Skip to main content

SNPs: Impact on Gene Function and Phenotype

  • Protocol
  • First Online:
Single Nucleotide Polymorphisms

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 578))

Abstract

Single nucleotide polymorphism (SNP) is the simplest form of DNA variation among individuals. These simple changes can be of transition or transversion type and they occur throughout the genome at a frequency of about one in 1,000 bp. They may be responsible for the diversity among individuals, genome evolution, the most common familial traits such as curly hair, interindividual differences in drug response, and complex and common diseases such as diabetes, obesity, hypertension, and psychiatric disorders. SNPs may change the encoded amino acids (nonsynonymous) or can be silent (synonymous) or simply occur in the noncoding regions. They may influence promoter activity (gene expression), messenger RNA (mRNA) conformation (stability), and subcellular localization of mRNAs and/or proteins and hence may produce disease. Therefore, identification of numerous variations in genes and analysis of their effects may lead to a better understanding of their impact on gene function and health of an individual. This improved knowledge may provide a starting point for the development of new, useful SNP markers for medical testing and a safer individualized medication to treat the most common devastating disorders. This will revolutionize the medical field in the future. To illustrate the effect of SNPs on gene function and phenotype, this minireview focuses on evidences revealing the impact of SNPs on the development and progression of three human eye disorders (Norrie disease, familial exudative vitreoretinopathy, and retinopathy of prematurity) that have overlapping clinical manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brookes, A. J. (1999) The essence of SNPs. Gene 234, 177–186.

    Article  PubMed  CAS  Google Scholar 

  2. Halushka, M. K., Fan, J. B., Bentley, K., Hsie, L., Shen, N. P., Weder, A., Cooper, R., Lipshutz, R. and Chakravarti, A. (1999) Patterns of single nucleotide polymorphisms in candidate genes for blood pressure homeostasis. Nat. Genet. 22, 239–247.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, N., Boomsma, D. and Machin, G. (1997) A twin pronged attacks on complex traits. Nat. Genet. 17, 387–392.

    Article  PubMed  CAS  Google Scholar 

  4. Krawezak, M., Reiss, J. and Cooper, D. N. (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54.

    Google Scholar 

  5. Lohrer, H. D. and Tangen, U. (2000) Investigations into the molecular effects of single nucleotide polymorphism. Pathobiology 68, 283–290.

    Article  PubMed  CAS  Google Scholar 

  6. LeVan, T. D., Bloom, J. W., Bailey, T. J., Karp, C. L., Halonen, M., Martinez, F. D. and Vercelli, D. (2001) A common single nucleotide polymorphism in the CD 14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J. Immunol. 167, 5838–5844.

    PubMed  CAS  Google Scholar 

  7. Shastry, B. S. (2007) SNPs in disease gene mapping, medicinal drug development and evolution. J. Hum. Genet. 52, 871–880.

    Article  PubMed  CAS  Google Scholar 

  8. Shastry, B. S. (2006) Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 6, 16–21.

    Article  PubMed  CAS  Google Scholar 

  9. Shastry, B. S. (2005) Genetic diversity and new therapeutic concepts. J. Hum. Genet. 50, 321–328.

    Article  PubMed  CAS  Google Scholar 

  10. Shastry, B. S. (2004) Role of SNP/haplotype map in gene discovery and drug development: an overview. Drug Dev. Res. 62, 143–150.

    Article  CAS  Google Scholar 

  11. Warburg, M. (1966) Norrie’s disease: a congenital progressive oculo-acustico-cerebral degeneration. Acta Ophthalmol. 89, 1–147.

    Google Scholar 

  12. Sims, K. B., Irvine, A. R. and Good, W. V. (1997) Norrie disease in a family with a manifesting female carrier. Arch. Ophthalmol. 115, 517–519.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, Z. Y., Battinelli, E. M., Woodruff, G., Young, I., Breakefield, X. O. and Craig, I. W. (1993) Characterization of mutation within the NDP gene in a family with a manifesting female carrier. Hum. Mol. Genet. 2, 1727–1729.

    Article  PubMed  CAS  Google Scholar 

  14. Shastry, B. S., Hiraoka, M., Trese, D. C. and Trese, M. T. (1999) Norrie disease and exudative vitreoretinopathy in families with affected female carries. Eur. J. Ophthalmol. 9, 238–242.

    PubMed  CAS  Google Scholar 

  15. Berger, W., Meindl, A., van de Pool, T. J., Cremers, F. P., Ropers, H.-H., Doerner, C., Monaco, A., Bergen, A. A., Lebo, R., Warburg, M., Zergollern, L., Lorenz, B., Gal, A., Bleeker-Wagemakers, E. M. and Meitinger, T. (1992) Isolation of a candidate gene for Norrie’s disease by positional cloning. Nat. Genet. 1, 199–203.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, Z. Y., Hendricks, R. W., Jobling, M. T. A., Powell, J. F., Breakefield, X. O., Sims, K. B. and Criag, I. W. (1992) Isolation and characterization of a candidate gene for Norrie disease. Nat. Genet. 1, 204–208.

    Article  PubMed  CAS  Google Scholar 

  17. Kenyon, J. R. and Criag, I. W. (1999) Analysis of the 5’-regulatory region of the human Norrie disease gene: evidence that non-translated CT dinucleotide repeat in exon-1 has a role in controlling expression. Gene 277, 181–188.

    Article  Google Scholar 

  18. Katoh, M. and Katoh, M. (2005) Comparative genomics on Norrie disease gene. Int. J. Mol. Med. 15, 885–889.

    PubMed  CAS  Google Scholar 

  19. Meindl, A., Berger, W., Meitinger, T., van de Pool, D., Achatz, H., Dorner, C., Haasemann, M., Hellebrand, G. A., Cremers, F. and Ropers, H.-H. (1992) Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domains of mucins. Nat. Genet. 2, 139–143.

    Article  PubMed  CAS  Google Scholar 

  20. Chen, Z. Y., Bettinelli, E. M., Hendricks, R. W., Powell, J. F., Middleton-Price, H., Sims, K. B., Breakefield, X. O. and Craig, I. W. (1993) Norrie disease gene: characterization of deletions and possible functions. Genomics 16, 533–535.

    Article  PubMed  CAS  Google Scholar 

  21. Meitinger, T., Meindl, A., Bork, P., Rost, B., Sander, C., Haasemann, M. and Markrn J. (1993) Molecular modeling of Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat. Genet. 5, 376–380.

    Article  PubMed  CAS  Google Scholar 

  22. McDonald, N. G. and Hendrickson, W. A. (1993) A structural superfamily of growth factors containing a cystine knot motif. Cell 73, 421–424.

    Article  PubMed  CAS  Google Scholar 

  23. Perez-Vilar, J. and Hill, R. L. (1997) Norrie disease protein (norrin) forms disulphide linked oligomers. J. Biol. Chem. 272, 33410–33415.

    Article  PubMed  CAS  Google Scholar 

  24. Luhmann, U. F., Meunier, D., Shi, W., Luttges, A., Pfarrer, C., Fundele, R. and Berger, W. (2005) Fetal loss in homozygous mutant Norrie disease mice: a new role of norrin in reproduction. Genesis 42, 253–262.

    Article  PubMed  CAS  Google Scholar 

  25. Berger, W., van de Pool, D., Bachner, D., Oerlemans, F., Winkens, H., Hameister, H., Wieringa, B., Hendricks, W. and Roper, H.-H. (1996) An animal model for Norrie disease: gene targeting of mouse ND gene. Hum. Mol. Genet. 5, 51–59.

    Article  PubMed  CAS  Google Scholar 

  26. Xu, O., Wang, Y. S., Dabdoub, A., Smallwood, P. M., Williams, J., Woods, C., Kelley, M. W., Jiang, L., Tasman, W., Zhang, K. and Nathans, J. (2004) Vascular development in the retina and inner ear: control by norrin and frizzled 4, a high affinity ligand receptor pair. Cell 116, 883–895.

    Article  PubMed  CAS  Google Scholar 

  27. Luhmann, U. F., Lin, J., Acar, N., Lammel, S., Feils, S., Grimm, C., Seeliger, M. W., Hammes, H. P. and Berger, W. (2005) Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest. Ophthalmol. Vis. Sci. 46, 3372–3382.

    Article  Google Scholar 

  28. Hartzer, M. K., Cheng, M., Liu, X. and Shastry, B. S. (1999) Localization of the Norrie disease gene mRNA by in situ hybridization. Brain Res. Bull. 49, 355–358.

    Article  PubMed  CAS  Google Scholar 

  29. Rehm, H. L., Zhang, D. S., Brown, M. C., Burgess, B., Halpin, C., Berger, W., Morton, C., Corey, D. P. and Chen, Z., Y. (2002) Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J. Neurosci. 22, 4286–4292.

    PubMed  CAS  Google Scholar 

  30. Shastry, B. S. and Hiraoka, M. (2000). Molecular genetics of familial exudative vitreoretinopathy and Norrie disease. Curr. Genomics 1, 259–269.

    Article  CAS  Google Scholar 

  31. Schuback, D. E., Zheng, Y. C., Criag, I. W., Breakefield, X. O. and Sims, K. B. (1995) Mutations in the Norrie disease gene. Hum. Mutat. 5, 285–292.

    Article  PubMed  CAS  Google Scholar 

  32. Lev, D., Weigi, Y., Hasan, M., Gak, E., Davidovich, M., Vinkler, C., Leshinsky-Silver, E., Lerman-Sagie, T. and Watemberg, N. (2007) A novel missense mutation in the NDP gene in a child with Norrie disease and severe neurological involvement including infantile spasms. Am. J. Med. Genet. 143, 921–924.

    Article  CAS  Google Scholar 

  33. Yamada, K., Limprasert, P., Ratanasukon, M., Tengtrisorn, S., Yingchareonpukdee, J., Vasiknanonte, P., Kitaoka, T., Ghadami, M., Niikawa, N. and Kishino, T. (2001) Two Thai families with Norrie disease (ND): association of two novel missense mutations with severe ND phenotype, seizures and a manifesting carrier. Am. J. Med. Genet. 100, 52–55.

    Article  PubMed  CAS  Google Scholar 

  34. Kondo, H., Qin, M., Kusaka, S., Tahira, T., Hasebe, H., Hayashi, H., Uchio, E. and Hayashi, K. (2007) Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 48, 1276–1282.

    Article  PubMed  Google Scholar 

  35. Fuchs, S., van de Pool, D., Beudt, U., Kellner, U., Meire, F., Berger, W. and Gal, A. (1996) Three novel and two recurrent mutations of the Norrie disease gene in patients with Norrie syndrome. Hum. Mutat. 8, 85–88.

    Article  PubMed  CAS  Google Scholar 

  36. Strasberg, P, Liede, H. A., Stein, T., Warren, I., Sutherland, J. and Ray, P. N. (1995) A novel mutation in the Norrie disease gene predicted to disrupt the cystine knot growth factor motif. Hum. Mol. Genet. 4, 2179–2180.

    Article  PubMed  CAS  Google Scholar 

  37. Meindl, A., Lorenz, B., Achatz, H., Hellebrand H., Schmitz-Vakkenberg, P. and Meitinger, T. (1995) Missense mutation in the NDP gene in patients with a less severe course of Norrie disease. Hum. Mol. Genet. 4, 489–490.

    Article  PubMed  CAS  Google Scholar 

  38. Fuentes, J. J., Volpini, V., Fernandez-Toral, F., Coto, E. and Estivill, X. (1993) Identification of two new missense mutations (K58N and R121Q) in the Norrie disease (ND) gene in two Spanish families. Hum. Mol. Genet. 2, 1953–1955.

    Article  PubMed  CAS  Google Scholar 

  39. Torrente, I., Mangino, M., Gennarelli, M., Novelli, G., Giannotti, A., Vadala, P. and Dallapiccola, B. (1997) Two new missense mutations (A105T and C110G) in the Norrie gene in two Italian families with Norrie disease and familial exudative vitreoretinopathy. Am. J. Med. Genet. 72, 242–244.

    Article  PubMed  CAS  Google Scholar 

  40. Walker, J. L., Dixon, J., Fenton, C. R., Hungerford, J., Lynch, S. A., Stenhouses, S. A. K., Christian, A. and Craig, I. W. (1997) Two new mutations in exon 3 of the NDP gene: S73X and S101F associated with severe and less severe ocular phenotypes respectively. Hum. Mutat. 9, 53–56.

    Article  PubMed  CAS  Google Scholar 

  41. Allen, R. C., Russell, S. R., Streb, L. M., Alsheikheh, A. and Stone, E. M. (2006) Phenotypic heterogeneity associated with a novel mutation (Gly 112 Glu) in the Norrie disease protein. Eye 20, 234–241.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, F., Goldberg, M. F. and Hao, Y. (1993) Identification of a nonsense mutation at codon 128 of the Norrie’s disease gene in a male infant. Arch. Ophthalmol. 111, 1553–1557.

    Article  Google Scholar 

  43. Drenser, K. A., Fecko, A., Dailey, W. and Trese, M. T. (2007) A characteristic phenotypic retinal appearance in Norrie disease. Retina 27, 243–246.

    Article  PubMed  Google Scholar 

  44. Berger, W., van de Pool, D., Warburg, M., Gal, A., Bleeker-Wagemakers, L., de Silva, H., Meindl, A., Meitinger, T., Cremers, F. and Ropers, H-H. (1992) Mutations in the candidate gene for Norrie disease. Hum. Mol. Genet. 1, 461–465.

    Article  PubMed  CAS  Google Scholar 

  45. Isashiki, Y., Ohba, N., Yanagita, T., Hokita, N., Doi, N., Nakagawa, M., Ozawa, M. and Kuroda, N. (1995) Novel mutation at the initiation codon in the Norrie disease gene in two Japanese families. Hum. Genet. 95, 105–108.

    Article  PubMed  CAS  Google Scholar 

  46. Joos, K. M., Kimura, A. E., Vandenburgh, K., Bartley, J. A. and Stone E. M. (1994) Ocular findings associated with a cys39Arg mutation in the Norrie disease gene. Arch. Ophthalmol. 112, 1574–1579.

    Article  PubMed  CAS  Google Scholar 

  47. Plager, D. A., Orgel, I. K., Forest, D. E., Hartzer, M., Trese, M. T. and Shastry, B. S. (1992) X-linked recessive familial exudative vitreoretinopathy. Am. J. Ophthalmol. 114, 145–148.

    PubMed  CAS  Google Scholar 

  48. Fullwood, P., Jones, J., Bundey, S., Dudgeon, J., Fielder, A. R. and Kilpatrick, M. W. (1993) X-linked exudative vitreoretinopathy: clinical features and genetic linkage analysis. Br. J. Ophthalmol. 77, 168–170.

    Article  PubMed  CAS  Google Scholar 

  49. Clement, F., Beckford, C. A., Corral, A. and Jimenez, R. (1995) X-linked familial exudative vitreoretinopathy. Retina 15, 141–145.

    Article  PubMed  CAS  Google Scholar 

  50. Van Nouhuys, C. E. (1982) Dominant exudative vitreoretinopathy and other vascular developmental disorders of the peripheral retina. Doc. Ophthalmol. 54, 1–414.

    Article  PubMed  Google Scholar 

  51. Shastry, B. S. and Trese, M. T. (1997) Familial exudative vitreoretinopathy: further evidence for genetic heterogeneity. Am. J. Med. Genet. 69, 217–218.

    Article  PubMed  CAS  Google Scholar 

  52. De Crecchio, G., Simonelli, F., Nunziata, G., Mazzeo, S., Greco, G. M., Rinaldi, E., Ventruto, V., Ciccodicola, A., Miano, M. G., Testa, F., Curci, A., D’Urso, M., Rinaldi, M. M., Cavaliere, M. L. and Castelluccio, P. (1998) Autosomal recessive familial exudative vitreoretinopathy: evidence for genetic heterogeneity. Clin. Genet. 54, 315–320.

    Article  PubMed  Google Scholar 

  53. Shastry, B. S., Liu, X., Hejtmancik, J. F., Plager, D. A. and Trese, M. T. (1997) Evidence for genetic heterogeneity in X-linked familial exudative vitreoretinopathy. Genomics 44, 247–248.

    Article  PubMed  CAS  Google Scholar 

  54. Bamashmus, M. A., Downey, L. M., Inglehearn, C. F., Gupta, S. R. and Mansfield, D. C. (2000) Genetic heterogeneity in familial exudative vitreoretinopathy: exclusion of the EVR1 locus on chromosome 11q in a large autosomal dominant pedigree. Br. J. Ophthalmol. 84, 358–363.

    Article  PubMed  CAS  Google Scholar 

  55. Chen, Z. Y., Bettinelli, E. M., Fielder, A., Bundey, S., Sims, K., Breakefield, X. O. and Craig, I. W. (1993) A mutation in the Norrie disease gene associated with X-linked familial exudative vitreoretinopathy. Nat. Genet. 5, 180–183.

    Article  PubMed  CAS  Google Scholar 

  56. Shastry, B. S., Hejtmancik, J. F., Plager, D. A., Hartzer, M. T. and Trese, M. T. (1995) Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy. Genomics 27, 341–344.

    Article  PubMed  CAS  Google Scholar 

  57. Shastry, B. S., Hejtmancik, J. F. and Trese, M. T. (1997) Identification of novel missense mutations in the Norrie disease gene associated with one X-linked and four sporadic cases of familial exudative vitreoretinopathy. Hum. Mutat. 9, 396–401.

    Article  PubMed  CAS  Google Scholar 

  58. Fuchs, S., Kellner, U., Wedemann, H. and Gal, A. (1995) Missense mutation (Arg121Trp) in the Norrie disease gene associated with X-linked exudative vitreoretinopathy. Hum. Mutat. 6, 257–259.

    Article  PubMed  CAS  Google Scholar 

  59. Drenser, K. A., Dailey, W., Capone, A. and Trese, M. T. (2006) Genetic evaluation to establish the diagnosis of X-linked familial exudative vitreoretinopathy. Ophthalmic Genet. 27, 75–78.

    Article  PubMed  CAS  Google Scholar 

  60. Johnson, K., Mintz-Hittner, H. A., Conley, Y, P. and Ferrell, R. E. (1996) X-linked exudative vitreoretinopathy caused by an arginine to leucine substitution (R121L) in the Norrie disease protein. Clin. Genet. 50, 113–115.

    Article  PubMed  CAS  Google Scholar 

  61. Riveiro-Alvarez, R., Trujillo-Tiebas, M. J., Gimenez-Pardo, A., Garcia-Hoyos, M., Cantalapiedra, D., Lorda-Sanchez, I., de Alba, M. R., Ramos, C. and Ayuso, C. (2005) Genotype-phenotype variations in five Spanish families with Norrie disease or X-linked FEVR. Mol. Vis. 11, 705–712.

    PubMed  CAS  Google Scholar 

  62. Wu, W.-C., Drenser, K., Trese, M. T., Capone, A. and Dailey, W. (2007) Retinal genotype-phenotype correlation of pediatric patients expressing mutations in the Norrie disease gene. Arch. Ophthalmol. 125, 225–230.

    Article  PubMed  CAS  Google Scholar 

  63. Li, Y., Fuhrmann, C., Schwinger, E., Gal, A. and Laqua, H. (1992) The gene for autosomal dominant exudative vitreoretinopathy (Criswick-Schepens) is on the long arm of chromosome 11. Am. J. Ophthalmol. 113, 712–713.

    PubMed  CAS  Google Scholar 

  64. Muller, B., Orth, U., van Nouhuys, C. E., Durigneau, C., Fuhrmann, C., Schwinger, E., Laqua, H. and Gal, A. (1994) Mapping of the autosomal dominant exudative vitreoretinopathy locus (EVR1) by multipoint linkage analysis in four families. Genomics 20, 317–319.

    Article  PubMed  CAS  Google Scholar 

  65. Price, S. M., Periam, N., Humphries, A., Woodruff, G. and Trembath, R. C. (1996) Familial exudative vitreoretinopathy linked to D11S533 in a large Asian family with consanguinity. Ophthalmic Genet. 17, 53–57.

    Article  PubMed  CAS  Google Scholar 

  66. Shastry, B. S., Hejtmancik, J. F., Hiraoka, M., Ibaraki, N., Okubo, Y., Okubo, A., Han, D. P. and Trese, M. T. (2000) Linkage and candidate gene analysis of autosomal dominant familial exudative vitreoretinopathy. Clin. Genet. 58, 329–332.

    Article  PubMed  CAS  Google Scholar 

  67. Kondo, H., Ohno, K., Tahira, T., Hayashi, H., Oshima, K. and Hayashi, K. (2001) Delineation of the critical interval for the familial exudative vitreoretinopathy gene by linkage and haplotype analysis. Hum. Genet. 108, 368–375.

    Article  PubMed  CAS  Google Scholar 

  68. Downey, L. M., Keen, T. J., Roberts, E., Mansfield, D. C., Bamashmus, M. and Inglehearn, C. F. (2001) A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. Am. J. Hum. Genet. 68, 778–781.

    Article  PubMed  CAS  Google Scholar 

  69. Qin, M., Hayashi, H., Oshima, K., Tahira, T., Hayashi, K. and Kondo, H. (2005) Complexity of genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD 4 genes. Hum. Mutat. 26, 104–112.

    Article  PubMed  CAS  Google Scholar 

  70. Kondo, H., Hayashi, H., Oshima, K., Tahira, T. and Hayashi, K. (2003) Frizzled 4 gene (FZD 4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity. Br. J. Ophthalmol. 87, 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  71. Yoshida, H., Arita, R., Yoshida, A., Tada, H., Emori, A., Noda, Y., Nakao, S., Fujisawa, K. and Ishibashi, T. (2004) Novel mutation in FZD 4 gene in a Japanese pedigree with familial exudative vitreoretinopathy. Am. J. Ophthalmol. 138, 670–671.

    Article  PubMed  CAS  Google Scholar 

  72. Omoto, S., Hayashi, T., Kitahara, K., Takeuchi, T. and Ueoka, Y. (2004) Autosomal dominant familial exudative vitreoretinopathy in two Japanese families with FZD 4 mutations (H69Y and C181R). Ophthalmic Genet. 25, 81–90.

    Article  PubMed  CAS  Google Scholar 

  73. Robitaille, J., MacDonald, M. L. E., Kaykas, A., Sheldahi, L. C., Zeisler, J., Dube, M. P., Zhang, L. H., Singaraja, R. R., Guernsey, D. L., Zheng, B., Siebert, L. F., Hoskin-Mott, A., Trese, M. T., Pimstone, S. N., Shastry, B. S., Moon, R. T., Hayden, M. R., Goldberg, Y. P. and Samuels, M. E. (2002) Mutant frizzled 4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat. Genet. 32, 326–330.

    Article  PubMed  CAS  Google Scholar 

  74. Toomes, C., Bottomley, H. M., Scott, S., Mackey, D. A., Craig, J. E., Appukuttan, B., Stout, J. T., Faxel, C. J., Zhang, K., Black, G. C. M., Fryer, A., Downey, L. M. and Inglehearn, C. F. (2004) Spectrum and frequency of FZD 4 mutations in familial exudative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 45, 2083–2090.

    Article  PubMed  Google Scholar 

  75. Toomes, C., Bottomley, H. M., Jackson, R. M., Towns, K. V., Scott, S., Mackey, D. A., Craig, J. E., Jiang, L., Yang, Z., Trembath, R., Woodruff, G., Gregory-Evans, C. Y., Gregory-Evans, K., Parker, M. J., Black, G. C. M., Downey, L. M., Zhang, K. and Inglehearn, C. F. (2004) Mutations in LRP5 or FZD 4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am. J. Hum. Genet. 74, 721–730.

    Article  PubMed  CAS  Google Scholar 

  76. Huang, H.-C. and Klein, P. S. (2004) The frizzled family: receptors for multiple signal transduction pathways. Genome Biol. 5, 234–239.

    Article  PubMed  Google Scholar 

  77. De Iongh, R. U., Abad, H. E. and Hime, G. R. (2006) Wnt/frizzled signaling in eye development and disease. Frontiers Biosci. 11, 2442–2464.

    Article  Google Scholar 

  78. Pinson, K. L., Brennan, J., Monkley, S., Avery, B. J. and Sharnes, W. C. (2000) An LDL – receptor related protein mediates Wnt signaling in mice. Nature 407, 535–538.

    Article  PubMed  CAS  Google Scholar 

  79. Kykas, A., Yang-Snyder, J., Aeroux, M., Shah, K. V., Bouvier, M. and Moon, R. T. (2004) Mutant frizzled 4 associated with vitreoretinopathy traps wild-type frizzled in the endoplasmic reticulum by oligomerization. Nat. Cell. Biol. 6, 52–58.

    Article  CAS  Google Scholar 

  80. Jiao, X., Ventruto, V., Trese, M. T., Shastry, B. S. and Hejtmancik, J. F. (2004) Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am. J. Hum. Genet. 75, 878–884.

    Article  PubMed  CAS  Google Scholar 

  81. Downey, L. M., Bottomley, H. M., Sheridan, E., Ahmed, M., Gilmour, D. F., Inglehearn, C. F., Reddy, A., Agrawal, A., Brodbury, J. and Toomes, C. (2006) Reduced bone mineral density and hyaloid vasculature remnants in a consanguineous recessive FEVR family with a mutation in LRP5. Br. J. Ophthalmol. 90, 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  82. Hey, P. J., Twells, R. C., Phillips, M. S., Yusuke, N., Brown, S. D., Kawaguchi, Y., Cox, R., Gouchun, X., Dugan, V., Hammond, H., Metzker, M. L., Todd, J. A. and Hess, J. F. (1998) Cloning of a novel member of the low-density lipoprotein receptor family. Gene 216, 103–111.

    Article  PubMed  CAS  Google Scholar 

  83. Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A. M. and Wang, H. et al. (2001) LDL receptor related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523.

    Article  PubMed  CAS  Google Scholar 

  84. Plamer, E. A. (1996) The continuing threat of retinopathy of prematurity. Am. J. Ophthalmol. 122, 420–423.

    Google Scholar 

  85. Gilbert, C., Rahi, J., Eckstein, M., O’Sullivan, J. and Foster, A. (1997) Retinopathy of prematurity in middle-income countries. Lancet 350, 12–14.

    Article  PubMed  CAS  Google Scholar 

  86. Shastry, B. S., Pendergast, S. D., Hartzer, M.K., Liu, X. and Trese, M. T. (1997) Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity. Arch. Ophthalmol. 115, 651–656.

    Article  PubMed  CAS  Google Scholar 

  87. Vannay, A., Dunai, G., Banyasz, I.,Szabo, M., Vamos, R., Treszl, A., Hajdu, J., Tulassay, T. and Vasarhelyi, B. (2005) Association of genetic polymorphisms of vascular endothelial growth factor and risk of proliferative retinopathy of prematurity. Pediatr. Res. 57, 396–398.

    Article  PubMed  CAS  Google Scholar 

  88. Cooke, R. W., Drury, J. A., Mountford, R. and Clark, D. (2004) Genetic polymorphism and retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 45, 1712–1715.

    Article  PubMed  Google Scholar 

  89. Haider, M. Z., Devarajan, L. V., Al-Essa, M. and Kumar, H. A. (2002) A C597 → A polymorphism in the Norrie disease gene is associated with advanced retinopathy of prematurity in premature Kuwaiti infants. J. Biomed. Sci. 9, 365–370.

    PubMed  CAS  Google Scholar 

  90. Haider, M. Z., Devarajan, L.V., Al-Essa, M. and Kumar, H. (2002) Angiotensin – converting enzyme gene insertion/deletion polymorphism in Kuwaiti children with retinopathy of prematurity. Biol. Neonate. 82, 84–88.

    Article  PubMed  CAS  Google Scholar 

  91. Talks, S. J., Ebenezer, N., Hykin, P., Adams, A., Yang, F., Schulenberg, E., Gregory-Evans, K. and Gregory-Evans, C. Y. (2001) De novo mutations in the 5’ regulatory region of the Norrie disease gene in retinopathy of prematurity. J. Med. Genet. 38, e46.

    Article  PubMed  CAS  Google Scholar 

  92. Hiraoka, M., Berinstein, D. M., Trese, M. T. and Shastry, B. S. (2001) Insertion and deletion mutations in the dinucleotide repeat region of the Norrie disease gene in patients with advanced retinopathy of prematurity. J. Hum. Genet. 46, 178–181.

    Article  PubMed  CAS  Google Scholar 

  93. Hutcheson, K. A., Paluru, P. C., Bernstein, S. L., Koh, J., Rappaport, E. F., Leach, R. A. and Young, T. L. (2005) Norrie disease gene sequence variants in an ethnically diverse population with retinopathy of prematurity. Mol. Vis. 11, 501–508.

    PubMed  CAS  Google Scholar 

  94. Dickinson, J. L., Sale, M. M., Passmore, A., FitzGerald, L. M., Wheatley, C. M., Burdon, K. P., Franzco, J. E. C., Tengtrisorn, S., Franzco, S. M. C., Franzco, H. M. and Franzco, D. A. M. (2006) Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy and retinopathy of prematurity. Clin Exp. Ophthalmol. 34, 682–688.

    Article  Google Scholar 

  95. MacDonald, M. L. E., Goldberg, Y. P., MacFarlane, J., Samuels, M. E., Trese, M. T. and Shastry, B. S. (2005) Genetic variants of frizzled-4 gene in familial exudative vitreoretinopathy and advanced retinopathy of prematurity. Clin Genet. 67, 363–366.

    Article  PubMed  CAS  Google Scholar 

  96. Bizzarro, M. J., Hussain, N., Jonsson, B., Feng, R., Ment, L. R., Gruen, J. F., Zhang, H. and Bhandari, V. (2006) Genetic susceptibility to retinopathy of prematurity. Pediatrics 118, 1858–1863.

    Article  PubMed  Google Scholar 

  97. Holmstrom, G., Van Wijngaarden, P., Coster, D. J. and Williams, K. A. (2007) Genetic susceptibility to retinopathy of prematurity: the evidence from clinical and experimental animal studies. Br. J. Ophthalmol. 97, 1704–1708.

    Article  Google Scholar 

  98. Lang, D. M., Backledge, J. and Arnold, R. W. (2005) Is specific race a retinopathy prematurity risk factor. Arch. Pediatr. Adolesc. Med. 159, 771–773.

    Article  PubMed  Google Scholar 

  99. Floyd, B. N., Leske, D. A., Wren, S. M., Mookadam, M., Fautsch, M. P. and Holmes, J. M. (2005) Differences between rat strains in models of retinopathy of prematurity. Mol. Vis. 11, 524–530.

    PubMed  CAS  Google Scholar 

  100. Van Wijngaarden, P., Coster, D. J., Brereton, H. M., Gibbins, I. L. and Williams, K. A. (2005) Strain-dependent differences in oxygen-induced retinopathy of prematurity in the inbred rats. Invest. Ophthalmol. Vis. Sci. 46, 1445–1452.

    Article  PubMed  Google Scholar 

  101. Shastry, B. S. (2007) Assessment of the contribution of insulin-like growth factor I receptor 3174 G → A polymorphism to the progression of advanced retinopathy of prematurity. Eur. J. Ophthalmol. 17, 950–953.

    PubMed  CAS  Google Scholar 

  102. Shastry, B. S. and Qu, X. (2007) Lack of association of the VEGF gene promoter (–634G → C and –460C → T) polymorphism and the risk of advanced retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 245, 741–743.

    Article  PubMed  CAS  Google Scholar 

  103. Balogh, A., Derzbach, L., Vannay, A. and Vasarhelyi, B. (2006) Lack of association between insulin-like growth factor I 3174G → A polymorphism and retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 244, 1035–1038.

    Article  PubMed  CAS  Google Scholar 

  104. Kwinta, P., Mitkowska, Z., Tomasik., T., Bik-Multanowski, M. and Pietrzyk, J. J. (2004) Vascular endothelial growth factor gene polymorphism and the risk of retinopathy of prematurity. Pediatr. Res. 56, 488.

    Article  Google Scholar 

  105. Kim, J. H., Yu, Y. S., Kim, J. and Park, S. S. (2002) Mutation of the Norrie disease gene in Korean ROP infants. Korean J. Ophthalmol. 16, 93–96.

    PubMed  Google Scholar 

  106. Dhingra, S., Shears, D. J., Blake, V., Stewart, H. and Patel, C. K. (2006) Advanced bilateral persistent fetal vasculature associated with a novel mutation in the Norrie gene. Br. J. Ophthalmol. 90, 1324–1325.

    Article  PubMed  CAS  Google Scholar 

  107. Black, G. C. M., Perveen, R., Bonshek, R., Cahill, M., Clayton-Smith, J., Lloyd, C. and McLeod, D. (1999) Coats’ disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis. Hum. Mol. Genet. 8, 2031–2035.

    Article  PubMed  CAS  Google Scholar 

  108. Takahashi-Yanaga, F. and Sasaguri, T. (2007) The Wnt/β-catenin signaling pathway as a target in drug discovery. J. Pharmacol. Sci. 104, 293–302.

    Article  PubMed  CAS  Google Scholar 

  109. Moon, R. T., Kohn, A. D., DeFerrari, G. V. and Kaykas, A. (2004) Wnt and β-catenin signaling: diseases and therapies. Nat. Rev. Genet. 5, 691–701.

    Article  PubMed  CAS  Google Scholar 

  110. Smallwood, P. M., Williams, J., Xu, Q., Leahy, D. J. and Nathans, J. (2007) Mutation analysis of norrin-frizzled 4 recognition. J. Biol. Chem. 282, 4057–4068.

    Article  PubMed  CAS  Google Scholar 

  111. Chen, J.-M., Ferec, C. and Cooper, D. N. (2006) A systematic analysis of disease-associated variants in the 3’ regulatory regions of human protein coding genes: general principles and overview. Hum. Genet. 120, 1–21.

    Article  PubMed  CAS  Google Scholar 

  112. Wong, P. M. C., Yuan, Q., Chen, H., Sultzer, B. M. and Chung, S.-W. (2001) A single point mutation at the 3’ untranslated region of Ran mRNA leads to profound changes in lipopolysaccharide endotoxin mediated responses. J. Biol. Chem. 276, 33129–33138.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang, W., Duan, S., Kistner, E. O., Bleibel, W. K., Huang, R. S., Clark, T. A., Chen, T. X., Schweitzer, A. C., Blume, J. E., Cox, N. J. and Dolan, M. E. (2008) Evaluation of genetic variation contributing to differences in gene expression between populations. Am. J. Hum. Genet. 82, 631–640.

    Article  PubMed  CAS  Google Scholar 

  114. Qin, M., Kondo, H., Tahira, T. and Hayashi, K. (2008) Moderate reduction of norrin signaling activity associated with the causative missense mutations identified in patients with familial exudative vitreoretinopathy. Hum. Genet. 122, 615–623.

    Article  PubMed  CAS  Google Scholar 

  115. Kato, M., Patel, M. S., Levasseur, R., Lobov, I., Chang, B.-H. J., Glass, D. A., Hartmann, C., Li, L., Hwang, T.-H., Brayton, C. F., Lang, R. A., Karsenty, G. and Chan, L. (2002) Cbfa1 – independent decrease in osteoblast proliferation, osteopenia and persistent embryonic eye vascularization in mice deficient in LRP5, a Wnt co-receptor. J. Cell Biol. 157, 303–314.

    Article  PubMed  CAS  Google Scholar 

  116. Xia, C. H., Liu, H., Cheung, D., Wang, M., Cheng, C., Du, X., Chang, B., Beutler, B. and Gong, X. (2008) A model for familial exudative vitreoretinopathy caused by LRP5 mutations. Hum. Mol. Genet. 17, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

My apologies to those whose work or original publications could not be cited in this short article because of space limitations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC 2003

About this protocol

Cite this protocol

Shastry, B.S. (2009). SNPs: Impact on Gene Function and Phenotype. In: Komar, A. (eds) Single Nucleotide Polymorphisms. Methods in Molecular Biology™, vol 578. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-411-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-411-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-410-4

  • Online ISBN: 978-1-60327-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics