Skip to main content

Paraoxonase 1 Interactions with HDL, Antioxidants and Macrophages Regulate Atherogenesis – A Protective Role for HDL Phospholipids

  • Conference paper
  • First Online:
Paraoxonases in Inflammation, Infection, and Toxicology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 660))

Abstract

Macrophage cholesterol accumulation and foam cell formation is the hallmark of early atherogenesis. In addition to macrophages, at least three more major players regulate atherosclerosis development; paraoxonase 1 (PON1), antioxidants, and HDL. PON1 is an HDL-associated lactonase which posses antioxidant and anti-atherogenic properties. PON1 protects against macrophage-mediated LDL oxidation, and increases HDL binding to macrophages which, in turn, stimulates HDL’s ability to promote cholesterol efflux. These two major anti-atherogenic properties of HDL (and of PON1) require, at least in part, macrophage binding sites for HDL-associated PON1. Indeed, PON1, as well as HDL-associated PON1, specifically binds to macrophages, leading to anti-atherogenic effects. Macrophage PON1 binding sites may thus be a target for future cardioprotection therapy. Studying the interactions among PON1, antioxidants, and macrophages can thus assist in achieving appropriate treatment and prevention of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assmann G and Nofer JR (2003) Atheroprotective effects of high-density lipoproteins. Annu Rev Med 54:321–341

    Article  CAS  PubMed  Google Scholar 

  • Aviram M. (1993) Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis98:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Aviram M (1996) Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Eur J Clin Chem Clin Biochem 34:599–608.

    CAS  PubMed  Google Scholar 

  • Aviram M, Hardak E, Vaya J et al. (2000) Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 101:2510–2517.

    CAS  PubMed  Google Scholar 

  • Aviram M, Rosenblat M (2004) Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med 37:1304–1316.

    Article  CAS  PubMed  Google Scholar 

  • Aviram M, Rosenblat M, Bisgaier C et al. (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for Paraoxonase. J Clin Invest 101:1581–1590.

    Article  CAS  PubMed  Google Scholar 

  • Boemi M, Leviev I, Sirolla C et al. (2001) Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives: influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis 155:229–235

    Article  CAS  PubMed  Google Scholar 

  • Braunwald EShattuck Lecture (1997) Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med 337:1360–1369.

    Article  Google Scholar 

  • Breslow JL (1997) Cardiovascular disease burden increases, NIH funding decreases. Nat Med 3:600–601.

    Article  CAS  PubMed  Google Scholar 

  • Castro GR, Fielding CJ. (1988) Early incorporation of cell derived cholesterol into pre-beta- migrating high-density lipoprotein. Biochemistry 27: 25–29.

    Article  CAS  PubMed  Google Scholar 

  • Davidson WS, Lund-Katz S, Johnson WJ et al. (1994) The influence of apolipoprotein structure on the efflux of cellular free cholesterol to high density lipoprotein. J Biol Chem 269:22975–22982.

    CAS  PubMed  Google Scholar 

  • W.J. de Villiers, E.J. Smart (1999) Macrophage scavenger receptors and foam cell formation J Leukoc Biol 66:740–746.

    PubMed  Google Scholar 

  • Deakin S, Leviev I, Gomaraschi M et al.(2002) Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J Biol Chem 277:4301–4308.

    Article  CAS  PubMed  Google Scholar 

  • Efrat M, Aviram M (2008) Macrophage paraoxonase 1 (PON1) binding sites. Biochem Biophys Res Commun 376:105–110.

    Article  CAS  PubMed  Google Scholar 

  • Efrat M, Rosenblat M, Mahmood S et al. (2008) Di-oleoyl phosphatidylcholine (PC-18:1) stimulates paraoxonase 1 (PON1) enzymatic and biological activities: In vitro and in vivo studies. Atherosclerosis. [Epub ahead of print]

    Google Scholar 

  • Esteva O, Baudet MF, Lasserre M et al. (1986) Influence of the fatty acid composition of high-density lipoprotein phospholipids on the cholesterol efflux from cultured fibroblasts. Biochim Biophys Acta 875:174–182.

    CAS  PubMed  Google Scholar 

  • Faggiotto A, Ross R. (1984) Studies of hypercholesterolemia in the nonhuman primate, I: changes that lead to fatty streak formation. Arteriosclerosis 4:323–340.

    CAS  PubMed  Google Scholar 

  • Fowler S, Shio H, Haley NJ (1979) Characterization of lipid-laden aortic cells from cholesterol-fed rabbits, IV: investigation of macrophage-like properties of aortic cell populations. Lab Invest 41:372–378.

    CAS  PubMed  Google Scholar 

  • Fuhrman B, Volkova N, Aviram M. (2002) Oxidative stress increases the expression of the CD36 scavenger receptor and the cellular uptake of oxidized low-density lipoprotein in macrophages from atherosclerotic mice: protective role of antioxidants and of paraoxonase. Atherosclarosis161:307–316.

    Article  CAS  Google Scholar 

  • 31Gaidukov L, Tawfik D (2005) High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry. 44:11843–11854.

    Article  CAS  PubMed  Google Scholar 

  • Gerrity RG (1981) The role of the monocyte in atherogenesis, II: migration of foam cells from atherosclerotic lesions. Am J Pathol 103:191–200

    CAS  PubMed  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L et al. (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419.

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich S(1999). Monocyte CD14: a multifunctional receptor engaged in apoptosis from both sides. J Leukoc Biol 65:737–743

    CAS  PubMed  Google Scholar 

  • Heinecke J (1997) Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipido. l8:268–274

    Article  Google Scholar 

  • Huber SA, Sakkinen P, Conze D et al. (1999) Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 19:2364–2367

    CAS  PubMed  Google Scholar 

  • Idem M (1976) The pathogenesis of atherosclerosis. N Engl J Med 295:369–377, 420–425.

    Google Scholar 

  • James, R, Blatter Garin M, Calabresi L et al. (1998) Modulated serum activities and concentrations of paraoxonase in high density lipoprotein deficiency states. Atherosclerosis. 139:77–82

    Article  CAS  PubMed  Google Scholar 

  • James R, Deakin S (2004) The importance of high-density lipoproteins for paraoxonase-1 secretion, stability, and activity. Free Radic Biol Med 37:1986–1994

    Article  CAS  PubMed  Google Scholar 

  • Jian B, de la Llera-Moya M, Royer L et al. (1997) Modification of the cholesterol efflux properties of human serum by enrichment with phospholipid. J Lipid Res 38:734–744

    CAS  PubMed  Google Scholar 

  • Kakafika AI, Xenofontos S, Tsimihodimos V (2003) The PON1 M55L gene polymorphism is associated with reduced HDL-associated PAF-AH activity. J Lipid Res 44:1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Kiener PA, Davies PM, Starling GC et al. (1997) Differential induction of apoptosis by Fas-Fas ligand interaction in human monocytes and macrophages. J Exp Med 185:1511–1516

    Article  CAS  PubMed  Google Scholar 

  • Kisilevsky R, Subrahmanyan L (1992) Serum amyloid A changes high density lipoprotein’s cellular affinity. A clue to serum amyloid A‘s principal function. Lab Invest 66:778–785

    CAS  PubMed  Google Scholar 

  • Krieger M (1998) The “best” of cholesterols, the “worst” of cholesterols: a tale of two receptors. Proc Natl Acad Sci USA 14:4077–4080.

    Article  Google Scholar 

  • Kudchodkar B, Lacko A, Dory L, Fungwe T (2000) Dietary fat modulates serum paraoxonase 1 activity in rats. Nutr 130:2427–2433

    CAS  Google Scholar 

  • La Du B, Adkins S, Kuo C et al. (1993) Studies on human serum paraoxonase/ arylesterase. Chem Biol Interact 87:25–34.

    Article  PubMed  Google Scholar 

  • Liu Y, Hulten LM, Wiklund O (1997) Macrophages isolated from human atherosclerotic plaques produce IL-8, and oxysterols may have a regulatory function for IL-8 production. Arterioscler Thromb Vasc Biol 17:317–323

    CAS  PubMed  Google Scholar 

  • Mackness M, Boullier H, Hennuyer M et al. (2000) Paraoxonase activity is reduced by a proatherogenic diet in rabbits. Biochem Biophys Res Commun 269:232–236.

    Article  CAS  PubMed  Google Scholar 

  • Mackness B, Davies G, Turkie W et al. (2001) Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 211:451–457

    Google Scholar 

  • Mackness B, Hunt R, Durrington PN (1997) Increased immunolocalization of paraoxonase, clusterin, and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17:1233–1238.

    CAS  PubMed  Google Scholar 

  • Mackness M, Mackness B, Durrington P et al. (1996) Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 7:69–76.

    Article  CAS  PubMed  Google Scholar 

  • Nakata A, Nakagawa Y, Nishida M et al. (1999) CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipidladen macrophages in human atherosclerotic aorta. Arterioscler Thromb Vasc Biol 19:1333–1339.

    CAS  PubMed  Google Scholar 

  • Napoli C, D’Armiento F, Mancini F et al. (1997) Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia: intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 100:2680–2690.

    Article  CAS  PubMed  Google Scholar 

  • National Cholesterol Education Program. (1993) Second report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). Bethesda, Md.: National Heart, Lung, and Blood Institute. (NIH publication no. 93-3095.)

    Google Scholar 

  • Navab M, Ananthramaiah GM, Reddy ST et al. (2004) The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 45: 993–1007

    Article  CAS  PubMed  Google Scholar 

  • Nguyen S, Sok D(2003) Beneficial effect of oleoylated lipids on paraoxonase 1: protection against oxidative inactivation and stabilization. Biochem J 15375:275–285.

    Article  Google Scholar 

  • Nguyen SD, Sok DE (2006) Preferable stimulation of PON1 arylesterase activity by phosphatidylcholines with unsaturated acyl chains or oxidized acyl chains at sn-2 position. Biochim Biophys Acta 1758:499–508.

    Article  CAS  PubMed  Google Scholar 

  • Nicholls SJ et al. (2005) Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111: 1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Oda, M, Bielicki J, Berger T et al. (2002) Cysteine substitutions in apolipoprotein A-I primary structure modulate paraoxonase activity. Biochemistry 40:1710–1718

    Article  Google Scholar 

  • Pinderski Oslund L, Hedrick C, Hagenbaugh A et al. (1999) Interleukin-10 blocks atherosclerosis events in vivo and in vitro. Arterioscler Thromb Vasc Biol 19:2847–2853

    CAS  PubMed  Google Scholar 

  • Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507.

    Article  CAS  PubMed  Google Scholar 

  • Rao C, Zang E, Reddy B (1993) Effect of high fat corn oil, olive oil and fish oil on phospholipid fatty acid composition in male F344 rats. Lipids 28:441–447

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo L, Hernandez A, Lopez-Caballero J (2001) Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chem Biol Interact 137:123–137.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblat M, Vaya J, Shih D et al.(2005) Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclarosis. 179:69–77.

    Article  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis — an update. N Engl J Med 314:488–500.

    Article  CAS  PubMed  Google Scholar 

  • Ross R (1993) Atherosclerosis: defense mechanisms gone awry. Am J Pathol 143:987–1002

    CAS  PubMed  Google Scholar 

  • Ross R, Glomset J (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339.

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg O, Shih DM, Aviram M (2003) Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation. Arterioscler Thromb Vasc Biol 23:461–467.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Gutierrez V, Molina M, Vazquez C (1990) Comparative effects of feeding different fats on fatty acid composition of major individual phospholipids of rat hearts. Ann Nutr Metab 34:350–358

    Article  CAS  PubMed  Google Scholar 

  • Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389.

    Google Scholar 

  • Schaffner T, Taylor K, Bartucci E et al. (1980) Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages. Am J Pathol 100:57–80.

    CAS  PubMed  Google Scholar 

  • Schmitz G, Robenek H, Lohmann U, Assmann G(1985) Interaction of HDLs with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of HDLs by macrophages. EMBO J 4:613–622.

    CAS  PubMed  Google Scholar 

  • Schmitz G, Schambeck C (2006) Molecular defects in the ABCA1 pathway affect platelet function. Pathophysiol Haemost Thromb 35:166–174.

    Article  PubMed  Google Scholar 

  • Shih D, Gu L, Xia Y et al (1998) Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394:284–287.

    Article  CAS  PubMed  Google Scholar 

  • Shih D, Xia Y, Miller E et al.(2001) Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem 275:7527–17535

    Google Scholar 

  • Shiner M, Fuhrman B, Aviram M (2007) Macrophage paraoxonase 2 (PON2) expression is upregulated by unesterified cholesterol through activation of the phosphatidylinositol 3-kinase (PI3K) pathway. Biol Chem 388:1353–1358.

    Article  CAS  PubMed  Google Scholar 

  • Silva E, Kong M, Han Z (1999) Metabolic and genetic determinants of HDL metabolism and hepatic lipase activity in normolipidemic females. J Lipid Res 40:1211–1221.

    Google Scholar 

  • Small DM (1992) Plasma lipoprotein and coronary artery disease, (Kreisberg R.A, Segrest J.P (eds.), 1st ed., Boston: Blackwell scientific publications, chapter 3, 57–84

    Google Scholar 

  • Sola R, Motta C, Maille M et al. (1993) Dietary monounsaturated fatty acids enhance cholesterol efflux from human fibroblasts. Relation to fluidity, phospholipid fatty acid composition, overall composition, and size of HDL3. Arterioscler Thromb 13:958–966.

    CAS  PubMed  Google Scholar 

  • Sorenson RC, Bisgaier CL, Aviram M (1999) Human serum paraoxonase/ arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids; apolipoprotein A 1 stabilizes activity. Arterioscler Thromb Vasc Biol 19:2214–2225.

    CAS  PubMed  Google Scholar 

  • Stary H, Chandler A, Glagov S (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478.

    CAS  PubMed  Google Scholar 

  • Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K (2001) Development and differentiation of macrophages and related cells: historic review and current concepts. J Clin Exp Hematopathol 41:1–32

    Article  Google Scholar 

  • Tavori H, Aviram, M, Khatib S et al. (2008) Human carotid atherosclerotic plaque increases oxidative stress of macrophages and LDL, whereas Paraoxonase 1 (PON1) decreases such atherogenic effects. Free Radic Biol Med [In Review]

    Google Scholar 

  • Tavori H, Khatib S, Aviram M et al. (2008) Characterization of the PON1 active site using modeling simulation, in relation to PON1 lactonase activity. Bioorg Med Chem 16:7504–7509.

    Article  CAS  PubMed  Google Scholar 

  • Tward A, Xia Y, Wang X, (2002) Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 106:484–490

    Article  CAS  PubMed  Google Scholar 

  • van Furth R. (1989) Origin and turnover of monocytes and macrophages. In: Iverson O (ed) Cell kinetics of inflammatory reaction. Berlin: Springer 125–150

    Google Scholar 

  • Witztum J, Steinberg, D (1991) Role of oxidized low density lipoprotein in atherogenesis Clin Invest 88:1785–1792.

    Article  CAS  Google Scholar 

  • Yaqoob P, Sherrington E, Jeffery N et al. (1995) Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol 27:297–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Efrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Efrat, M., Aviram, M. (2010). Paraoxonase 1 Interactions with HDL, Antioxidants and Macrophages Regulate Atherogenesis – A Protective Role for HDL Phospholipids. In: Reddy, S. (eds) Paraoxonases in Inflammation, Infection, and Toxicology. Advances in Experimental Medicine and Biology, vol 660. Humana Press. https://doi.org/10.1007/978-1-60761-350-3_14

Download citation

Publish with us

Policies and ethics