Skip to main content

Obesity and Insulin Resistance

Epidemiologic, Metabolic, and Molecular Aspects

  • Chapter
Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE,volume 12))

Abstract

It is commonly accepted that obesity is a health hazard associated with complications such as non-insulin-dependent diabetes mellitus (Type 2 diabetes), dyslipidemias, hypertension and cardiovascular diseases (1–5). On the basis of its increasing prevalence in affluent countries (6–8), obesity is considered as a major cause of morbidity and mortality which makes a major contribution to our health care expenditures (9). Overall, excess weight is related to an increased mortality rate both from cardiovascular diseases and other causes (2–5,10,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turner RC. The role of obesity in diabetes. Int J Obes 1992; 16 (Supp1.2): S43 – S46.

    Google Scholar 

  2. Pi-Sunyer FX. Medical hazards of obesity. Ann Intern Med 1993; 119: 655–660.

    CAS  PubMed  Google Scholar 

  3. Kissebah AH, Freedman DS, Peiris AN. Health risks of obesity. Med Clin North Am 1989; 73: 111–138.

    CAS  PubMed  Google Scholar 

  4. Bjorntorp P. Abdominal obesity and the development of noninsulin dependent diabetes mellitus. Diabetes Metab Rev 1988; 4: 615–622.

    CAS  PubMed  Google Scholar 

  5. Barrett-Connor E. Epidemiology, obesity, and non-insulin dependent diabetes mellitus. Epidemiol Rev 1989; 11: 172–181.

    Google Scholar 

  6. Kuczmarski R.I. Prevalence of overweight and weight gain in the United States. Am J Clin Nutr 1992; 55: 495S - 502S.

    CAS  PubMed  Google Scholar 

  7. Seidell JC. Obesity in Europe: scaling an epidemic. Int J Obes 1995;19(Supp13):S1–S4.

    Google Scholar 

  8. Stamler J. Epidemic obesity in the United States. Arch In Med 1993; 153: 1040–1044.

    Google Scholar 

  9. Wolf AM, Colditz GA. Social and economic effects of body weight in the United States. Am J Clin Nutr 1996;63(Suppl)466S–469S.

    Google Scholar 

  10. National Institutes of Health Consensus Development Panel on the Health implications of Obesity: Health implications of obesity: National Institutes of Health consensus development conference statement. Ann Intern Med 1985; 103: 1073–1077.

    Google Scholar 

  11. Bray, GA. Pathophysiology of obesity. Ann J Clin Nutr 1992; 55: 488S - 494S.

    CAS  Google Scholar 

  12. Barrett-Connor E. Obesity, atherosclerosis, and coronary artery disease. Ann Intern Med 1985; 103: 1010–1019.

    CAS  PubMed  Google Scholar 

  13. Manson JE, Willett WC, Stampfer MJ, Colditz GA, Hunter DJ, Hankinson SE, Hennekens CH, Speizer FE. Body weight and mortality among women. N Engl J Med 1995; 333: 677–685.

    CAS  PubMed  Google Scholar 

  14. Bouchard C, Després JP. Variation in fat distribution with age and health implications. In: Eckert HM, Spirduso W, eds. Physical activity and aging. American Academy of Physical Education, 1989; 78–106.

    Google Scholar 

  15. Després JP. Visceral obesity: A component of the insulin resistance-dyslipidemic syndrome. Can J Cardiol 1994; 10: 17B - 22B.

    Google Scholar 

  16. Després JP. Obesity and lipid metabolism: Relevance of body fat distribution. Curr Opin Lipidol 1991; 2: 5–15.

    Google Scholar 

  17. Després JP. Dyslipidemia and obesity. Ballière’s Clinical Endocrinology and Metabolism. 1994; 8: 629–60.

    Google Scholar 

  18. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10: 497–511.

    PubMed  Google Scholar 

  19. Kissebah AH, Peiris AN. Biology of regional body fat distribution: Relationship to non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 1989; 5: 83–109.

    CAS  PubMed  Google Scholar 

  20. Björntorp P. “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 1990;10:493–496.

    Google Scholar 

  21. Kissebah AH, Evans DJ, Peiris A, Wilson CR. Endocrine characteristics in regional obesities: Role of sex steroids. In: Metabolic complications of human obesities, Vague J, Björntorp P, Guy-Grand B, et al, eds. Amsterdam: Elsevier Science Publ 1985; 115–130.

    Google Scholar 

  22. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev 1984; 74: 761–811.

    Google Scholar 

  23. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: A 12 year follow-up of participants in the population study of women in Gothenburg, Sweden. BMJ 1984; 289: 1261–1263.

    Google Scholar 

  24. Larsson B, Svardsudd K, Welin L, Wilhemsen L, Björntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity and risk of cardiovascular disease and death: 13 year follow-up of participants in the study of men born in 1913. BMJ 1984; 288: 1401–1404.

    CAS  PubMed  Google Scholar 

  25. Ducimetière P, Richard J, Cambien F. The pattern of subcutaneous fat distribution in middle-aged men and the risk of coronary heart disease: The Paris Prospective study. Int J Obes 1986; 10: 229–240.

    PubMed  Google Scholar 

  26. Ohlson LO, Larsson B, Svärdsudd K, Welin L, Eriksson H, Wilhelmsen L, Björntorp P, Tibblin G. The influence of body fat distribution on the incidence of diabetes mellitus-13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985; 34: 1055–1058.

    Google Scholar 

  27. Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, Silbert JE. Assessment of abdominal fat content by computed tomography. Am J Clin Nutr 1982; 36: 172–177.

    CAS  PubMed  Google Scholar 

  28. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomogrphy. Int J Obes 1983; 7: 437–445.

    CAS  PubMed  Google Scholar 

  29. Sjöström L, Kvist H, Cederblad A, Tylen U. Determination of total adipose tissue and body fat in women by computed tomography, 40K, and tritium. Am J Physiol (Endocrinol Metab) 1986; 250: E736 - E745.

    Google Scholar 

  30. Kvist H, Chowdhury B, Grangard U, Tylén U, Sjöström L. Total and visceral adipose tissue volumes derived from measurements with computed tomography in adult men and women: Predictive equations. Am J Clin Nutr 1988; 48: 1351–1361.

    CAS  PubMed  Google Scholar 

  31. Després JP, Nadeau A, Tremblay A, Ferland M, Lupien PJ. Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 1989; 38: 304–309.

    PubMed  Google Scholar 

  32. Pouliot MC, Després JP, Nadeau A, Moorjani S, Prud’homme D, Lupien PJ, Tremblay A, Bouchard C. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 1992; 41: 826–834.

    CAS  PubMed  Google Scholar 

  33. Després JP, Moorjani S, Ferland M, Tremblay A, Lupien PJ, Nadeau A, Pinault S, Thériault G, Bouchard C. Adipose tissue distribution and plasma lipoprotein levels in obese women: Importance of intra-abdominal fat. Arteriosclerosis 1989; 9: 203–210.

    PubMed  Google Scholar 

  34. Després JP, Ferland M, Moorjani S, Tremblay A, Lupien PJ, Thériault G, Bouchard C. Role of hepatictriglyceride lipase activity in the association between intra-abdominal fat and plasma HDL-cholesterol in obese women. Arteriosclerosis 1989; 9: 485–492.

    PubMed  Google Scholar 

  35. Després JP, Moorjani S, Tremblay A, Ferland M, Lupien PJ, Nadeau A, Bouchard C. Relation of high plasma triglyceride levels associated with obesity and regional adipose tissue distribution to plasma lipoprotein-lipid composition in premenopausal women. Clin Invest Med 1989; 12: 374–380.

    PubMed  Google Scholar 

  36. Després JP, Lemieux S, Lamarche B, Prud’homme D, Moorjani S, Brun LD, Gagné C, Lupien Pi. The insulin-resistance syndrome: Contribution of visceral obesity and therapeutic implications. Int J Obes 1995; 19(suppl):S76-S 86.

    Google Scholar 

  37. Després JP, Marette A. Relation of components of insulin resistance syndrome to coronary disease risk. Curr Opin Lipidol 1994; 5: 274–289.

    PubMed  Google Scholar 

  38. Tchernof A, Lamarche B, Prud’homme D et al. The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care 1996; 19 (6): 629–637.

    CAS  PubMed  Google Scholar 

  39. Juhan-Vague I, Pyke SDM, Alessi ML, et al. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. Circulation 1996; 94: 2057–2063.

    CAS  PubMed  Google Scholar 

  40. Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 1997; 46: 860–867.

    CAS  PubMed  Google Scholar 

  41. Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 1990; 263: 2893–2898.

    CAS  PubMed  Google Scholar 

  42. Lillioja S, Mott DM, Spraul M et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin dependent diabetes mellitus: prospective studies of Pima Indians. N Engl J Med 1993; 329: 1988–1992.

    CAS  PubMed  Google Scholar 

  43. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic patients. Ann Intern Med 1990; 113: 909–915.

    CAS  PubMed  Google Scholar 

  44. Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results from a 25-year follow-up study. Lancet 1992; 340: 925–929.

    CAS  PubMed  Google Scholar 

  45. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16: 434–444.

    CAS  PubMed  Google Scholar 

  46. Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Eight to nine year mortality in known non-insulin dependent diabetes and controls. Kidney Int 1992; 42: 731–735.

    Google Scholar 

  47. Donahue RP, Orchard TJ. Diabetes Mellitus and macrovascular complications: an epidemiological perspective. Diabetes Care 1992; 15: 1141–1155.

    CAS  PubMed  Google Scholar 

  48. Jarrett Ri, Shipley MJ. Type 2 (non-insulin dependent) diabetes mellitus and cardiovascular disease-putative association via common antecedents; further evidence from the Whitehall study. Diabetologia 1988; 31: 737–740.

    Google Scholar 

  49. Herman JB, Medalie JH, Goldbourt U. Differences in cardiovascular morbidity and mortality between previously known and newly diagnosed adult diabetics. Diabetologia 1977; 13: 229–234.

    CAS  PubMed  Google Scholar 

  50. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1606.

    CAS  PubMed  Google Scholar 

  51. Sicree RA, Zimmet PZ, King HOM, Coventry JS. Plasma insulin response among Nauruans: prediction of deterioration in glucose tolerance over 6 yrs. Diabetes 1987; 36: 179–186.

    CAS  PubMed  Google Scholar 

  52. Bergstrom RW, Newell-Morris LL, Leonetti DL, Shuman WP, Wahl PW, Fujimoto WY. Association of elevated fasting C-peptide level and increased intra-abdominal fat distribution with development of NIDDM in Japanese American men. Diabetes 1990; 39: 104–111.

    CAS  PubMed  Google Scholar 

  53. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH. The natural history of impaired glucose tolerance in the Pima Indians. N Engl J Med 1988; 319: 1500–1506.

    CAS  PubMed  Google Scholar 

  54. Haffner SM, Miettinen H, Gaskill SP, Stern MP. Decreased insulin secretion and increased insulin resistance are independently related to the seven year risk of non-insulin dependent diabetes mellitus in Mexican Americans. Diabetes 1995; 44: 1386–1391.

    CAS  PubMed  Google Scholar 

  55. Pyorala K, Laakso M, Vusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987; 3: 463–524.

    CAS  PubMed  Google Scholar 

  56. Lewis GF, Steiner G. Hypertriglyceridemia and its metabolic consequences as a risk factor for atherosclerotic cardiovascular disease in non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 1996; 12: 37–56.

    CAS  PubMed  Google Scholar 

  57. Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb 1992; 12: 647–656.

    CAS  PubMed  Google Scholar 

  58. Frayn KN. Insulin resistance and lipid metabolism. Curr Opin Lipidolol 1993; 4: 197–204.

    CAS  Google Scholar 

  59. Laws A. Free fatty acids, insulin resistance and lipoprotein metabolism. Curr Opin Lipidolol 1996; 7: 172–177.

    CAS  Google Scholar 

  60. Reaven GM, Chen IYD, Jeppesen J, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles. J Clin Invest 1993; 92: 141–146.

    CAS  PubMed  Google Scholar 

  61. Selby JB, Austin MA, Newman B et al. LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation 1993; 88: 381–387.

    CAS  PubMed  Google Scholar 

  62. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276: 875–881.

    CAS  PubMed  Google Scholar 

  63. Lamarche B, Tchernof A, Moorjani S. Small, dense low-density lipoprotein particles as predictors of the risk of ischemic heart disease in men: prospective results from the Québec Cardiovascular Study. Circulation 1997; 95: 69–75.

    CAS  PubMed  Google Scholar 

  64. Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 1996; 276: 882–888.

    CAS  PubMed  Google Scholar 

  65. Gerstein HC, Yusuf S. Dysglycemia and the risk of cardiovascular disease. Lancet 1996; 347: 949–950.

    CAS  PubMed  Google Scholar 

  66. Pénicaud L, Ferré P, Terretaz J, Kinebanyan MF, Leturque A, Doré E, Girard J, Jeanrenaud B, Picon L. Development of obesity in Zucker rats. Early insulin resistance in muscles but normal sensitivity in white adipose tissue. Diabetes 1987; 36: 626–631.

    PubMed  Google Scholar 

  67. Lavau M, Bazin R, Guerre-Millo M. Increased capacity for fatty acid synthesis in white and brown adipose tissues from 7-day-old obese Zucker pups. Int J Obes 1985; 9: 61–66.

    CAS  PubMed  Google Scholar 

  68. Pénicaud L, Ferré P, Assimacopoulos-Jeannet F, Perdereau D, Leturque A, Jeanrenaud B, Picon L, Girard J. Increased gene expression of lipogenic enzymes and glucose transporter in white adipose tissue of suckling and weaned obese Zucker rats. Biochem J 1991; 279: 303–308.

    PubMed  Google Scholar 

  69. Klip A, Marette A. Regulation of glucose transporters by insulin and exercise: cellular effects and implications for diabetes In: Rowell LB, ed. Handbook of Physiology, J.T.S. Oxford University Press, 1998, 2 (part II) Target tissues for metabolic regulatory hormones; in press.

    Google Scholar 

  70. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994; 43: 1271–1278.

    CAS  PubMed  Google Scholar 

  71. Hotamisligil, G S, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    CAS  PubMed  Google Scholar 

  72. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95: 2111–2119.

    CAS  PubMed  Google Scholar 

  73. Hotamisligil GS, Amer P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.

    CAS  PubMed  Google Scholar 

  74. Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF-a by human muscle. Relationship to insulin resistance. J Clin Invest 1996; 97: 1111–1116.

    CAS  PubMed  Google Scholar 

  75. Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes-central role of tumor necrosis factor-alpha. J Clin Invest 1994; 94: 1543–1549.

    CAS  PubMed  Google Scholar 

  76. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor a inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 1994; 91: 4854–4858.

    CAS  PubMed  Google Scholar 

  77. Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996; 45: 881–885.

    PubMed  Google Scholar 

  78. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389: 610–614.

    CAS  PubMed  Google Scholar 

  79. Ventre J, Doebber T, Wu M, MacNaul K, Stevens K, Pasparakis M, Kollias G, Moller DE. Targeted disruption of the tumor necrosis actor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes 1997; 46: 1526–1531.

    CAS  PubMed  Google Scholar 

  80. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996; 274 (5291): 1377–1379.

    CAS  PubMed  Google Scholar 

  81. Randle PJ, Priestman DA, Mistry SC, Halsall A. Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem 1994; 55: 1–11.

    CAS  PubMed  Google Scholar 

  82. Ranganathan S, Davidson MB. Effect of tumor-necrosis-factor-alpha on basal and insulin-stimulated glucose-transport in cultured muscle and fat-cells. Metabolism-clinical and experimental 1996; 45: 1089–1094.

    CAS  PubMed  Google Scholar 

  83. Furnsinn C, Neschen S, Wagner O, Roden M, Bisschop M, Waldhausl W. Acute and chronic exposure to tumor necrosis factor-alpha fails to affect insulin-stimulated glucose metabolism of isolated rat soleus muscle. Endocrinology 1997; 138 (7): 2674–2679.

    CAS  PubMed  Google Scholar 

  84. Bédard S, Marcotte B, Marette A. Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase. Biochem J 1997; 325: 487–493.

    PubMed  Google Scholar 

  85. Girard J. Is leptin the link between obesity and insulin resistance? Diabetes Metab 1997; 23: 16–24.

    CAS  PubMed  Google Scholar 

  86. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell 1996; 87: 377–389.

    CAS  PubMed  Google Scholar 

  87. Muller, G., J. Ertl, M. Gerl, and G. Preibisch. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 272: 10585–93, 1997.

    CAS  PubMed  Google Scholar 

  88. Berti L, Kellerer M, Capp E, Haring HU. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a P13-kinase mediated effect. Diabetologia 1997; 40: 606–609.

    CAS  PubMed  Google Scholar 

  89. Zierath JR, Frevert EU, Ryder JW, Berggren PO, Kahn BB. Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes. Diabetes 1998; 47: 1–4.

    CAS  PubMed  Google Scholar 

  90. Björntorp P. Visceral obesity: A “Civilization Syndrome.” Obesity Res 1993; 1: 206–222.

    Google Scholar 

  91. Amer P. Regulation of adipose tissue lipolysis, importance for the metabolic syndrome. Adv Exp Med Biol 1993; 334: 259–267.

    Google Scholar 

  92. Frayn KN, Williams CM, Amer P. Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? [editorial]. Clin Sci 1996; 90: 243–253.

    CAS  PubMed  Google Scholar 

  93. Bouchard C, Després JP, Mauriège P. Genetic and nongenetic determinants of regional fat distribution. Endocr Rev 1993; 14: 72–93.

    CAS  PubMed  Google Scholar 

  94. Mauriège P, Galitzky J, Berlan M, Lafontan M. Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest 1987; 17: 156–165.

    PubMed  Google Scholar 

  95. Mauriège P, Després JP, Prud’ homme D, Pouliot MC, Marcotte M, Tremblay A, Bouchard C. Regional variation in adipose tissue lipolysis in lean and obese men. J Lipid Res 1991; 32: 1625–1633.

    PubMed  Google Scholar 

  96. Mauriège P, Marette A, Atgie C, Bouchard C, Theriault G, Bukowiecki LK, Marceau P, Biron S, Nadeau A, Després JP. Regional variation in adipose tissue metabolism of severely obese premenopausal women. J Lipid Res 1995; 36: 672–684.

    PubMed  Google Scholar 

  97. Mauriège P, Prud’homme D, Lemieux S, Tremblay A, Després JP. Regional differences in adipose tissue lipolysis from lean and obese women: existence of postreceptor alterations. Am J Physiol 1995; 269: E341 - E350.

    PubMed  Google Scholar 

  98. Marette A, Mauriège P, Atgié C, Bouchard C, Thériault G, Bukowiecki L, Marceau P, Biron S, Nadeau A, Després JP. Regional variation in adipose tissue insulin action and GLUT4 glucose transporter expression in severely obese premenauposal women. Diabetologia 1997; 40: 590–598.

    CAS  PubMed  Google Scholar 

  99. Lönnqvist F, Thorne A, Nilsell K, Hoffstedt J, Amer P. A pathogenic role of visceral fat beta3adrenoceptors in obesity. J Clin Invest 1995; 95: 1109–1116.

    PubMed  Google Scholar 

  100. Lönnqvist F, Krief S, Strosberg AD, Nyberg B, Emorine U, Amer P. Evidence for a Functional beta(3)-Adrenoceptor in Man. Br J Pharmacol 1993; 110: 929–936.

    PubMed  Google Scholar 

  101. Hoffstedt J, Wahrenberg H, Thorne A, Lonnqvist F. The metabolic syndrome is related to beta 3adrenoceptor sensitivity in visceral adipose tissue. Diabetologia 1996; 39: 838–844.

    CAS  PubMed  Google Scholar 

  102. Hoffstedt J, Amer P, Hellers G, Lonnqvist F. Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J Lipid Res 1997; 38: 795–804.

    CAS  PubMed  Google Scholar 

  103. Hennes MM, Shrago E, Kissebah AH. Receptor and postreceptor effects of free fatty acids (FFA) on hepatocyte insulin dynamics. Int J Obes 1990; 14: 831–841.

    CAS  PubMed  Google Scholar 

  104. Svedberg J, Bjorntorp P, Smith U, Lonnroth P. Effect of free fatty acids on insulin receptor binding and tyrosine kinase activity in hepatocytes isolated from lean and obese rats. Diabetes 1992; 41: 294–298.

    CAS  PubMed  Google Scholar 

  105. Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996; 274: 1185–1188.

    CAS  PubMed  Google Scholar 

  106. Myers MG, White MF. Insulin signal-transduction and the IRS proteins. Annual review of pharmacology and toxicology. 1996; 36: 615–658.

    CAS  PubMed  Google Scholar 

  107. White MF. The insulin signalling system and the IRS proteins. Diabetologia 1997; 40: S2 - S17.

    CAS  PubMed  Google Scholar 

  108. Quon MJ, Butte AJ, Zarnowski MJ, Sesti G, Cushman SW, Taylor SI. Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem 1994; 269: 27920–27924.

    CAS  PubMed  Google Scholar 

  109. Zhou L, Chen H, Lin CH, Cong LN, McGibbon MA, Sciacchitano S, Lesniak MA, Quon MJ, Taylor SI. Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells. J Biol Chem 1997; 272: 29829–29833.

    CAS  PubMed  Google Scholar 

  110. Lavan BE, Lane WS, Lienhard GE. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 1997; 272: 11439–11443.

    CAS  PubMed  Google Scholar 

  111. Kaburagi Y, Satoh S, Tamemoto H, Yamamoto-Honda R, Tobe K, Veki K, Yamauchi T, Kono-Sugita E, Sekihara H, Aizawa S, Cushman SW, Akanuma Y, Yazaki Y, Kadowaki T. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 1997; 272: 25839–25844.

    CAS  PubMed  Google Scholar 

  112. Virbasius JV, Guilherme A, Czech MP. Mouse p 170 is a novel phosphatidylinositol 3-kinase containing a C2 domain J Biol. Chem. 1996; 271: 13304–13307.

    CAS  PubMed  Google Scholar 

  113. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, Gierschik P, Seedorf K, Justin Hsuan J, Waterfield MD, Wetzker R. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 1995; 269: 690–693.

    CAS  PubMed  Google Scholar 

  114. Thomason PA, James SR, Casey PJ, Downes CP. A G-proteinbg-subunits-responsive phosphoinositide 3-kinase activity in human platelet cytosol. J Biol Chem 1994; 269: 16525–16528.

    CAS  PubMed  Google Scholar 

  115. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. A novel phosphoinositide 3-kinase activity in myeloid-derived cells is activated by G Protein bg subunits. Cell 1994; 77: 83–93.

    CAS  PubMed  Google Scholar 

  116. Antonetti DA, Algenstaedt P, Kahn RC. Insulin receptor substrate-1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol 1996; 16: 2195–2203.

    CAS  PubMed  Google Scholar 

  117. Fry MJ. Structure, regulation and function of phosphoinositide 3-kinases. Biochim. Biophys Acta 1994; 1226: 237–268.

    CAS  PubMed  Google Scholar 

  118. Ricort JM, Tanti JF, Van Obberghen E, Le Marchand-Brustel Y. Different effects of insulin and platelet-derived growth factor on phosphatidylinositol 3-kinase at the subcellular level in 3T3-LI adipocytes. A possible explanation for their specific effects on glucose transport. Eur J Biochem 1996; 239: 17–22.

    CAS  PubMed  Google Scholar 

  119. Nave BT, Haigh RJ, Hayward AC, Siddle K, Shepherd PR. Compartment-specific regulation of phosphoinositide 3-kinase by platlet-derived growth factor and insulin in 3T3–L1 adipocytes. Biochem J 1996; 318: 55–60.

    CAS  PubMed  Google Scholar 

  120. Isakoff SJ, Taha C, Rose E, Marcusohn J, Klip A, Skolnik EY. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake. Proc Natl Acad Sci USA 1995; 92: 10247–10251.

    CAS  PubMed  Google Scholar 

  121. Heller-Harrison RA, Morin M, Guilherme A, Czech MP. Insulin-mediated targeting of phosphatidylinositol 3-kinase to GLUT4-containing vesicles. J Biol Chem 1996; 271: 10200–10204.

    CAS  PubMed  Google Scholar 

  122. Tsakiridis T, McDowell HE, Walker T, Downes CP, Hundal HS, Vranic M, Klip A. Multiple roles of phosphatidylinositol 3-kinase in regulation of glucose transport, amino acid transport, and glucose transporters in L6 skeletal muscle cells. Endocrinology 1995; 136: 4315–4322.

    CAS  PubMed  Google Scholar 

  123. Yamamoto-Honda R, Tobe K, Kaburagi Y, Ueki K, Asai S, Yachi M, Shirouzu M, Yodoi J, Akanuma Y, Yokoyama S, Yazaki Y, Kadowaki T. Upstream mechanisms of glycogen synthase activation by insulin and inulin-like growth factor-1: Glycogen synthase activation is antagonized by wortmannin or LY294002 but not by rapamycin or by inhibiting p2lras. J Biol Chem 1995; 270: 2729–2734.

    CAS  PubMed  Google Scholar 

  124. Shepherd PR, Nave BT, Siddle K. Insulin Stimulation of Glycogen Synthesis and Glycogen Synthase Activity is Blocked by Wortmannin and Rapamycin in 3T3–L1 Adipocytes: Evidence for the Involvement of Phosphoinositide 3-Kinase and P70 Ribosomal protein-S6 Kinase. Biochem J 1995; 305: 25–28.

    CAS  PubMed  Google Scholar 

  125. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J Biol Chem 1994; 269: 3568–3573.

    CAS  PubMed  Google Scholar 

  126. Burgering BMT, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376: 599–602.

    CAS  PubMed  Google Scholar 

  127. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase Cell 1995; 81: 727–736.

    CAS  Google Scholar 

  128. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15: 6541–6551.

    CAS  PubMed  Google Scholar 

  129. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active akt Ser/Thr kinase in 3T3–L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372–31378.

    CAS  PubMed  Google Scholar 

  130. Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E, Le Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes Endocrinology 1997; 138: 2005–2010.

    CAS  Google Scholar 

  131. Tsakiridis T, Vranic M, Klip A. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 1994; 269: 29934–29942.

    CAS  PubMed  Google Scholar 

  132. Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon MJ, Cushman SW, Holman GD. Use of bimannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem 1993; 268: 17820–17829.

    CAS  PubMed  Google Scholar 

  133. Jhun BH, Rampal AL, Liu H, Lachaal M, Jung CY. Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. Evidence of constitutive GLUT4 recycling. J Biol Chem 1992; 267: 17710–17715.

    CAS  PubMed  Google Scholar 

  134. Czech MP, Buxton JM. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J Biol Chem 1993; 268: 9187–9190.

    CAS  PubMed  Google Scholar 

  135. Yang J, Holman GD. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3–L1 cells. J Biol Chem 1993; 268: 4600–4603.

    CAS  PubMed  Google Scholar 

  136. Slot JW, Geuze HJ, Gigendack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci USA 1991; 88: 7815–7819.

    CAS  PubMed  Google Scholar 

  137. Rea S, James DE. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 1997; 46: 1667–1677.

    CAS  PubMed  Google Scholar 

  138. Sinha MK, Pories WJ, Flickinger EG, Meelheim D, Caro JF. Insulin-receptor kinase activity of adipose tissue from morbidly obese humans with and without NIDDM. Diabetes 1987; 36: 620–625.

    CAS  PubMed  Google Scholar 

  139. Arner P, Pollare T, Lithell H, Livingston JN. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1987; 30: 437–440.

    CAS  PubMed  Google Scholar 

  140. Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG, Meelheim D, Dohm GL. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 1987; 79: 1330–1337.

    CAS  PubMed  Google Scholar 

  141. Le Marchand-Brustel Y, Grémeaux T, Ballotti R, Van Obberghen E. Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature 1985; 315: 676–679.

    PubMed  Google Scholar 

  142. Grasso G, Frittitta L, Anello M, Russo P, Sesti G, Trischitta V. Insulin receptor tyrosine-kinase activity is altered in both muscle and adipose tissue from non-obese normoglycaemic insulin-resistant subjects. Diabetologia 1995; 38: 55–61.

    CAS  PubMed  Google Scholar 

  143. Handberg A, Vaag A, Vinten J, Beck-Nielsen H. Decreased tyrosine kinase activity in partially purified insulin receptors from muscle of young, non-obese first degree relatives of patients with type 2 (noninsulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 668–674.

    CAS  PubMed  Google Scholar 

  144. Folli F, Saad MJA, Backer JM, Kahn CR. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes-mellitus. J Clin Invest 1993; 92: 1787–1794.

    CAS  PubMed  Google Scholar 

  145. Heydrick SJ, Jullien D, Gautier N, Tanti JF, Giorgetti S, Van Obberghen E, Le Marchand Brustel Y. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest 1993; 91: 1358–1366.

    CAS  PubMed  Google Scholar 

  146. Heydrick SJ, Gautier N, Olichon Berthe C, Van Obberghen E, Le Marchand Brustel Y. Early alteration of insulin stimulation of PI 3-kinase in muscle and adipocyte from gold thioglucose obese mice. Am J Physiol 1995; 268: E604 - E612.

    CAS  PubMed  Google Scholar 

  147. Bjornholm M, Kawano Y, Lehtihet M, Zierath JR. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3- kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 1997; 46: 524–527.

    CAS  PubMed  Google Scholar 

  148. Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 1995; 95: 2195–2204.

    CAS  PubMed  Google Scholar 

  149. Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 1997; 94: 4171–4175.

    CAS  PubMed  Google Scholar 

  150. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 [see comments]. Nature 1994; 372: 182–186.

    CAS  PubMed  Google Scholar 

  151. Araki E, Lipes MA, Patti ME, Bruning JC, Haag BR, Johnson RS, Kahn CR. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene [see comments]. Nature 1994; 372: 186–190.

    CAS  PubMed  Google Scholar 

  152. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-a-and obesity-induced insulin resistance. Science 1996; 271: 665–668.

    CAS  PubMed  Google Scholar 

  153. Kolter T, Uphues I, Eckel J. Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol 1997; 273: E59 - E67.

    CAS  PubMed  Google Scholar 

  154. Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 1997; 272: 29911–29918.

    CAS  PubMed  Google Scholar 

  155. Stoffel M, Espinosa RD, Keller SR, Lienhard GE, Le Beau MM, Bell GI. Human insulin receptor substrate-1 gene (IRS1): chromosomal localization to 2g35-g36.1 and identification of a simple tandem repeat DNA polymorphism. Diabetologia 1993; 36: 335–337.

    CAS  PubMed  Google Scholar 

  156. Hager J, Zouali H, Velho G, Froguel P. Insulin receptor substrate (IRS-1) gene polymorphisms in French NIDDM families [letter]. Lancet 1993; 342: 1430.

    CAS  PubMed  Google Scholar 

  157. Laakso M, Malkki M, Kekalainen P, Kuusisto J, Deeb SS. Insulin receptor substrate-1 variants in noninsulin-dependent diabetes. J Clin Invest 1994; 94: 1141–1146.

    CAS  PubMed  Google Scholar 

  158. Imai Y, Fusco A, Suzuki Y, Lesniak MA, D’ Alfonso R, Sesti G, Bertoli A, Lauro R, Accili D, Taylor SI. Variant sequences of insulin receptor substrate-1 in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1994; 79: 1655–1658.

    CAS  PubMed  Google Scholar 

  159. Clausen JO, Hansen T, Bjorbaek C, Echwald SM, Urhammer SA, Rasmussen S, Andersen CB, Hansen L, Almind K, Winther K et al. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1. Lancet 1995; 346: 397–402.

    CAS  PubMed  Google Scholar 

  160. Almind K, Bjorbaek C, Vestergaard H, Hansen T, Echwald S, Pedersen O Aminoacid polymorphisms of insulin receptor substrate- 1 in non-insulin-dependent diabetes mellitus. Lancet 1993; 342: 828–832.

    CAS  PubMed  Google Scholar 

  161. Ura S, Araki E, Kishikawa H, Shirotani T, Todaka M, Isami S, Shimoda S, Yoshimura R, Matsuda K, Motoyoshi S, Miyamura N, Kahn CR, Shichiri M. Molecular scanning of the insulin receptor substrate-1 (IRS-1) gene in Japanese patients with NIDDM: identification of five novel polymorphisms. Diabetologia 1996; 39: 600–608.

    CAS  PubMed  Google Scholar 

  162. Zhang Y, Wat N, Stratton IM, Warren-Perry MG, Orho M, Groop L, Turner RC. UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS-1 and beta 3-adrenergic-receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. UK Prospective Diabetes Study. Diabetologia 1996; 39: 1505–1511.

    CAS  PubMed  Google Scholar 

  163. Almind K, Inoue G, Pedersen O, Kahn CR. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest 1996; 97: 2569–2575.

    CAS  PubMed  Google Scholar 

  164. Yoshimura R, Araki E, Ura S, Todaka M, Tsuruzoe K, Furukawa N, Motoshima H, Yoshizato K, Kaneko K, Matsuda K, Kishikawa H, Shichiri M. Impact of natural IRS-1 mutations on insulin signals: mutations of IRS-1 in the PTB domain and near SH2 protein binding sites result in impaired function at different steps of IRS-1 signaling. Diabetes 1997; 46: 929–936.

    CAS  PubMed  Google Scholar 

  165. Tsakiridis T, Marette A, Klip A. Glucose transporters in skeletal muscle of animal models of diabetes In: Shafrir E, ed. Lessons from Animal Models of Diabetes V. 1994; 141–159.

    Google Scholar 

  166. James DE, Piper RC. Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J Cell Biol 1994; 126: 1123–1126.

    CAS  PubMed  Google Scholar 

  167. Chisholm DJ, Campbell LV, Kraegen EW. Pathogenesis of the insulin resistance syndrome (syndrome X). Clin Exp Pharmacol Physiol 1997; 24: 782–784.

    CAS  PubMed  Google Scholar 

  168. Garvey WT. Glucose transport and NIDDM. Diabetes Care 1992; 15: 396–417.

    CAS  PubMed  Google Scholar 

  169. Sinha MK, Raineri-Maldonado C, Buchanan C, Pories WJ, Carter-Su C, Pilch PF, Caro JF. Adipose tissue glucose transporters in NIDDM. Decreased levels of muscle/fat isoform. Diabetes 1991; 40: 472–477.

    CAS  PubMed  Google Scholar 

  170. Trischitta V, Frittitta L, Vigneri R. Early molecular defects in human insulin resistance: studies in healthy subjects with low insulin sensitivity. Diabetes Metab Rev 1997; 13: 147–162.

    CAS  PubMed  Google Scholar 

  171. Lefebvre AM, Laville M, Vega N, Riou JP, van Gaal L, Auwerx J, Vidal H. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47: 98–103.

    CAS  PubMed  Google Scholar 

  172. Handberg A, Vaag A, Damsbo P, Beck-Nielsen H, Vinten J. Expression of insulin regulatable glucose transporters in skeletal muscle from Type II (non-insulin-dependent) diabetic patients. Diabetologia 1990; 33: 625–627.

    CAS  PubMed  Google Scholar 

  173. Eriksson J, Koranyi L, Bourey R, Schalin-Jantti C, Widen E, Mueckler M, Permutt AM, Groop LC. Insulin resistance in Type 2 (non-insulin-dependent) diabetic patients and their relatives is not associated with a defect in the expression of the insulin-responsive glucose transporter (GLUT4) gene in human skeletal muscle. Diabetologia 1992; 35: 143–147.

    CAS  PubMed  Google Scholar 

  174. Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 1990; 39: 865–870.

    CAS  PubMed  Google Scholar 

  175. Dohm LG, Elton CW, Friedman JE, Pilch PF, Pories WJ, Atkinson SM, Caro JF. Decreased expression of glucose transporter in muscle from insulin-resistant patients. Am J Physiol 1991; 260: E459 - E463.

    CAS  PubMed  Google Scholar 

  176. Marette A, Atgié C, Liu Z, Bukowiecki LJ, Klip A. Differential regulation of GLUT1 and GLUT4 glucose transporters in skeletal muscle of a new model of type II diabetes. The obese SHR/N-cp rat. Diabetes 1993; 42: 1195–1201.

    CAS  PubMed  Google Scholar 

  177. Kahn BB, Pedersen O. Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 1993; 132: 13–22.

    CAS  PubMed  Google Scholar 

  178. Kim Y, Tamura T, Iwashita S, Tokuyama K, Suzuki M. Effect of high-fat diet on gene expression of GLUT4 and insulin receptor in soleus muscle. Biochem Biophys Res Commun 1994; 202: 519–526.

    CAS  PubMed  Google Scholar 

  179. King PA, Horton ED, Hirshman MF, Horton ES. Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. J Clin Invest 1992; 90: 1568–1575.

    CAS  PubMed  Google Scholar 

  180. Brozinick JTJ, Etgen GJ, Yaspelkis III BB, Ivy JL. Glucose uptake and GLUT-4 protein distribution in skeletal muscle of the obese Zucker rat. Am J Physiol 1994; 267: R236 - R243.

    CAS  PubMed  Google Scholar 

  181. Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Haring HU. Insulin-induced translocation of GLUT 4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 1994; 37: 3–9.

    CAS  PubMed  Google Scholar 

  182. Etgen GJ, Wilson CM, Jensen J, Cushman SW, Ivy JL. Glucose-transport and cell-surface glut-4 protein in skeletal-muscle of the obese zucker rat. Am J Physiol 1996; 34: E294 - E301.

    Google Scholar 

  183. Rosholt MN, King PA, Horton ES. High-fat diet reduces glucose transporter responses to both insulin and exercise. Am J Physiol 1994; 266: R95.

    CAS  PubMed  Google Scholar 

  184. Dombrowski L, Roy D, Marette A. Selective impairment in GLUT4 translocation to transverse tubules in skeletal muscle of streptozotocin-induced diabetic rats. Diabetes 1998; 47: 5–12.

    CAS  PubMed  Google Scholar 

  185. Zierath JR, He L, Guma A, Wahlstrom EO, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane glut4 content in skeletal muscle from patients with NIDDM. Diabetologia 1996; 39: 1180–1189.

    CAS  PubMed  Google Scholar 

  186. Lamarche B, Moorjani S, Lupien PJ et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Québec Cardiovascular Study. Circulation 1996; 94: 273–278.

    CAS  PubMed  Google Scholar 

  187. Després JP, Lamarche B, Mauriège Petal. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–957.

    PubMed  Google Scholar 

  188. Gaudet D, Vohl MC, Perron P, Tremblay G, Gagné C, Lesiège D, Bergeron J, Moorjani S, Després JP. Relationships of abdominal obesity and hyperinsulinemia to angiographically assessed coronary artery disease in men with known mutations in the LDL-receptor gene. Circulation 1998; 97: 871–877.

    CAS  PubMed  Google Scholar 

  189. Brown MS, Goldstein J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47.

    CAS  PubMed  Google Scholar 

  190. Gagné C, Moorjani S, Brun D, Toussaint M, Lupien PJ. Heterozygous familial hypercholesterolemia. Relationship between plasma lipids, lipoproteins, clinical manifestations and ischemic heart disease in men and women. Atherosclerosis 1979; 34: 13–24.

    PubMed  Google Scholar 

  191. Després JP, Lamarche B. Effects of diet and physical activity on adiposity and body fat distribution: Implications for the prevention of cardiovascular disease. Nutr Res Rev 1993; 6: 137–159.

    PubMed  Google Scholar 

  192. Quetelet LAJ. Physique sociale 2. Muquardt C, Brussels 1869: 92.

    Google Scholar 

  193. Keys A, Fidanza F, Karvonen MJ, et al. Indices of relative weight and obesity. J Chron Dis 1972; 25: 329–343.

    CAS  PubMed  Google Scholar 

  194. Garrow J. Energy balance and obesity in man. Elsevier, London, 1974.

    Google Scholar 

  195. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337: 382–386.

    CAS  PubMed  Google Scholar 

  196. Vague, J. La différenciation sexuelle: facteur déterminant des formes de l’obésité. Presse Med 1947; 30: 339–340.

    Google Scholar 

  197. Lemieux S, Després JP. Metabolic complications of visceral obesity: contribution to the aetiology of type II diabetes and implications for prevention and treatment. Diabète & Métab 1994; 20: 375–393.

    CAS  Google Scholar 

  198. Baumgartner RN, Heymsfield SB, Roche AF. Human body composition and the epidemiology of chronic disease. Obes Res 1995; 3: 73–95.

    CAS  PubMed  Google Scholar 

  199. Lohman TG. Skinfolds and body density and their relation to body fatness: a review. Hum Biol 1981; 53: 181–225.

    CAS  PubMed  Google Scholar 

  200. Wang J, Thornton JC, Russell M, et al. Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements. Am J Clin Nutr 1994; 60: 23–28.

    CAS  PubMed  Google Scholar 

  201. Pouliot MC, Després JP, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 1994; 73: 460–468.

    CAS  PubMed  Google Scholar 

  202. Lemieux S, Prud’homme D, Tremblay A, Bouchard C, Després JP. Anthropometric correlates to changes in visceral adipose tissue over 7 years in women. Int J Obes 1996; 20: 618–624.

    CAS  Google Scholar 

  203. Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després JP. A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue. Am J Clin Nutr 1996; 64: 685–693.

    CAS  PubMed  Google Scholar 

  204. Laakso M. How good a marker is insulin level for insulin resistance? Am J Epidemiol 1993; 137: 959–965.

    CAS  PubMed  Google Scholar 

  205. Ferrannini E, Haffner SM, Mitchell BD, Stern MP. Hyperinsulinemia: The key feature of a cardiovascular and metabolic syndrome. Diabetologia 1991; 34: 416–422.

    CAS  PubMed  Google Scholar 

  206. Austin MA, King MC,Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype: A proposed genetic marker for coronary heart disease. Circulation 1990; 82: 495–506.

    CAS  PubMed  Google Scholar 

  207. Grundy SM. Small LDL, atherogenic dyslipidemia, and the metabolic syndrome. Circulation 1997; 95: 1–4.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Després, JP., Marette, A. (1999). Obesity and Insulin Resistance. In: Reaven, G.M., Laws, A. (eds) Insulin Resistance. Contemporary Endocrinology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-716-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-716-1_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-086-1

  • Online ISBN: 978-1-59259-716-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics