Skip to main content

Three-dimensional In vitro Angiogenesis in the Rat Aortic Ring Model

  • Protocol
  • First Online:
Angiogenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 467))

Abstract

Angiogenesis is a complex sequential process involving endothelial activation, basement membrane degradation, endothelial sprouting from the parent vessel, invasion of the extracellular matrix, endothelial proliferation, vessel elongation, branching, anastomosis, increases in vessel diameter, basement membrane formation, pericyte acquisition, and remodelling. Most in vitro angiogenesis assays are two-dimensional and measure only one facet of this process, generally endothelial proliferation, migration, or tube formation. The two-dimensional nature of the assays also ignores the differences in endothelial phenotype seen in three-dimensional models and in vivo. The in vitro serum-free three-dimensional rat aortic model closely approximates the complexities of angiogenesis in vivo, from endothelial activation to pericyte acquisition and remodelling, and most of these can be quantified by image analysis, immunohistochemistry, and biochemical analysis. It is easily manipulated using molecular biological intervention or exogenous inhibitors and activators in a relatively controlled system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auerbach, R., Lewis, R., Shinners, B., Kubai, L., Akhtar, N. (2003) Angiogenesis assays: a critical overview. Clin Chem 49, 32–40.

    Article  PubMed  CAS  Google Scholar 

  2. Staton, C. A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J., Lewis, C. E. (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85, 233–248.

    Article  PubMed  CAS  Google Scholar 

  3. Montesano, R., Orci, L. (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Lab Invest 42, 469–477.

    CAS  Google Scholar 

  4. Montesano, R., Pepper, M. S., Orci, L. (1990) Angiogenesis in vitro: morphogenetic and invasive properties of endothelial cells. News Physiol Sci 5, 75–79.

    Google Scholar 

  5. Madri, J. A., Pratt, B. M., Tucker, A. M. (1988) Phenotypic modulation of endothelial cells by transforming growth factor beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106, 1375–1384.

    Article  PubMed  CAS  Google Scholar 

  6. Nicosia, R. F., Ottinetti, A. (1990) Growth of microvessels in serum-free matrix culture of rat aorta—a quantitative assay of angiogenesis in vitro. Lab Invest 63, 115–122.

    PubMed  Google Scholar 

  7. Schor, A. M., Ellis, I., Schor, S. L. (1999) Collagen gel assay for angiogenesis: induction of endothelial cell sprouting, in (Murray, J. C., ed.), Methods in Molecular Medicine—Angiogenesis: Reviews and Protocols, pp. 145–162. Humana Press, Totowa, NJ.

    Google Scholar 

  8. Madri, J. A., Merwin, J. R., Bell, L., (1992) Interactions of matrix components and soluble factors in vascular responses to injury, in (Simionescu, N., Simionescu, M., eds), Endothelial Cell Dysfunctions, pp. 11–30. Plenum Press, New York.

    Google Scholar 

  9. Bishop, E. T., Bell, G. T., Bloor, S., Broom, I. J., Hendry, N. F. K., Wheatley, D. N. (1999) An in vitro model of angiogenesis: basic features. Angiogenesis 3, 335–344.

    Article  PubMed  CAS  Google Scholar 

  10. Nehls, V., Herrmann, R., Huhnken, M. (1998) Guided migration as a novel mechanism of capillary network remodelling is regulated by basic fibroblast growth factor. Histochem Cell Biol 109, 319–329.

    Article  PubMed  CAS  Google Scholar 

  11. Nakatsu, M. N., Sainson, R. C., Aoto, J. N., (2003) Angiogenic sprouting and capillary formation modelled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin. Microvasc Res 66, 102–112.

    Article  PubMed  CAS  Google Scholar 

  12. Pröls, F., Loser, B., Marx, M. (1998) Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis. Exp Cell Res 239, 1–10.

    Article  PubMed  Google Scholar 

  13. Aitkenhead, M., Wang, S. J., Nakatsu, M. N., Mestas, J., Heard, C., Hughes, C. C. (2002) Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (β)ig-h3, and NrCAM. Microvasc Res 63, 159–171.

    Article  PubMed  CAS  Google Scholar 

  14. Bell, S. E., Mavila, A., Salazar, R., (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signalling. J Cell Sci 114, 2755–2773.

    PubMed  CAS  Google Scholar 

  15. Knedler, A., Ham, R. G. (1987). Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell Dev Biol 23, 481–491.

    Article  PubMed  CAS  Google Scholar 

  16. Nicosia, R. F., Bonanno, F., Villaschi, S. (1992) Large-vessel endothelium switches to a microvascular phenotype during angiogenesis in collagen gel culture of rat aorta. Artherosclerosis 95, 191–199.

    Article  CAS  Google Scholar 

  17. Nicosia, R. F., Bonanno, F. (1991) Inhibition of angiogenesis in vitro by arg-gly-asp-containing synthetic peptide. Am J Pathol 138, 829–833.

    PubMed  CAS  Google Scholar 

  18. Nicosia, R. F., Nicosia, S. V., Smith, M. (1994) Vascular endothelial growth factor, platelet-derived growth factor and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145, 1023–1029.

    PubMed  CAS  Google Scholar 

  19. Nicosia, R. F., Lin, Y. J., Hazelton, D., Qian, X. H. (1997) Endogenous regulation of angiogenesis in the rat aorta model—role of vascular endothelial growth factor. Am J Pathol 151, 1379–1386.

    PubMed  CAS  Google Scholar 

  20. Derringer, K. A., Linden, R. W. A. (1998) Enhanced angiogenesis induced by diffusible angiogenic growth factors released from human dental pulp explants of orthodontically moved teeth. Eur J Orthod 20, 357–367.

    Article  PubMed  CAS  Google Scholar 

  21. Wakabayashi, T., Kageyama, R., Naruse, N., (1997) Borrelidin is an angiogenesis inhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model. J Antibiot 50, 671–676.

    PubMed  CAS  Google Scholar 

  22. Bocci, G., Danesi, R., Benelli, U., (1998) Inhibitory effect of suramin in rat models of angiogenesis in vitro and in vivo. Cancer Chemother Pharmacol 43, 205–212.

    Article  Google Scholar 

  23. Chen, C. H., Cartwright, J., Li, Z., (1997) Inhibitory effects of hypercholesterolemia and Ox-LDL on angiogenesis-like endothelial growth in rabbit aortic explants—essential role of basic fibroblast growth factor. Arterioscl Thromb Vasc Biol 17, 1303–1312.

    PubMed  CAS  Google Scholar 

  24. Burbridge, M. F., West, D. C., Atassi, G., Tucker, G. C. (1999) The effect of pH on angiogenesis in vitro. Angiogenesis 3, 281–288.

    Article  PubMed  CAS  Google Scholar 

  25. Burbridge, M. F. (2000) The rat aortic ring model of angiogenesis in vitro as an assay for angiogenic modulators. The role of the matrix metalloproteinases in vessel formation. Ph.D. thesis, University of Liverpool.

    Google Scholar 

  26. Burbridge, M. F., Coge, F., Galizzi, J.-P., Boutin, J. A., West, D. C., Tucker, G. C. (2002) The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis 5, 215–226.

    Article  PubMed  CAS  Google Scholar 

  27. Brown, K. J., Maynes, S. F., Bezos, A., Maguire, D. J., Ford, M. D., Parish, C. R. (1996) A novel in vitro assay for human angiogenesis. Lab Invest 75, 539–555.

    PubMed  CAS  Google Scholar 

  28. Jung, S. P., Siegrist, B., Wade, M. R., Anthony, C. T., Woltering, E. A. (2001) Inhibition of human angiogenesis with heparin and hydrocortisone. Angiogenesis 4, 175–186.

    Article  PubMed  CAS  Google Scholar 

  29. Stiffey-Wilusz, J., Boice, J. R., Ronan, J., Fletcher, A. M., Anderson, M. S. (2001) An ex vivo angiogenesis assay utilizing commercial porcine carotid artery: modification of the rat aortic ring assay. Angiogenesis 4, 3–9.

    Article  PubMed  CAS  Google Scholar 

  30. Li, Q., Olson, B. R. (2004) Increased angiogenic response in aortic explants of collagen XVIII/ endostatin-null mice. Am J Pathol 165, 415–424.

    Article  PubMed  CAS  Google Scholar 

  31. Masson, V., Devy, L., Grignet-Debrus, C., (2002) Mouse aortic ring: a new approach of molecular genetics of angiogenesis. Biol Protocol Online 4, 24–31.

    Article  CAS  Google Scholar 

  32. Chun, T.-H. , Sabeh, F., Ota, I, (2004) MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 167, 757–767.

    Article  PubMed  CAS  Google Scholar 

  33. Zhu, W.-H. Iurlaro, M., MacIntyre, A., Fogel, E., Nicosia, R. F. (2003) The mouse aorta model: Influence of genetic background and aging on bFGF- and VEGF-induced angiogenic sprouting. Angiogenesis 6, 193–199.

    Article  PubMed  CAS  Google Scholar 

  34. Nicosia, R. F., Zhu, W.-H., Fogel, E., Howson, K. M., Aplin, A. C. (2005) A new ex vivo model to study venous angiogenesis and arterio-venous anastamosis formation. J Vasc Res 42, 111–119.

    Article  PubMed  Google Scholar 

  35. Antes, L. M., Villar, M. M., Decker, S., Nicosia, F. F., Kujubu, D. A. (1998) A serum-free in vitro model of renal development. Am J Physiol 274, F1150–F1160.

    PubMed  CAS  Google Scholar 

  36. Kiefer, F. N., Munk, V. C., Humar, R., Dieterle, T., Landmann, L., Battegay, E. J. (2004) A versatile in vitro assay for investigating angiogenesis of the heart. Exp Cell Res 300, 272–282.

    Article  PubMed  CAS  Google Scholar 

  37. Gulec, S. A., Eugene, A., Woltering, M. D. (2003) A new in vitro assay for human tumor angiogenesis: three-dimensional human tumor angiogenesis assay. Ann Surg Oncol 11, 99–104.

    Article  Google Scholar 

  38. Woltering, M. D., Lewis, J. M., Maxwell, P. J., (2003) Development of a novel in vitro human tissue-based angiogenesis assay to evaluate the effect of antiangiogenic drugs. Ann Surg 237, 790–800.

    PubMed  Google Scholar 

  39. Blacher, S., Devy, L., Noel, A., Foidart, J.-M. (2003) Quantification of angiogenesis on the rat aortic ring assay. Image Anal Stereol 22, 43–48.

    Google Scholar 

  40. Blacher, S., Devy, L., Burbridge, M. F., (2001) Improved quatification of angiogenesis in the rat aortic ring assay. Angiogenesis 4, 133–142.

    Article  PubMed  CAS  Google Scholar 

  41. Freshney, R. I. (1987) In Culture of Animal Cells. A Manual of Basic Technique. Pp. 71–103. Liss, Inc., New York.

    Google Scholar 

  42. Zhu, W.-H., Nicosia, R. F. (2002) The thin prep rat aortic ring assay: a modified method for the characterisation of angiogenesis in whole mounts. Angiogenesis 5, 81–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The support of the BBSRC is acknowledged by D. C. W.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

West, D.C., Burbridge, M.F. (2009). Three-dimensional In vitro Angiogenesis in the Rat Aortic Ring Model. In: Murray, C., Martin, S. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 467. Humana Press. https://doi.org/10.1007/978-1-59745-241-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-241-0_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-907-9

  • Online ISBN: 978-1-59745-241-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics