Skip to main content

Cupric Ion Reducing Antioxidant Capacity Assay for Food Antioxidants: Vitamins, Polyphenolics, and Flavonoids in Food Extracts

  • Protocol
Advanced Protocols in Oxidative Stress I

Part of the book series: Methods In Molecular Biology ((MIMB,volume 477))

Abstract

Antioxidants are health beneficial compounds through their combat with reactive oxygen and nitrogen species and free radicals that may cause tissue damage leading to various diseases. This work reports the development of a simple and widely applicable antioxidant capacity index for dietary polyphenols, vitamins C and E, and plasma antioxidants utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic oxidizing agent. This novel method based on an electron-transfer mechanism was named by our research group as ‘cupric reducing antioxidant capacity’, abbreviated as the CUPRAC method. The method is comprised of mixing the antioxidant solution with aqueous copper(II) chloride, alcoholic neocuproine, and ammonium acetate aqueous buffer at pH 7, and subsequently measuring the developed absorbance at 450 nm after 30 min. Since the color development is fast for compounds like ascorbic acid, gallic acid, and quercetin but slow for naringin and naringenin, the latter compounds are assayed after incubation at 50°C on a water bath for 20 min. The flavonoid glycosides are hydrolyzed to their corresponding aglycones by refluxing in 1.2 m HCl-containing 50% MeOH so as to exert maximal reducing power towards Cu(II)-Nc. The CUPRAC antioxidant capacities of synthetic mixtures are equal to the sum of individual capacities of antioxidant constituents, indicating lack of chemical deviations from Beer’s law. Tests on antioxidant polyphenols demonstrate that the highest CUPRAC capacities are observed for epicatechin gallate, epigallocatechin gallate, quercetin, fisetin, epigallocatechin, catechin, and caffeic acid in this order, in accord with the number and position of the –OH groups as well the conjugation level of the molecule. The parallelism of the linear calibration curves of pure antioxidants in water and in a given complex matrix (plant extract) demonstrates that there are no chemical interactions of interferent nature among the solution constituents, and that the antioxidant capacities of the tested antioxidants are additive, in conformity to the Beer’s law. For individual determination of ascorbic acid in fruit juices with a modified CUPRAC procedure, flavonoids are pre-extracted as their La(III) complexes prior to assay. For apricot extracts, a modified version of the CUPRAC assay based on anion exchange separation at pH 3 is applied, since sulfited-dried sample extracts contain the hydrosulfite anion interfering with the determination. For herbal tea infusions, the standard CUPRAC protocol is applied. The CUPRAC reagent is stable, easily accessible, low-cost, and is sensitive toward thiol-type antioxidants unlike FRAP. The reaction is carried out at nearly physiological pH as opposed to the acidic pH of FRAP or to the alkaline pH of Folin methods, constituting a basic advantage for the realistic assay of biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apak, R., Güçlü, K., Özyürek, M., and Karademir, S. E. (2004) A novel total antioxidant capacity index for dietary polyphenols, vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52, 7970–7981.

    Article  CAS  PubMed  Google Scholar 

  2. Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E., and Altun, M. (2005) total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: The CUPRAC method. Free Radic. Res. 39, 949–961.

    Article  CAS  PubMed  Google Scholar 

  3. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektas¸og˘lu, B., Berker, K. I., and Özyurt, D. (2007) Comparative evaluation of total antioxidant capacity assays applied to phenolic compounds, and the CUPRAC assay. Molecules 12, 1496–1547.

    Article  CAS  PubMed  Google Scholar 

  4. Tütem, E., Apak, R., and Baykut, F. (1991) Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper(II). Analyst 116, 89–94.

    Article  Google Scholar 

  5. Özyürek, M., Güçlü, K., Bektas¸og˘lu, B., and Apak, R. (2007) Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractive separation of flavonoids-La(III) complexes. Anal. Chim. Acta 588, 88–95.

    Article  PubMed  Google Scholar 

  6. Association of Official Analytical Chemists (1990) K. Helrick, Official Methods of Analysis (15th edn.), AOAC, Food Composition, Additives, Natural Contaminants, Washington, DC, 2, p. 1059.

    Google Scholar 

  7. Lykkesfeldt, J. (2000) Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris(2-carboxyethyl]phosphine hydrochloride. Anal. Biochem. 282, 89–93.

    Article  CAS  PubMed  Google Scholar 

  8. Güçlü, K., Altun, M., Özyürek, M., Karademir, S. E., and Apak, R. (2006) Antioxidant capacity of fresh, sun- and sulfited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and Folin methods. Int. J. Food Sci. Technol. 41, 76–85.

    Article  Google Scholar 

  9. Garcia-Alonso, M., Pascual-Teresa, S., Santos-Buelga, C., and Rivas-Gonzalo, J. C. (2004) Evaluation of the antioxidant properties of fruits. Food Chem. 84, 13–18.

    Article  CAS  Google Scholar 

  10. Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E., and Erc¸ag˘, E. (2006) The cupric ion reducing antioxidant capacity (CUPRAC) and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 57, 292–304.

    Article  CAS  PubMed  Google Scholar 

  11. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  12. Singleton, V. L., Orthofer, R., and Lamuela-Raventos, R. M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299, 152–178.

    Article  CAS  Google Scholar 

  13. Singleton, V. L., and Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic. 16, 144–158.

    CAS  Google Scholar 

  14. Bors, W., Hellers, W., Michel, C., and Saran, M. (1990) Radical Chemistry of Flavonoid Antioxidants. In: I. Emerit, L. Packer and C. Auclair (Eds.), Antioxidants in Therapy and Preventive Medicine, Plenum Press, New York, 1, 165–170.

    Google Scholar 

  15. Rice-Evans, C. A., Miller, N. J., and Paganga, G. (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152–159.

    Article  Google Scholar 

  16. Castelluccio, C., Bolwell, G. P., Gerrish C., and Rice-Evans, C. A. (1996) Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant. Biochem. J. 316, 691–694.

    CAS  PubMed  Google Scholar 

  17. Kanski, J., Aksenova, M., Stoyanova, A., and Butterfield, D. A. (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J. Nutr. Biochem. 13, 273–281.

    Article  CAS  PubMed  Google Scholar 

  18. Tepe, B., Eminagaoglu, O., Akpulat, H. A., and Aydin, E. (2007) Antioxidant potentials of rosmarinic acid levels of methanolic extracts of Salyvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chem. 100, 985–989.

    Article  CAS  Google Scholar 

  19. Chen, J. H., and Ho, C. -T. (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45, 2374–2378.

    Article  CAS  Google Scholar 

  20. Cervellati, R., Renzulli, C., Guerra, M. C., and Speroni, E. (2002) Evaluation of antioxidant activity of some natural polyphenolic compounds using the briggs-rauscher reaction method. J. Agric. Food Chem. 50, 7504–7509.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, D. -O., and Lee, C. Y. (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Critic. Rev. Food Sci. Nutr. 44, 253–273.

    Article  CAS  Google Scholar 

  22. Miliauskas, G., van Beek, T. A., Venskutonis, P. R., Linssen, J. P. H., and de Waard, P. (2004) Antioxidative activity of Geranium Macrorrhizum. Eur. Food Res. Technol. 218, 253–261.

    Article  CAS  Google Scholar 

  23. Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., and Saso, L. (2005) Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim. Biophys. Acta. 1721, 174–184.

    CAS  PubMed  Google Scholar 

  24. Santos-Buelga, C., and Scalbert, A. (2000) Proanthocyanidins and tannin-like compounds: nature, occurence, dietary intake and effects on nutrition and health (review). J. Sci. Food Agric. 80, 1094–1117.

    Article  CAS  Google Scholar 

  25. Asma, B. M. (2000) Kayisi yetistiriciligi (Apricot Growing). Malatya, Turkey: Evin Publishers.

    Google Scholar 

  26. Halvorsen, B. L., Holte, K., Myhrstad, M. C. W., Barikmo, I., Hvattum, E., Remberg, S. V., et al. (2002). A systematic screening of total antioxidants in dietary plants. J. Nutr. 132, 461–471.

    CAS  PubMed  Google Scholar 

  27. Tütem, E., and Apak, R. (1991) Simultaneous spectrophotometric determination of cystine and cysteine in amino acid mixtures using copper(II)-neocuproine reagent. Anal. Chim. Acta 255, 121–125.

    Article  Google Scholar 

  28. Benzie, I. F. F., and Strain, J. J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76.

    Article  CAS  PubMed  Google Scholar 

  29. Özçelik, B., Lee, J. H., and Min, D. B. (2003) Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J. Food Sci. 68, 487–490.

    Article  Google Scholar 

  30. Özyürek, M., Çelik, S. E., Berker, K. I., Güçlü, K., Tor, I., and Apak, R. (2007) Sensitivity enhancement of CUPRAC and iron(III)-phenanthroline antioxidant assays by preconcentration of colored reaction products on a weakly acidic cation exchanger. React. Func. Polym. 67, 1478–1486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Apak, R., Güçlü, K., Özyürek, M., Bektas¸oğlu, B., Bener, M. (2008). Cupric Ion Reducing Antioxidant Capacity Assay for Food Antioxidants: Vitamins, Polyphenolics, and Flavonoids in Food Extracts. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress I. Methods In Molecular Biology, vol 477. Humana Press. https://doi.org/10.1007/978-1-60327-517-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-517-0_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-218-6

  • Online ISBN: 978-1-60327-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics