Skip to main content

Assessment of Anti-Metastatic Effects of Anticoagulant and Antiplatelet Agents Using Animal Models of Experimental Lung Metastasis

  • Protocol
  • First Online:
Anticoagulants, Antiplatelets, and Thrombolytics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 663))

Abstract

It is well established that the blood coagulation system is activated in cancer. In addition, there is considerable evidence to suggest that clotting activation plays an important role in the biology of malignant tumors, including the process of blood-borne metastasis. For many years our laboratory has used experimental models of lung metastasis to study the events that follow the introduction of procoagulant-bearing tumor cells into circulating blood. This chapter focuses on the basic methods involved in assessing the anti-metastatic effects of anticoagulants and anti-platelet agents using rodent models of experimental metastasis. In addition, it summarizes our experience with these models, which collectively suggests that intravascular coagulation and platelet activation are a necessary prelude to lung tumor formation and that interruption of coagulation pathways or platelet aggregation may be an effective anti-metastatic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Cicco, M. (2004) The prothrombotic state in cancer: pathogenic mechanisms Crit Rev Oncol Hematol 50, 187–96.

    Article  PubMed  Google Scholar 

  2. Hillen, H.F. (2000) Thrombosis in cancer patients Ann Oncol (Suppl. 3) 11, 273–76.

    Google Scholar 

  3. Buller, H.R., van Doormaal, F.F., van Sluis, G.L., and Kamphuisen, P.W. (2007) Cancer and thrombosis: from molecular mechanisms to clinical presentations J Thromb Haemost 5(Suppl.1), 246–54.

    Article  PubMed  CAS  Google Scholar 

  4. Trousseau, A. Phlegmasia alba dolens. In: Baillier, J., ed. Clinique de l’Hotel-Dieu de Paris, 2nd edition. London: New Sydenham Society;1865:654–6.

    Google Scholar 

  5. Varki, A. (2007) Trousseau’s syndrome: multiple definitions and multiple mechanisms Blood 110, 723–9.

    Article  Google Scholar 

  6. Langer, F., Spath, B., Haubold, K., et al. (2008) Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation Ann Haematol 87, 451–7.

    Article  CAS  Google Scholar 

  7. Sun, N., McAfee, W., Hum, G., and Weiner J.M. (1979) Hemostatic abnormalities in malignancy, a prospective study of one hundred eight patients. Part 1. Coagulation studies Am J Clin Pathol 71, 10–6.

    PubMed  CAS  Google Scholar 

  8. Kies, M.S., Posch, J.J., Giolama, J.P., and Rubin, R.N. (1980) Hemostatic function in cancer patients Cancer 46, 831–7.

    Article  PubMed  CAS  Google Scholar 

  9. Edwards, R.L., Rickles, F.R., Moritz, T.E. et al. (1987) Abnormalities of blood coagulation tests in patients with cancer Am J Clin Pathol 88, 596–602.

    PubMed  CAS  Google Scholar 

  10. Davis, R.B., Theologides, A., and Kennedy, B.J. (1969) Comparative studies of blood coagulation and platelet aggregation in patients with cancer and non-malignant diseases Ann Int Med 71, 67–80.

    PubMed  CAS  Google Scholar 

  11. Francis, J.L., and Amirkhosravi, A. (2002) Effect of antihemostatic agents on experimental tumor dissemination Semin Thromb Hemost 28, 29–38.

    Article  PubMed  CAS  Google Scholar 

  12. Rickles, F.R., Edwards, R.L., Barb, C., and Cronlund, M. (1983) Abnormalities of blood coagulation in patients with cancer: fibrinopeptide A generation and tumor growth Cancer 51, 301–7.

    Article  PubMed  CAS  Google Scholar 

  13. Francis, J.L., Francis, D.A., and Gunathilagan, G.J. (1994) Assessment of hypercoagulability in patients with cancer using the sonoclot analyzer and thromboelastography Thromb Res 74, 335–46.

    Article  PubMed  CAS  Google Scholar 

  14. Wojtukiewicz, M.Z., Sierko, E., Klement, P., and Rak, J. (2001) The hemostatic system and angiogenesis in malignancy Neoplasia 3, 371–84.

    Article  PubMed  CAS  Google Scholar 

  15. Bogdanov, V.Y., Balasubramanian, V., Hathcock, J., et al. (2003) Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein Nat Med 9, 458–62.

    Article  PubMed  CAS  Google Scholar 

  16. Giesen, P.L., Rauch, U., Bohrmann, B., et al. (1999) Blood borne tissue factor: another view of thrombosis Proc Natl Acad Sci USA 96, 2311–5.

    Article  PubMed  CAS  Google Scholar 

  17. Hron, G., Kollars, M., Weber, H., et al. (2007) Tissue factor positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer Thromb Haemost 97, 119–23.

    PubMed  CAS  Google Scholar 

  18. Langer, F., Chun, F.K., Amirkhosravi, A., et al. (2007) Plasma tissue factor antigen in localized prostate cancer: distribution, clinical significance and correlation with haemostatic activation markers Thromb Haemost 97, 464–70.

    PubMed  CAS  Google Scholar 

  19. Del conde, I., Bharwani, L.D., Dietzen, D.J., et al. (2006) Microvesicle-associated tissue factor and Trousseau’s syndrome J Thromb Haemost 5, 70–74.

    Article  Google Scholar 

  20. Davila, M., Amirkhosravi, A., Coll, E., Desai, H., Robles, L., Colon, J., Baker, C.H., and Francis, J.L. (2008) Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation Thromb Haemost 6, 1517–24.

    Article  CAS  Google Scholar 

  21. Bromberg, M.E., Konigsberg, W., Madison, J., et al. (1995) Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation Proc Natl Acad Sci USA 92, 8205–9.

    Article  PubMed  CAS  Google Scholar 

  22. Mueller, B.M., and Ruf, W. (1998) Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis J Clin Invest 101, 1372–8.

    Article  PubMed  CAS  Google Scholar 

  23. Tsopanoglou, N.E., and Maragoudakis, M.E. (1999) On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by upregulation of its receptors J Biol Chem 274, 23969–76.

    Article  PubMed  CAS  Google Scholar 

  24. Tsopanoglou, N.E., and Maragoudakis. M.E. (2004) Role of thrombin in angiogenesis and tumor progression Semin Thromb Hemost 30, 63–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lewis, G.P. (1965) Method using ortho-tolidine for the quantitative determination of hemoglobin in serum and urine J Clin Pathol 18, 235–9.

    Article  PubMed  CAS  Google Scholar 

  26. Amirkhosravi, M., and Francis, J.L. (1993) Procoagulant effects of the MC28 fibrosarcoma cell line in vitro and in vivo Br J Haematol 85, 736–44.

    Article  PubMed  CAS  Google Scholar 

  27. Edwards, R.L., Silver, J., and Rickles, F.R. (1993) Human tumor procoagulants: Registry of the Subcommittee of Haemostasis of the Scientific and Standardization Committee, International Society on Thrombosis and Haemostasis Thromb Haemost 69, 205–13.

    PubMed  CAS  Google Scholar 

  28. Adamson, A.S., Luckert, P., Pollard, M., et al. (1994) Procoagulant activity may be a marker of the malignant phenotype in experimental prostate cancer Br J Cancer 69, 286–90.

    Article  PubMed  CAS  Google Scholar 

  29. Amirkhosravi, M., and Francis, J.L. (1995) Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation Thromb Haemost 73, 59–65.

    PubMed  CAS  Google Scholar 

  30. McCulloch, P., and George, W.D. (1987) Warfarin inhibition of metastasis: the role of anticoagulation Br J Surg 74, 879–83.

    Article  PubMed  CAS  Google Scholar 

  31. Palumbo, J.S., and Degen, J.L. (2001) Fibrinogen and tumor cell metastasis Hemostasis 31(Suppl 1), 11–15.

    CAS  Google Scholar 

  32. Mousa, S.A., Linhardt, R., Francis, J.L., and Amirkhosravi, A. (2006) Anti-metastatic effect of a non-anticoagulant low-molecular weight heparin versus the standard low-molecular-weight heparin, enoxaparin Thromb Haemost 96, 816–21.

    PubMed  CAS  Google Scholar 

  33. Mousa, S.A., and Mohamed, S. (2004) Anti-angiogenic mechanisms and efficacy of the low molecular weight heparin, tinzaparin: anti-cancer efficacy Oncol Rep 12, 683–8.

    PubMed  CAS  Google Scholar 

  34. Mousa, S.A., and Mohamed, S. (2004) Inhibition of endothelial cell tube formation by the low molecular weight heparin tinzaparin, is mediated by tissue factor pathway inhibitor Thromb Haemost 92, 627–33.

    PubMed  CAS  Google Scholar 

  35. Lupu, C., Poulson, E., Toque feuil, S., et al. (1999) Cellular effects of heparin on the production and release of tissue factor pathway inhibitor in human endothelial cells in culture Arterioscler Thromb Vasc Biol 19, 2251–62.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, Y.J., Borsig, L., Varki, N.M., et al. (1998) P-selectin deficiency attenuates tumor growth and metastasis Proc Natl Acad Sci USA 95, 9325–30.

    Article  PubMed  CAS  Google Scholar 

  37. Ludwig, R.J., Boehme, B., Podda, M., et al. (2004) Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis Cancer Res 64, 2743–50.

    Article  PubMed  CAS  Google Scholar 

  38. Nakamori, S., Kameyama, M., Imaoka, S., et al. (1993) Increased expression of Sialyl Lewis X antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study Cancer Res 53, 32–36.

    Google Scholar 

  39. Nakayama, T., Watanabe, M., Katsumata, T., et al. (1995) Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma Cancer 75, 2051–6.

    Article  PubMed  CAS  Google Scholar 

  40. Jorgensen, T., Berner, A., Kaalhus, O., et al. (1995) Upregulation of the oligosaccharide sialyl Lewis X: a new prognostic parameter in metastatic prostate cancer Cancer Res 55, 1817–9.

    PubMed  CAS  Google Scholar 

  41. Morrow, D.A., Murphy, S.A., McCabe, C.H., et al. (2005) Potent inhibition of thrombin with a monoclonal antibody against tissue factor (Sunol-cH36): results of the PROXIMATE-TIMI 27 trial Eur Heart 26, 682–8.

    Article  CAS  Google Scholar 

  42. Snyder, L.A., Rudnick, K.A., Tawadros, R., et al. (2007) Expression of human tissue factor under the control of the mouse tissue factor promoter mediates normal hemostasis in knock-in mice J Thromb Haemost 6, 306–14.

    PubMed  Google Scholar 

  43. Gemmell, C.H., Broze, G.J., Turitto, V.T., and Nemerson, Y. (1990) Utilization of a continuous flow reactor to study the lipoprotein–associated coagulation inhibitor (LACI) that inhibits tissue factor Blood 76, 2266–71.

    PubMed  CAS  Google Scholar 

  44. Bajaj, M.S., Birktoft, J.J., Steer, S.A., and Bajaj, S.P. (2001) Structure and biology of tissue factor pathway inhibitor Thromb Haemost, 86, 959–72.

    PubMed  CAS  Google Scholar 

  45. Rapp, J.H., Pan, X.M., Ghermay, A., et al. (1997) A blinded trial of local recombinant tissue factor pathway inhibitor versus either local or systemic heparin in a vein bypass model J Vasc Surg 25, 726–9.

    Article  PubMed  CAS  Google Scholar 

  46. Amirkhosravi, A., Meyer, T., Chang, J.Y., et al. (2002) Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma Thromb Haemost 87, 930–6.

    PubMed  CAS  Google Scholar 

  47. Fidler, I.J. (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5 deoxyuridine J Natl Cancer Inst 45, 773–82.

    PubMed  CAS  Google Scholar 

  48. Hembrough, T.A., Swartz, G.M., Papathanassiu, A., et al. (2003) Tissue factor/factor VIIa inhibitors block angiogenesis and tumor growth through a nonhemostatic mechanism Cancer Res 63, 2997–3000.

    PubMed  CAS  Google Scholar 

  49. Warren, B.A. The micro-injury hypothesis and metastasis. In: Honn, K.V., and Sloane, B.F., eds. Hemostatic Mechanisms and Metastasis.Boston: M. Nijhoff;1984:56.

    Google Scholar 

  50. Nieswandt. B., Hafner, M., Echtenacher, B., et al. (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets Cancer Res 59, 1295.

    PubMed  CAS  Google Scholar 

  51. Lerner, W.A., Pearlstein, E., Ambrogio, C., et al. (1983) A new mechanism for tumor-induced platelet aggregation: comparisons with mechanisms shared by other tumors with possible pharmacologic strategy towards prevention of metastases Int J Cancer 31, 463–9.

    Article  PubMed  CAS  Google Scholar 

  52. Gasic, G.J., Gasic, T.B., and Stewart, C.C. (1968) Antimetastatic effects associated with platelet reduction Proc Natl Acad Sci USA 61, 46–52.

    Article  PubMed  CAS  Google Scholar 

  53. Gasic, G.J., Gasic, T.B., and Murphy, S. (1972) Anti-metastatic effect of aspirin Lancet 2, 934.

    Google Scholar 

  54. Tzanakakis, G.N., Agarwal, K.C., and Vezeridis, M.P. (1993) Prevention of human pancreatic cancer cell-induced hepatic metastasis in nude mice by dipyridamole and its analog RA-233 Cancer 71, 2466–71.

    Article  PubMed  CAS  Google Scholar 

  55. Karpatkin, S., Pearlstein, E., Ambrogio, C., et al. (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo J Clin Invest 81, 1012–9.

    Article  PubMed  CAS  Google Scholar 

  56. Amirkhosravi, A., Amaya, M., Siddiqui, F., et al. (1999) Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis Platelets 10, 285–92.

    Article  PubMed  CAS  Google Scholar 

  57. Amirkhosravi, A., Mousa, S.A., Amaya, M., et al. (2003) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by oral GpIIb/IIIa antagonist XV454 Thromb Haemost 90, 549–54.

    PubMed  CAS  Google Scholar 

  58. Mousa, S.A., Forsythe, M., Bozarth, J., et al. (1998) XV454, a novel non-peptide small molecule platelet GpIIb/IIIa antagonist with comparable platelet αIIbß3-binding kinetics to c7E3 J Cardiovasc Pharmacol 32, 736–44.

    Article  PubMed  CAS  Google Scholar 

  59. Kuderer, N.M., Khorana, A.A., Lyman, G.H., and Francis, C.W. (2007) A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment Cancer 110, 1149–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Amirkhosravi, A. et al. (2010). Assessment of Anti-Metastatic Effects of Anticoagulant and Antiplatelet Agents Using Animal Models of Experimental Lung Metastasis. In: Mousa, S. (eds) Anticoagulants, Antiplatelets, and Thrombolytics. Methods in Molecular Biology, vol 663. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-803-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-803-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-802-7

  • Online ISBN: 978-1-60761-803-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics