plavec, I., et al. (1993) αl interferon gene transfer into metastatic Friend leukemia cells abrogated tumorigenicity in immunocompetent mice: antitumor therapy by means ofinterferon-producing cells. Cancer Res. 53,1107–1112.

    Google Scholar 

  115. Gresser, I., Belardelli, F., Maury, C., Maunoury, M-T., and Tovey, M. G. (1983) Injection of mice with antibody to interferon enhances the growth of transplantable murine tumors. J. Exp. Med. 158, 2095–2107.

    Article  PubMed  CAS  Google Scholar 

  116. Gutterman, J. U. (1994) Cytokine therapeutics: lessons from interferon a. Proc. Natl. Acad. Sci. USA 91, 1198–1205.

    Article  PubMed  CAS  Google Scholar 

  117. Gresser, I. (1985) How does interferon inhibit tumor growth? in Interferon6 (Gresser, I., ed.), Academic, London, pp. 93–126.

    Google Scholar 

  118. Fleischmann, W. R. and Fleischmann, C. M. (1992) Mechanisms of interferons antitumor actions, in Interferon: Principles and Medical Applications (Baron, S., Coppenhaver, D. H., Dianzani, F., Fleischmann, W. R., Jr., Hughes, T. K., Jr., Klimpel, G. R., et al., eds.), University of Texas Press, UTMB-Galveston, TX, pp. 299–309.

    Google Scholar 

  119. Gorlach, A., Herter, P., Hentschel, H., Frosh, P. J., and Acker, H. (1994) Effects of mIFN-β and rIFN-γ on growth and morphology of two human melanoma cell lines: comparison between two- and three-dimensional cultures. Int. J. Cancer 56, 249–254.

    Google Scholar 

  120. Johns, T. G., Mackay, I. R., Callister, K. A., Hertzog, P. J., Devenish, R. J., and Linnane, A. W. (1992) Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon-beta. J. Natl. Cancer Inst. 84, 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  121. Sica, G., Fabbroni, L., Castagnetta, L., Cacciatore, M., and Pavone-Macaluso, M. (1989) Antiprol i ferative effect of interferons on human prostate carcinoma cell lines. Urol. Res. 17, 111–115.

    Article  PubMed  CAS  Google Scholar 

  122. Heyns, A. P., Eldor, A., Vlodavsky, I., Kaiser, N., Fridman, R., and Panet, A. (1985) Antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Exp. Cell Res. 161, 297–306.

    Article  PubMed  CAS  Google Scholar 

  123. Friesel, R., Komoriya, A., and Maciag, T. (1987) Inhibition of endothelial cell proliferation by gammainterferon. J. Cell Biol. 104, 689–696.

    Article  PubMed  CAS  Google Scholar 

  124. Ruszczak, Z., Detmar, M., Imcke, E., and Orfanos, C. E. (1990) Effects of rIFN-alpha, -beta, and -gamma on the morphology, proliferation, and cell surface antigen expression of human dermal microvascular endothelial cells in vitro. J. Invest. Dermatol. 95, 693–699.

    Article  CAS  Google Scholar 

  125. Hicks, C., Breit, S. N., and Penny, R. (1989) Response of microvascular endothelial cells to biological response modifiers. Immunol. Cell Biol. 67, 271–277.

    Article  PubMed  CAS  Google Scholar 

  126. Brouty-Boye, D. and Zetter, B. R. (1980) Inhibition ofcell motility by interferon. Science 208, 516–518.

    Article  PubMed  CAS  Google Scholar 

  127. Fukuzawa, K. and Horikoshi, T. (1992) Inhibitory effect of human fibroblast interferon (HuIFN-β) on the growth and invasive potential of cultured human melanoma cells in vitro. Br. J. Dermatol. 126, 324–330.

    Article  CAS  Google Scholar 

  128. Stout, A. J., Gresser, I., and Thompson, W. D. (1993) Inhibition of wound healing in mice by local interferon a/β injection. Int. J. Exp. Pathol. 74, 79–85.

    Google Scholar 

  129. Dvorak, H. F. and Gresser, I. (1989). Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J. Natl. Cancer Inst. 81, 497–502.

    Google Scholar 

  130. Xie, K., Bielenberg, D., Huang, S., Xu, L., Salas, T., Juang, S., Dong, Z., and Fidler, I. J. (1997) Abrogation of tumorigenicity and metastasis of murine and human tumor cells by transfection with the murine interferon-beta gene: possible role of nitric oxide. Clin. Cancer Res. 3, 2283–2294.

    Google Scholar 

  131. Dinney, C. P. N., Bielenberg, D. R., Reich, R., Eve, B. Y., Perrotte, P., Bucana, C. D., and Fidler, I. J. (1998) Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 58, 808–814.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bielenberg, D.R., Fidler, I.J. (1999). Regulation of Angiogenesis by the Organ Microenvironment. In: Teicher, B.A. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-453-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-453-5_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4518-4

  • Online ISBN: 978-1-59259-453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics