Skip to main content

Single Nucleotide Polymorphisms in DNA Repair Genes and Prostate Cancer Risk

  • Protocol
Cancer Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 471))

Summary

The specific causes of prostate cancer are not known. However, multiple etiologic factors, including genetic profile, metabolism of steroid hormones, nutrition, chronic inflammation, family history of prostate cancer, and environmental exposures are thought to play significant roles. Variations in exposure to these risk factors may explain interindividual differences in prostate cancer risk. However, regardless of the precise mechanism(s), a robust DNA repair capacity may mitigate any risks conferred by mutations from these risk factors. Numerous single nucleotide polymorphisms (SNPs) in DNA repair genes have been found, and studies of these SNPs and prostate cancer risk are critical to understanding the response of prostate cells to DNA damage. A few SNPs in DNA repair genes are associated with significantly increased risk of prostate cancer; however, in most cases, the effects are moderate and often depend upon interactions among the risk alleles of several genes in a pathway or with other environmental risk factors. This report reviews the published epidemiologic literature on the association of SNPs in genes involved in DNA repair pathways and prostate cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. (2007). Cancer Facts & Figures 2007. American Cancer Society, Atlanta, GA.

    Google Scholar 

  2. Hsing, A.W., L. Tsao, and S.S. Devesa. (2000). International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85, 60–7.

    Article  CAS  PubMed  Google Scholar 

  3. Crawford, E.D. (2003) Epidemiology of prostate cancer. Urology 62, 3–12.

    Article  PubMed  Google Scholar 

  4. Noble, R.L. (1977). The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res 37, 1929–33.

    CAS  PubMed  Google Scholar 

  5. Henderson, B.E., R.K. Ross, M.C. Pike, and J.T. Casagrande (1982). Endogenous hormones as a major factor in human cancer. Cancer Res 42, 3232–9.

    CAS  PubMed  Google Scholar 

  6. Friedberg, E.C. (2001). How nucleotide excision repair protects against cancer. Nat Rev Cancer 1, 22–33.

    Article  CAS  PubMed  Google Scholar 

  7. Mullaart, E., P.H. Lohman, F. Berends, and J. Vijg. (1990). DNA damage metabolism and aging. Mutat Res 237, 189–210.

    CAS  PubMed  Google Scholar 

  8. Wood, R.D., M. Mitchell, J. Sgouros, and T. Lindahl. (2001). Human DNA repair genes. Science 291, 1284–9.

    Article  CAS  PubMed  Google Scholar 

  9. Goode, E.L., C.M. Ulrich, and J.D. Potter. (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11, 1513–30.

    CAS  PubMed  Google Scholar 

  10. Hirata, H., Y. Hinoda, Y. Tanaka, N. Okayama, Y. Suehiro, K. Kawamoto, N. Kikuno, S. Majid, K. Vejdani, and R. Dahiya. (2007). Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 43, 231–7.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, L., C.B. Ambrosone, J. Lee, T.A. Sellers, J. Pow-Sang, and J.Y. Park. (2006). Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans. J Urol. 175, 108–12; discussion 112.

    Article  CAS  PubMed  Google Scholar 

  12. Ritchey, J.D., W.Y. Huang, A.P. Chokka-lingam, Y.T. Gao, J. Deng, P. Levine, F.Z. Stanczyk, and A.W. Hsing. (2005). Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 14, 1703–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rybicki, B.A., D.V. Conti, A. Moreira, M. Cicek, G. Casey, and J.S. Witte. (2004). DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13, 23–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L., A. Elahi, J. Pow-Sang, P. Lazarus, and J. Park. (2003). Association between polymorphism of human oxoguanine glyco-sylase 1 and risk of prostate cancer. J Urol. 170, 2471–4.

    Article  CAS  PubMed  Google Scholar 

  15. van Gils, C.H., R.M. Bostick, M.C. Stern, and J.A. Taylor. (2002). Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk: an example of polymorphisms in the XRCC1 gene. Cancer Epidemiol Biomarkers Prev 11, 1279–84.

    PubMed  Google Scholar 

  16. Xu, J., S.L. Zheng, A. Turner, S.D. Isaacs, K.E. Wiley, G.A. Hawkins, B.L. Chang, E.R. Bleecker, P.C. Walsh, D.A. Meyers, and W.B. Isaacs. (2002). Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 62, 2253–7.

    CAS  PubMed  Google Scholar 

  17. Lockett, K.L., I.V. Snowhite, and J.J. Hu. (2005). Nucleotide-excision repair and prostate cancer risk. Cancer Lett 220, 125–35.

    Article  CAS  PubMed  Google Scholar 

  18. Nock, N.L., M.S. Cicek, L. Li, X. Liu, B.A. Rybicki, A. Moreira, S.J. Plummer, G. Casey, and J.S. Witte. (2006). Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis. 27, 1842–8.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, Z., L.X. Qian, L.X. Hua, X.R. Wang, J. Yang, W. Zhang, and H.F. Wu. (2007). Relationship between DNA repair gene XRCC1 Arg399Gln polymorphism and susceptibility to prostate cancer in the Han population in Jiangsu and Anhui. Zhonghua Nan Ke Xue 13, 327–31.

    CAS  PubMed  Google Scholar 

  20. Liu, Z., L.E. Wang, S.S. Strom, M.R. Spitz, R.J. Babaian, J. DiGiovanni, and Q. Wei. (2003). Overexpression of hMTH in peripheral lymphocytes and risk of prostate cancer: a case-control analysis. Mol Carcinog 36, 123–9.

    Article  CAS  PubMed  Google Scholar 

  21. Strom, S.S., M.R. Spitz, Y. Yamamura, R.J. Babaian, P.T. Scardino, and Q. Wei (2001). Reduced expression of hMSH2 and hMLH1 and risk of prostate cancer: a case-control study. Prostate 47, 269–75.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Y., J. Wang, M.M. Fraig, K. Henderson, N.K. Bissada, D.K. Watson, and C.W. Schweinfest. (2003). Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol 22, 1033–43.

    CAS  PubMed  Google Scholar 

  23. Chen, Y., J. Wang, M.M. Fraig, J. Metcalf, W.R. Turner, N.K. Bissada, D.K. Watson, and C.W. Schweinfest. (2001). Defects of DNA mismatch repair in human prostate cancer. Cancer Res 61, 4112–21.

    CAS  PubMed  Google Scholar 

  24. Hu, J.J., M.C. Hall, L. Grossman, M. Heday-ati, D.L. McCullough, K. Lohman, and L.D. Case. (2004). Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 64, 1197–201.

    Article  CAS  PubMed  Google Scholar 

  25. Nam, R.K., W.W. Zhang, M.A. Jewett, J. Trachtenberg, L.H. Klotz, M. Emami, L. Sugar, J. Sweet, A. Toi, and S.A. Narod. (2005). The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res 11, 8391–7.

    Article  CAS  PubMed  Google Scholar 

  26. Goodman, M., R.M. Bostick, K.C. Ward, P.D. Terry, C.H. van Gils, J.A. Taylor, and J.S. Mandel. (2006). Lycopene intake and prostate cancer risk: effect modification by plasma antioxidants and the XRCC1 genotype. Nutr Cancer 55, 13–20.

    Article  CAS  PubMed  Google Scholar 

  27. Lockett, K.L., M.C. Hall, J. Xu, S.L. Zheng, M. Berwick, S.C. Chuang, P.E. Clark, S.D. Cramer, K. Lohman, and J.J. Hu. (2004). The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64, 6344–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hebbring, S.J., H. Fredriksson, K.A. White, C. Maier, C. Ewing, S.K. McDonnell, S.J. Jacobsen, J. Cerhan, D.J. Schaid, T. Ikonen, V. Autio, T.L. Tammela, K. Herkommer, T. Paiss, W. Vogel, M. Gielzak, J. Sauvageot, J. Schleutker, K.A. Cooney, W. Isaacs, and S.N. Thibodeau. (2006). Role of the nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15, 935–8.

    Article  CAS  PubMed  Google Scholar 

  29. Angele, S., A. Falconer, S.M. Edwards, T. Dork, M. Bremer, N. Moullan, B. Chapot, K. Muir, R. Houlston, A.R. Norman, S. Bullock, Q. Hope, J. Meitz, D. Dearnaley, A. Dowe, C. Southgate, A. Ardern-Jones, D.F. Easton, R.A. Eeles, and J. Hall. (2004). ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 91, 783–7.

    CAS  PubMed  Google Scholar 

  30. Xu, Z., L.X. Hua, L.X. Qian, J. Yang, X.R. Wang, W. Zhang, and H.F. Wu. (2007). Relationship between XRCC1 polymorphisms and susceptibility to prostate cancer in men from Han, Southern China. Asian J Androl 9, 331–8.

    Article  CAS  PubMed  Google Scholar 

  31. Demple, B. and L. Harrison. (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63, 915–48.

    Article  CAS  PubMed  Google Scholar 

  32. Robson, C.N., and I.D. Hickson. (1991). Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonucle-ase that corrects DNA repair and mutagen-esis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res 19, 5519–23.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson, D.M., 3rd, and D. Barsky. (2001). The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res 485, 283–307.

    CAS  PubMed  Google Scholar 

  34. Boiteux, S. and J.P. Radicella. (2000). The human OGG1 gene: structure, functions, and its implication in the process of carcino-genesis. Arch Biochem Biophys 377, 1–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sunaga, N., T. Kohno, K. Shinmura, T. Saitoh, T. Matsuda, R. Saito, and J. Yokota. (2001). OGG1 protein suppresses G:C→T: A mutation in a shuttle vector containing 8-hydroxyguanine in human cells. Carcino-genesis 22, 1355–62.

    Article  CAS  Google Scholar 

  36. Lindahl, T., and R.D. Wood. (1999). Quality control by DNA repair. Science. 286, 1897–905.

    Article  CAS  PubMed  Google Scholar 

  37. Kohno, T., K. Shinmura, M. Tosaka, M. Tani, S.R. Kim, H. Sugimura, T. Nohmi, H. Kasai, and J. Yokota. (1998). Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16, 3219–25.

    Article  CAS  PubMed  Google Scholar 

  38. National Center for Biotechnology Information (2006). SNP500 Cancer. Cancer Genome Anatomy Project. Cited in http://snp500cancer.nci.nih.gov.

  39. Shinmura, K., T. Kohno, H. Kasai, K. Koda, H. Sugimura, and J. Yokota. (1998). Infrequent mutations of the hOGG1 gene, that is involved in the excision of 8-hydroxygua-nine in damaged DNA, in human gastric cancer. Jpn. J. Cancer Res. 89, 825–8.

    CAS  PubMed  Google Scholar 

  40. Janssen, K., K. Schlink, W. Gotte, B. Hip-pler, B. Kaina, and F. Oesch. (2001). DNA repair activity of 8-oxoguanine DNA gly-cosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutat Res 486, 207–16.

    CAS  PubMed  Google Scholar 

  41. Dherin, C., J.P. Radicella, M. Dizdaroglu, and S. Boiteux. (1999). Excision of oxida-tively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res 27, 4001–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hardie, L.J., J.A. Briggs, L.A. Davidson, J.M. Allan, R.F. King, G.I. Williams, and C.P. Wild. (2000). The effect of hOGG1 and glutathione peroxidase I genotypes and 3p chromosomal loss on 8-hydroxydeoxy-guanosine levels in lung cancer. Carcinogen-esis 21, 167–72.

    Article  CAS  Google Scholar 

  43. Park, Y.J., E.Y. Choi, J.Y. Choi, J.G. Park, H.J. You, and M.H. Chung. (2001). Genetic changes of hOGG1 and the activity of oh8Gua glycosylase in colon cancer. Eur J Cancer 37, 340–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kondo, S., S. Toyokuni, T. Tanaka, H. Hiai, H. Onodera, H. Kasai, and M. Imamura. (2000). Overexpression of the hOGG1 gene and high 8-hydroxy-2'-deoxyguanosine (8-OHdG) lyase activity in human colorectal carcinoma: regulation mechanism of the 8-OHdG level in DNA. Clin Cancer Res 6, 1394–400.

    CAS  PubMed  Google Scholar 

  45. Blons, H., J.P. Radicella, O. Laccourreye, D. Brasnu, P. Beaune, S. Boiteux, and P. Laurent-Puig. (1999). Frequent allelic loss at chromosome 3p distinct from genetic alterations of the 8-oxoguanine DNA glyco-sylase 1 gene in head and neck cancer. Mol Carcinog 26, 254–60.

    Article  CAS  PubMed  Google Scholar 

  46. Hu, Y.C. and S.A. Ahrendt. (2005). hOGG1 Ser326Cys polymorphism and G: C-to-T: A mutations: no evidence for a role in tobacco-related non small cell lung cancer. Int J Cancer 114, 387–93.

    Article  CAS  PubMed  Google Scholar 

  47. Tarng, D.C., T.J. Tsai, W.T. Chen, T.Y. Liu, and Y.H. Wei. (2001). Effect of human OGG1 1245C—>G gene polymorphism on 8-hydroxy-2'-deoxyguanosine levels of leukocyte DNA among patients undergoing chronic hemodialysis. J Am Soc Nephrol 12, 2338–47.

    CAS  PubMed  Google Scholar 

  48. Chen, S.K., W.A. Hsieh, M.H. Tsai, C.C. Chen, A.I. Hong, Y.H. Wei, and W.P. Chang. (2003). Age-associated decrease of oxidative repair enzymes, human 8-oxogua-nine DNA glycosylases (hOgg1), in human aging. J Radiat Res 44, 31–5.

    Article  CAS  PubMed  Google Scholar 

  49. Yamane, A., T. Kohno, K. Ito, N. Sunaga, K. Aoki, K. Yoshimura, H. Murakami, Y. Nojima, and J. Yokota. (2004). Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydrox-yguanine in human cell in vivo. Carcinogen-esis 25, 1689–94.

    Article  CAS  Google Scholar 

  50. Xing, D.Y., W. Tan, N. Song, and D.X. Lin. (2001). Ser326Cys polymorphism in hOGG1 gene and risk of esophageal cancer in a Chinese population. Int J Cancer 95, 140–3.

    Article  CAS  PubMed  Google Scholar 

  51. Sugimura, H., T. Kohno, K. Wakai, K. Nagura, K. Genka, H. Igarashi, B.J. Morris, S. Baba, Y. Ohno, C. Gao, Z. Li, J. Wang, T. Takezaki, K. Tajima, T. Varga, T. Sawaguchi, J.K. Lum, J.J. Martinson, S. Tsugane, T. Iwamasa, K. Shinmura, and J. Yokota. (1999). hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 8, 669–74.

    CAS  PubMed  Google Scholar 

  52. Wikman, H., A. Risch, F. Klimek, P. Schmezer, B. Spiegelhalder, H. Dienemann, K. Kayser, V. Schulz, P. Drings, and H. Bar-tsch (2000). hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a Caucasian population. Int J Cancer 88, 932–7.

    Article  CAS  PubMed  Google Scholar 

  53. Ito, H., N. Hamajima, T. Takezaki, K. Mat-suo, K. Tajima, S. Hatooka, T. Mitsudomi, M. Suyama, S. Sato, and R. Ueda. (2002). A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung. J Epidemiol 12, 258–65.

    PubMed  Google Scholar 

  54. Le Marchand, L., T. Donlon, A. Lum-Jones, A. Seifried, and L.R. Wilkens. (2002). Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 11, 409–12.

    PubMed  Google Scholar 

  55. Sunaga, N., T. Kohno, N. Yanagitani, H. Sugimura, H. Kunitoh, T. Tamura, Y. Takei, S. Tsuchiya, R. Saito, and J. Yokota. (2002). Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev 11, 730–8.

    CAS  PubMed  Google Scholar 

  56. Lan, Q., J.L. Mumford, M. Shen, D.M. Demarini, M.R. Bonner, X. He, M. Yeager, R. Welch, S. Chanock, L. Tian, R.S. Chapman, T. Zheng, P. Keohavong, N. Capo-raso, and N. Rothman. (2004). Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 25, 2177–81.

    Article  CAS  PubMed  Google Scholar 

  57. Park, J., L. Chen, M.S. Tockman, A. Elahi, and P. Lazarus. (2004). The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenetics 14, 103–9.

    Article  CAS  PubMed  Google Scholar 

  58. Hung, R.J., P. Brennan, F. Canzian, N. Szeszenia-Dabrowska, D. Zaridze, J. Lis-sowska, P. Rudnai, E. Fabianova, D. Mates, L. Foretova, V. Janout, V. Bencko, A. Chabrier, S. Borel, J. Hall, and P. Boffetta. (2005). Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study. J Natl Cancer Inst 97, 567–76.

    Article  CAS  PubMed  Google Scholar 

  59. Cho, E.Y., A. Hildesheim, C.J. Chen, M.M. Hsu, I.H. Chen, B.F. Mittl, P.H. Levine, M.Y. Liu, J.Y. Chen, L.A. Brinton, Y.J. Cheng, and C.S. Yang. (2003). Nasopha-ryngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev 12, 1100–4.

    CAS  PubMed  Google Scholar 

  60. Hao, B., H. Wang, K. Zhou, Y. Li, X. Chen, G. Zhou, Y. Zhu, X. Miao, W. Tan, Q. Wei, D. Lin, and F. He. (2004). Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res 64, 4378–84.

    Article  CAS  PubMed  Google Scholar 

  61. Elahi, A., Z. Zheng, J. Park, K. Eyring, T. McCaffrey, and P. Lazarus. (2002). The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk. Carcinogenesis 23, 1229–34.

    Article  CAS  PubMed  Google Scholar 

  62. Kim, J.I., Y.J. Park, K.H. Kim, B.J. Song, M.S. Lee, C.N. Kim, and S.H. Chang. (2003). hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gas-troenterol 9, 956–60.

    CAS  Google Scholar 

  63. Wang, Y., M.R. Spitz, Y. Zhu, Q. Dong, S. Shete, and X. Wu. (2003). From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Rep 2, 901–8.

    Article  CAS  Google Scholar 

  64. Matullo, G., S. Guarrera, S. Carturan, M. Peluso, C. Malaveille, L. Davico, A. Piazza, and P. Vineis. (2001). DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case-control study. Int J Cancer 92(4), 562–7.

    Article  CAS  PubMed  Google Scholar 

  65. Hu, J.J., T.R. Smith, M.S. Miller, H.W. Mohrenweiser, A. Golden, and L.D. Case. (2001). Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 22, 917–22.

    Article  CAS  PubMed  Google Scholar 

  66. Hu, J.J., T.R. Smith, M.S. Miller, K. Lohman, and L.D. Case. (2002). Genetic regulation of ionizing radiation sensitivity and breast cancer risk. Environ Mol Muta-gen 39, 208–15.

    Article  CAS  Google Scholar 

  67. Lunn, R.M., D.A. Bell, J.L. Mohler, and J.A. Taylor. (1999). Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcino-genesis 20, 1727–31.

    Article  CAS  Google Scholar 

  68. Lunn, R.M., R.G. Langlois, L.L. Hsieh, C.L. Thompson, and D.A. Bell. (1999). XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 59, 2557–61.

    CAS  PubMed  Google Scholar 

  69. Matullo, G., D. Palli, M. Peluso, S. Guar-rera, S. Carturan, E. Celentano, V. Krogh, A. Munnia, R. Tumino, S. Polidoro, A. Piazza, and P. Vineis. (2001). XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis 22, 1437–45.

    Article  CAS  PubMed  Google Scholar 

  70. Fan, J., M. Otterlei, H.K. Wong, A.E. Tomkinson, and D.M. Wilson, 3rd. (2004). XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32, 2193–201.

    Article  CAS  PubMed  Google Scholar 

  71. Tuimala, J., G. Szekely, S. Gundy, A. Hir-vonen, and H. Norppa. (2002). Genetic polymorphisms of DNA repair and xenobi-otic-metabolizing enzymes: role in mutagen sensitivity. Carcinogenesis 23, 1003–8.

    Article  CAS  PubMed  Google Scholar 

  72. Xi, T., I.M. Jones, and H.W. Mohrenweiser. (2004). Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83, 970–9.

    Article  CAS  PubMed  Google Scholar 

  73. Hadi, M.Z., M.A. Coleman, K. Fidelis, H.W. Mohrenweiser, and D.M. Wilson, 3rd. (2000). Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res 28, 3871–9.

    Article  CAS  PubMed  Google Scholar 

  74. Dantzer, F., V. Schreiber, C. Niedergang, C. Trucco, E. Flatter, G. De La Rubia, J. Oliver, V. Rolli, J. Menissier-de Murcia, and G. de Murcia. (1999). Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81, 69–75.

    Article  CAS  PubMed  Google Scholar 

  75. Wieler, S., J.P. Gagne, H. Vaziri, G.G. Poir-ier, and S. Benchimol. (2003). Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 278, 18914–21.

    Article  CAS  PubMed  Google Scholar 

  76. Caldecott, K.W., C.K. McKeown, J.D. Tucker, S. Ljungquist, and L.H. Thompson. (1994). An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol. 14, 68–76.

    CAS  PubMed  Google Scholar 

  77. Sancar, G.B., W. Siede, and A.A. van Zee-land. (1996). Repair and processing of DNA damage: a summary of recent progress. Mutat Res 362, 127–46.

    PubMed  Google Scholar 

  78. Yu, M.W., S.Y. Yang, I.J. Pan, C.L. Lin, C.J. Liu, Y.F. Liaw, S.M. Lin, P.J. Chen, S.D. Lee, and C.J. Chen. (2003). Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 95, 1485–8.

    CAS  PubMed  Google Scholar 

  79. Spitz, M.R., X. Wu, Y. Wang, L.E. Wang, S. Shete, C.I. Amos, Z. Guo, L. Lei, H. Mohrenweiser, and Q. Wei. (2001). Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 61, 1354–7.

    CAS  PubMed  Google Scholar 

  80. Baccarelli, A., D. Calista, P. Minghetti, B. Marinelli, B. Albetti, T. Tseng, M. Hedayati, L. Grossman, G. Landi, J.P. Struewing, and M.T. Landi. (2004). XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk. Br J Cancer 90, 497–502.

    Article  CAS  PubMed  Google Scholar 

  81. Benhamou, S., and A. Sarasin. (2005). ERCC2 /XPD gene polymorphisms and lung cancer: a HuGE review. Am J Epidemiol 161, 1–14.

    Article  PubMed  Google Scholar 

  82. Hou, S.M., S. Falt, S. Angelini, K. Yang, F. Nyberg, B. Lambert, and K. Hemminki. (2002). The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis 23, 599–603.

    Article  CAS  PubMed  Google Scholar 

  83. Lunn, R.M., K.J. Helzlsouer, R. Parshad, D.M. Umbach, E.L. Harris, K.K. Sanford, and D.A. Bell. (2000). XPD polymorphisms: effects on DNA repair proficiency. Carcino-genesis 21, 551–5.

    Article  CAS  Google Scholar 

  84. Duell, E.J., J.K. Wiencke, T.J. Cheng, A. Varkonyi, Z.F. Zuo, T.D. Ashok, E.J. Mark, J.C. Wain, D.C. Christiani, and K.T. Kelsey. (2000). Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononu-clear cells. Carcinogenesis 21, 965–71.

    Article  CAS  PubMed  Google Scholar 

  85. Kiyohara, C., and K. Yoshimasu. (2007). Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci 4, 59–71.

    CAS  PubMed  Google Scholar 

  86. Huang, W.Y., S.I. Berndt, D. Kang, N. Chatterjee, S.J. Chanock, M. Yeager, R. Welch, R.S. Bresalier, J.L. Weissfeld, and R.B. Hayes. (2006). Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomarkers Prev 15, 306–11.

    Article  CAS  PubMed  Google Scholar 

  87. Mohrenweiser, H.W., D.M. Wilson, 3rd, and I.M. Jones. (2003). Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res 526, 93–125.

    CAS  PubMed  Google Scholar 

  88. Araujo, F.D., A.J. Pierce, J.M. Stark, and M. Jasin. (2002). Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene 21, 4176–80.

    Article  CAS  PubMed  Google Scholar 

  89. Nonoyama, S., and H.D. Ochs. (1996). Immune deficiency in SCID mice. Int Rev Immunol 13, 289–300.

    Article  CAS  PubMed  Google Scholar 

  90. Nicolas, N., D. Moshous, M. Cavazzana-Calvo, D. Papadopoulo, R. de Chasseval, F. Le Deist, A. Fischer, and J.P. de Vil-larta. (1998). A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 188, 627–34.

    Article  CAS  PubMed  Google Scholar 

  91. Dip, R. and H. Naegeli. (2005). More than just strand breaks: the recognition of structural DNA discontinuities by DNA-depend-ent protein kinase catalytic subunit. FASEB J 19, 704–15.

    Article  CAS  PubMed  Google Scholar 

  92. Sipley, J.D., J.C. Menninger, K.O. Hartley, D.C. Ward, S.P. Jackson, and C.W. Anderson. (1995). Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8. Proc Natl Acad Sci U S A 92, 7515–9.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y., J. Zhou, and C.U. Lim. (2006). The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 16, 45–54.

    Article  PubMed  CAS  Google Scholar 

  94. Medina, P.P., S.A. Ahrendt, M. Pollan, P. Fernandez, D. Sidransky, and M. Sanchez-Cespedes. (2003). Screening of homologous recombination gene polymorphisms in lung cancer patients reveals an association of the NBS1–185Gln variant and p53 gene mutations. Cancer Epidemiol Biomarkers Prev 12, 699–704.

    CAS  PubMed  Google Scholar 

  95. Margison, G.P., A.C. Povey, B. Kaina, and M.F. Santibanez Koref. (2003). Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis 24, 625–35.

    Article  CAS  PubMed  Google Scholar 

  96. Inoue, R., M. Abe, Y. Nakabeppu, M. Sekiguchi, T. Mori, and T. Suzuki. (2000). Characterization of human polymorphic DNA repair methyltransferase. Pharmaco-genetics 10, 59–66.

    CAS  Google Scholar 

  97. Margison, G.P., J. Heighway, S. Pearson, G. McGown, M.R. Thorncroft, A.J. Watson, K.L. Harrison, S.J. Lewis, K. Rohde, P.V. Barber, P. O'Donnell, A.C. Povey, and M.F. Santibanez-Koref. (2005). Quantitative trait locus analysis reveals two intragenic sites that influence O6-alkylguanine-DNA alkyltrans-ferase activity in peripheral blood mononu-clear cells. Carcinogenesis 26, 1473–80.

    Article  CAS  PubMed  Google Scholar 

  98. Matsuoka, S., G. Rotman, A. Ogawa, Y. Shiloh, K. Tamai, and S.J. Elledge. (2000). Ataxia telangiectasia-mutated phosphor-ylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97, 10389–94.

    Article  CAS  PubMed  Google Scholar 

  99. Kim, J.H., H. Kim, K.Y. Lee, K.H. Choe, J.S. Ryu, H.I. Yoon, S.W. Sung, K.Y. Yoo, and Y.C. Hong. (2006). Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum Mol Genet 15, 1181–6.

    Article  CAS  PubMed  Google Scholar 

  100. Koren, M., G. Kimmel, E. Ben-Asher, I. Gal, M.Z. Papa, J.S. Beckmann, D. Lancet, R. Shamir, and E. Friedman. (2006). ATM hap-lotypes and breast cancer risk in Jewish high-risk women. Br J Cancer 94, 1537–43.

    Article  CAS  PubMed  Google Scholar 

  101. Lee, K.M., J.Y. Choi, S.K. Park, H.W. Chung, B. Ahn, K.Y. Yoo, W. Han, D.Y. Noh, S.H. Ahn, H. Kim, Q. Wei, and D. Kang. (2005). Genetic polymorphisms of ataxia telangiectasia mutated and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14, 821–5.

    Article  CAS  PubMed  Google Scholar 

  102. Audebert, M., J.P. Radicella, and M. Dizdaro-glu. (2000). Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res 28, 2672–8.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, C., N.S. Weiss, F.Z. Stanczyk, S.K. Lewis, D. DiTommaso, R. Etzioni, M.J. Bar-nett, and G.E. Goodman. (2003). Endogenous sex hormones and prostate cancer risk: a case-control study nested within the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev 12, 1410–6.

    CAS  PubMed  Google Scholar 

  104. Peng, T., H.M. Shen, Z.M. Liu, L.N. Yan, M.H. Peng, L.Q. Li, R.X. Liang, Z.L. Wei, B. Halliwell, and C.N. Ong. (2003). Oxidative DNA damage in peripheral leukocytes and its association with expression and polymorphisms of hOGG1: a study of adolescents in a high risk region for hepatocellular carcinoma in China. World J Gastroenterol 9, 2186–93.

    CAS  PubMed  Google Scholar 

  105. Khan, S.G., E.J. Metter, R.E. Tarone, V.A. Bohr, L. Grossman, M. Hedayati, S.J. Bale, S. Emmert, and K.H. Kraemer. (2000). A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis 21, 1821–5.

    Article  CAS  PubMed  Google Scholar 

  106. Wang, C.Y., R.F. Jones, M. Debiec-Rychter, G. Soos, and G.P. Haas. (2002). Correlation of the genotypes for N-acetyltransferases 1 and 2 with double bladder and prostate cancers in a case-comparison study. Anticancer Res 22, 3529–35.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Park, J.Y., Huang, Y., Sellers, T.A. (2009). Single Nucleotide Polymorphisms in DNA Repair Genes and Prostate Cancer Risk. In: Verma, M. (eds) Cancer Epidemiology. Methods in Molecular Biology, vol 471. Humana Press. https://doi.org/10.1007/978-1-59745-416-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-416-2_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-987-1

  • Online ISBN: 978-1-59745-416-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics