Skip to main content

MicroRNA Biogenesis and Cancer

  • Protocol
  • First Online:
MicroRNA and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 676))

Abstract

MicroRNAs are short non-coding RNA molecules that are involved in diverse physiological and developmental processes by controlling the gene expression of target mRNAs. They play important roles in almost all kinds of cancer where they modulate key processes during tumorigenesis such as metastasis, apoptosis, proliferation, or angiogenesis. Depending on the mRNA targets they regulate, they can act as oncogenes or as tumor suppressor genes. Multiple links between microRNA biogenesis and cancer highlight its significance for tumor diseases. However, mechanisms of their own regulation on the transcriptional and posttranscriptional level in health and disease are only beginning to emerge. Here, we review the microRNA-processing pathway as well as recent insights into posttranscriptional regulation of microRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  2. Wightman, B., Burglin, T. R., Gatto, J., Arasu, P., and Ruvkun, G. (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development, Genes Dev 5, 1813–1824.

    Article  PubMed  CAS  Google Scholar 

  3. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell 75, 855–862.

    Article  PubMed  CAS  Google Scholar 

  4. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 403, 901–906.

    Article  PubMed  CAS  Google Scholar 

  5. Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor, Mol Cell 5, 659–669.

    Article  PubMed  CAS  Google Scholar 

  6. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs, Science 294, 853–858.

    Article  PubMed  CAS  Google Scholar 

  7. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans, Science 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, R. C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans, Science 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  9. Lai, E. C., Tomancak, P., Williams, R. W., and Rubin, G. M. (2003) Computational identification of Drosophila microRNA genes, Genome Biol 4, R42.

    Article  PubMed  Google Scholar 

  10. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003) Vertebrate microRNA genes, Science 299, 1540.

    Article  PubMed  CAS  Google Scholar 

  11. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  12. Ibanez-Ventoso, C., Vora, M., and Driscoll, M. (2008) Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology, PLoS One 3, e2818.

    Article  PubMed  CAS  Google Scholar 

  13. Chapman, E. J., and Carrington, J. C. (2007) Specialization and evolution of endogenous small RNA pathways, Nat Rev Genet 8, 884–896.

    Article  PubMed  CAS  Google Scholar 

  14. Millar, A. A., and Waterhouse, P. M. (2005) Plant and animal microRNAs: similarities and differences, Funct Integr Genomics 5, 129–135.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization, EMBO J 21, 4663–4670.

    Article  PubMed  CAS  Google Scholar 

  16. Song, G., and Wang, L. (2008) MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus, PLoS One 3, e3574.

    Article  PubMed  CAS  Google Scholar 

  17. Song, G., and Wang, L. (2008) Transcrip­tional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma, Nucleic Acids Res 36, 5727–5735.

    Article  PubMed  CAS  Google Scholar 

  18. Griffiths-Jones, S. (2004) The microRNA Registry, Nucleic Acids Res 32, D109–D111.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  20. Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9, 102–114.

    Article  PubMed  CAS  Google Scholar 

  21. Stark, A., Brennecke, J., Bushati, N., Russell, R. B., and Cohen, S. M. (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution, Cell 123, 1133–1146.

    Article  PubMed  CAS  Google Scholar 

  22. Lytle, J. R., Yario, T. A., and Steitz, J. A. (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR, Proc Natl Acad Sci U S A 104, 9667–9672.

    Article  PubMed  CAS  Google Scholar 

  23. Tay, Y., Zhang, J., Thomson, A. M., Lim, B., and Rigoutsos, I. (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation, Nature 455, 1124–1128.

    Article  PubMed  CAS  Google Scholar 

  24. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008) The impact of microRNAs on protein output, Nature 455, 64–71.

    Article  PubMed  CAS  Google Scholar 

  25. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs, Nature 455, 58–63.

    Article  PubMed  CAS  Google Scholar 

  26. Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., and Bartel, D. P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol Cell 27, 91–105.

    Article  PubMed  CAS  Google Scholar 

  27. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004) Human MicroRNA targets, PLoS Biol 2, e363.

    Article  PubMed  CAS  Google Scholar 

  28. John, B., Sander, C., and Marks, D. S. (2006) Prediction of human microRNA targets, Methods Mol Biol 342, 101–113.

    CAS  Google Scholar 

  29. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., and Rajewsky, N. (2005) Combinatorial microRNA target predictions, Nat Genet 37, 495–500.

    Article  PubMed  CAS  Google Scholar 

  30. Beitzinger, M., Peters, L., Zhu, J. Y., Kremmer, E., and Meister, G. (2007) Identification of human microRNA targets from isolated argonaute protein complexes, RNA Biol 4, 76–84.

    Article  PubMed  CAS  Google Scholar 

  31. Chi, S. W., Zang, J. B., Mele, A., and Darnell, R. B. (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps, Nature 460(7254), 479–486.

    Google Scholar 

  32. Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P. Y., Soll, S. J., Dinic, L., Ojo, T., Hafner, M., Zavolan, M., and Tuschl, T. (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs, RNA 14, 2580–2596.

    Article  PubMed  CAS  Google Scholar 

  33. Xiao, C., and Rajewsky, K. (2009) MicroRNA control in the immune system: basic principles, Cell 136, 26–36.

    Article  PubMed  CAS  Google Scholar 

  34. Ma, L., and Weinberg, R. A. (2008) Micro­managers of malignancy: role of microRNAs in regulating metastasis, Trends Genet 24, 448–456.

    Article  PubMed  CAS  Google Scholar 

  35. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R., and Golub, T. R. (2005) MicroRNA expression profiles classify human cancers, Nature 435, 834–838.

    Article  PubMed  CAS  Google Scholar 

  36. Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., D’Urso, L., Pagliuca, A., Biffoni, M., Labbaye, C., Bartucci, M., Muto, G., Peschle, C., and De Maria, R. (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities, Nat Med 14, 1271–1277.

    Article  PubMed  CAS  Google Scholar 

  37. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D., and Slack, F. J. (2005) RAS is regulated by the let-7 microRNA family, Cell 120, 635–647.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, Y. S., and Dutta, A. (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene, Genes Dev 21, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  39. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S. W., Hannon, G. J., and Hammond, S. M. (2005) A microRNA polycistron as a potential human oncogene, Nature 435, 828–833.

    Article  PubMed  CAS  Google Scholar 

  40. Esquela-Kerscher, A., and Slack, F. J. (2006) Oncomirs – microRNAs with a role in cancer, Nat Rev Cancer 6, 259–269.

    Article  PubMed  CAS  Google Scholar 

  41. Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. V., Visone, R., Sever, N. I., Fabbri, M., Iuliano, R., Palumbo, T., Pichiorri, F., Roldo, C., Garzon, R., Sevignani, C., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia, N Engl J Med 353, 1793–1801.

    Article  PubMed  CAS  Google Scholar 

  42. Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C. M. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers, Proc Natl Acad Sci U S A 101, 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, V., and Wu, W. (2009) MicroRNA-based therapeutics for cancer, BioDrugs 23, 15–23.

    Article  PubMed  Google Scholar 

  44. Visone, R., and Croce, C. M. (2009) MiRNAs and cancer, Am J Pathol 174, 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  45. Diederichs, S., and Haber, D. A. (2006) Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing, Cancer Res 66, 6097–6104.

    Article  PubMed  CAS  Google Scholar 

  46. Makunin, I. V., Pheasant, M., Simons, C., and Mattick, J. S. (2007) Orthologous microRNA genes are located in cancer-associated genomic regions in human and mouse, PLoS One 2, e1133.

    Article  PubMed  CAS  Google Scholar 

  47. Chuang, J. C., and Jones, P. A. (2007) Epigenetics and microRNAs, Pediatr Res 61, 24R–29R.

    Article  PubMed  CAS  Google Scholar 

  48. Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., Montuenga, L. M., Rossi, S., Nicoloso, M. S., Faller, W. J., Gallagher, W. M., Eccles, S. A., Croce, C. M., and Esteller, M. (2008) A microRNA DNA methylation signature for human cancer metastasis, Proc Natl Acad Sci USA 105, 13556–13561.

    Article  PubMed  CAS  Google Scholar 

  49. Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., Casado, S., Suarez-Gauthier, A., Sanchez-Cespedes, M., Git, A., Spiteri, I., Das, P. P., Caldas, C., Miska, E., and Esteller, M. (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells, Cancer Res 67, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  50. Yang, N., Coukos, G., and Zhang, L. (2008) MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment, Int J Cancer 122, 963–968.

    Article  PubMed  CAS  Google Scholar 

  51. Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., Lee, J., Fine, H., Chiocca, E. A., Lawler, S., and Purow, B. (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma, Cancer Res 68, 3566–3572.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, E. J., Baek, M., Gusev, Y., Brackett, D. J., Nuovo, G. J., and Schmittgen, T. D. (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors, RNA 14, 35–42.

    Article  PubMed  CAS  Google Scholar 

  53. Michael, M. Z., Susan, M. O. C., van Holst Pellekaan, N. G., Young, G. P., and James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia, Mol Cancer Res 1, 882–891.

    PubMed  CAS  Google Scholar 

  54. Winter, J., Jung, S., Keller, S., Gregory, R. I., and Diederichs, S. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat Cell Biol 11, 228–234.

    Article  PubMed  CAS  Google Scholar 

  55. Gaur, A., Jewell, D. A., Liang, Y., Ridzon, D., Moore, J. H., Chen, C., Ambros, V. R., and Israel, M. A. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines, Cancer Res 67, 2456–2468.

    Article  PubMed  CAS  Google Scholar 

  56. Porkka, K. P., Pfeiffer, M. J., Waltering, K. K., Vessella, R. L., Tammela, T. L., and Visakorpi, T. (2007) MicroRNA expression profiling in prostate cancer, Cancer Res 67, 6130–6135.

    Article  PubMed  CAS  Google Scholar 

  57. Visone, R., Pallante, P., Vecchione, A., Cirombella, R., Ferracin, M., Ferraro, A., Volinia, S., Coluzzi, S., Leone, V., Borbone, E., Liu, C. G., Petrocca, F., Troncone, G., Calin, G. A., Scarpa, A., Colato, C., Tallini, G., Santoro, M., Croce, C. M., and Fusco, A. (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas, Oncogene 26, 7590–7595.

    Article  PubMed  CAS  Google Scholar 

  58. Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA 10, 1957–1966.

    Article  PubMed  CAS  Google Scholar 

  59. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II, EMBO J 23, 4051–4060.

    Article  PubMed  CAS  Google Scholar 

  60. Borchert, G. M., Lanier, W., and Davidson, B. L. (2006) RNA polymerase III transcribes human microRNAs, Nat Struct Mol Biol 13, 1097–1101.

    Article  PubMed  CAS  Google Scholar 

  61. Bortolin-Cavaille, M. L., Dance, M., Weber, M., and Cavaille, J. (2009) C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts, Nucleic Acids Res 37, 3464–3473.

    Article  PubMed  CAS  Google Scholar 

  62. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E. E., Lee, W. M., Enders, G. H., Mendell, J. T., and Thomas-Tikhonenko, A. (2006) Aug­mentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nat Genet 38, 1060–1065.

    Article  PubMed  CAS  Google Scholar 

  63. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., Jackson, A. L., Linsley, P. S., Chen, C., Lowe, S. W., Cleary, M. A., and Hannon, G. J. (2007) A microRNA component of the p53 tumour suppressor network, Nature 447, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  64. Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sultmann, H., and Lyko, F. (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function, Cancer Res 67, 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  65. Blaszczyk, J., Tropea, J. E., Bubunenko, M., Routzahn, K. M., Waugh, D. S., Court, D. L., and Ji, X. (2001) Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage, Structure 9, 1225–1236.

    Article  PubMed  CAS  Google Scholar 

  66. Filippov, V., Solovyev, V., Filippova, M., and Gill, S. S. (2000) A novel type of RNase III family proteins in eukaryotes, Gene 245, 213–221.

    Article  PubMed  CAS  Google Scholar 

  67. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V. N. (2003) The nuclear RNase III Drosha initiates microRNA processing, Nature 425, 415–419.

    Article  PubMed  CAS  Google Scholar 

  68. Morlando, M., Ballarino, M., Gromak, N., Pagano, F., Bozzoni, I., and Proudfoot, N. J. (2008) Primary microRNA transcripts are processed co-transcriptionally, Nat Struct Mol Biol 15, 902–909.

    Article  PubMed  CAS  Google Scholar 

  69. Pawlicki, J. M., and Steitz, J. A. (2008) Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production, J Cell Biol 182, 61–76.

    Article  PubMed  CAS  Google Scholar 

  70. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004) The microprocessor complex mediates the genesis of microRNAs, Nature 432, 235–240.

    Article  PubMed  CAS  Google Scholar 

  71. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Processing of primary microRNAs by the microprocessor complex, Nature 432, 231–235.

    Article  PubMed  CAS  Google Scholar 

  72. Han, J., Lee, Y., Yeom, K. H., Nam, J. W., Heo, I., Rhee, J. K., Sohn, S. Y., Cho, Y., Zhang, B. T., and Kim, V. N. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex, Cell 125, 887–901.

    Article  PubMed  CAS  Google Scholar 

  73. Landthaler, M., Yalcin, A., and Tuschl, T. (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis, Curr Biol 14, 2162–2167.

    Article  PubMed  CAS  Google Scholar 

  74. Yeom, K. H., Lee, Y., Han, J., Suh, M. R., and Kim, V. N. (2006) Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing, Nucleic Acids Res 34, 4622–4629.

    Article  PubMed  CAS  Google Scholar 

  75. Han, J., Pedersen, J. S., Kwon, S. C., Belair, C. D., Kim, Y. K., Yeom, K. H., Yang, W. Y., Haussler, D., Blelloch, R., and Kim, V. N. (2009) Posttranscriptional crossregulation between Drosha and DGCR8, Cell 136, 75–84.

    Article  PubMed  CAS  Google Scholar 

  76. Zeng, Y., and Cullen, B. R. (2003) Sequence requirements for micro RNA processing and function in human cells, RNA 9, 112–123.

    Article  PubMed  CAS  Google Scholar 

  77. Zeng, Y., and Cullen, B. R. (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences, J Biol Chem 280, 27595–27603.

    Article  PubMed  CAS  Google Scholar 

  78. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., and Lai, E. C. (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila, Cell 130, 89–100.

    Article  PubMed  CAS  Google Scholar 

  79. Ruby, J. G., Jan, C. H., and Bartel, D. P. (2007) Intronic microRNA precursors that bypass Drosha processing, Nature 448, 83–86.

    Article  PubMed  CAS  Google Scholar 

  80. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E., and Lai, E. C. (2007) Mammalian mirtron genes, Mol Cell 28, 328–336.

    Article  PubMed  CAS  Google Scholar 

  81. Bohnsack, M. T., Czaplinski, K., and Gorlich, D. (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs, RNA 10, 185–191.

    Article  PubMed  CAS  Google Scholar 

  82. Calado, A., Treichel, N., Muller, E. C., Otto, A., and Kutay, U. (2002) Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA, EMBO J 21, 6216–6224.

    Article  PubMed  CAS  Google Scholar 

  83. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors, Science 303, 95–98.

    Article  PubMed  CAS  Google Scholar 

  84. Zeng, Y., and Cullen, B. R. (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5, Nucleic Acids Res 32, 4776–4785.

    Article  PubMed  CAS  Google Scholar 

  85. Yi, R., Doehle, B. P., Qin, Y., Macara, I. G., and Cullen, B. R. (2005) Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs, RNA 11, 220–226.

    Article  PubMed  CAS  Google Scholar 

  86. Maniataki, E., and Mourelatos, Z. (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA, Genes Dev 19, 2979–2990.

    Article  PubMed  CAS  Google Scholar 

  87. Gregory, R. I., Chendrimada, T. P., Cooch, N., and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing, Cell 123, 631–640.

    Article  PubMed  CAS  Google Scholar 

  88. Haase, A. D., Jaskiewicz, L., Zhang, H., Laine, S., Sack, R., Gatignol, A., and Filipowicz, W. (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing, EMBO Rep 6, 961–967.

    Article  PubMed  CAS  Google Scholar 

  89. Lee, Y., Hur, I., Park, S. Y., Kim, Y. K., Suh, M. R., and Kim, V. N. (2006) The role of PACT in the RNA silencing pathway, EMBO J 25, 522–532.

    Article  PubMed  CAS  Google Scholar 

  90. MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V., and Doudna, J. A. (2008) In vitro reconstitution of the human RISC-loading complex, Proc Natl Acad Sci USA 105, 512–517.

    Article  PubMed  CAS  Google Scholar 

  91. Diederichs, S., and Haber, D. A. (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression, Cell 131, 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  92. Leuschner, P. J., Ameres, S. L., Kueng, S., and Martinez, J. (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells, EMBO Rep 7, 314–320.

    Article  PubMed  CAS  Google Scholar 

  93. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., and Zamore, P. D. (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes, Cell 123, 607–620.

    Article  PubMed  CAS  Google Scholar 

  94. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H., and Siomi, M. C. (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation, Genes Dev 19, 2837–2848.

    Article  PubMed  CAS  Google Scholar 

  95. Rand, T. A., Petersen, S., Du, F., and Wang, X. (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation, Cell 123, 621–629.

    Article  PubMed  CAS  Google Scholar 

  96. Carmell, M. A., and Hannon, G. J. (2004) RNase III enzymes and the initiation of gene silencing, Nat Struct Mol Biol 11, 214–218.

    Article  PubMed  CAS  Google Scholar 

  97. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  98. Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell 106, 23–34.

    Article  PubMed  CAS  Google Scholar 

  99. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA, Science 293, 834–838.

    Article  PubMed  CAS  Google Scholar 

  100. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans, Genes Dev 15, 2654–2659.

    Article  PubMed  CAS  Google Scholar 

  101. Knight, S. W., and Bass, B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans, Science 293, 2269–2271.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004) Single processing center models for human Dicer and bacterial RNase III, Cell 118, 57–68.

    Article  PubMed  CAS  Google Scholar 

  103. Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. (2004) Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain, Nat Struct Mol Biol 11, 576–577.

    Article  PubMed  CAS  Google Scholar 

  104. Ma, J. B., Ye, K., and Patel, D. J. (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain, Nature 429, 318–322.

    Article  PubMed  CAS  Google Scholar 

  105. Song, J. J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., Martienssen, R. A., Hannon, G. J., and Joshua-Tor, L. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes, Nat Struct Biol 10, 1026–1032.

    Article  PubMed  CAS  Google Scholar 

  106. Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M. M. (2003) Structure and conserved RNA binding of the PAZ domain, Nature 426, 468–474.

    Article  PubMed  CAS  Google Scholar 

  107. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., Mills, A. A., Elledge, S. J., Anderson, K. V., and Hannon, G. J. (2003) Dicer is essential for mouse development, Nat Genet 35, 215–217.

    Article  PubMed  CAS  Google Scholar 

  108. Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y., and Zamore, P. D. (2007) Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1, Cell 130, 287–297.

    Article  PubMed  CAS  Google Scholar 

  109. Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., Smith, D. P., and Wang, X. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway, Science 301, 1921–1925.

    Article  PubMed  CAS  Google Scholar 

  110. Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P. D. (2004) A protein sensor for siRNA asymmetry, Science 306, 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  111. Chu, C. Y., and Rana, T. M. (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54, PLoS Biol 4, e210.

    Article  PubMed  CAS  Google Scholar 

  112. Meister, G., Landthaler, M., Peters, L., Chen, P. Y., Urlaub, H., Luhrmann, R., and Tuschl, T. (2005) Identification of novel argonaute-associated proteins, Curr Biol 15, 2149–2155.

    Article  PubMed  CAS  Google Scholar 

  113. Robb, G. B., and Rana, T. M. (2007) RNA helicase A interacts with RISC in human cells and functions in RISC loading, Mol Cell 26, 523–537.

    Article  PubMed  CAS  Google Scholar 

  114. Salzman, D. W., Shubert-Coleman, J., and Furneaux, H. (2007) P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression, J Biol Chem 282, 32773–32779.

    Article  PubMed  CAS  Google Scholar 

  115. Fukuda, T., Yamagata, K., Fujiyama, S., Matsumoto, T., Koshida, I., Yoshimura, K., Mihara, M., Naitou, M., Endoh, H., Nakamura, T., Akimoto, C., Yamamoto, Y., Katagiri, T., Foulds, C., Takezawa, S., Kitagawa, H., Takeyama, K., O’Malley, B. W., and Kato, S. (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs, Nat Cell Biol 9, 604–611.

    Article  PubMed  CAS  Google Scholar 

  116. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias, Cell 115, 209–216.

    Article  PubMed  CAS  Google Scholar 

  117. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex, Cell 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  118. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J., and Qi, Y. (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide, Cell 133, 116–127.

    Article  PubMed  CAS  Google Scholar 

  119. Tomari, Y., Du, T., and Zamore, P. D. (2007) Sorting of Drosophila small silencing RNAs, Cell 130, 299–308.

    Article  PubMed  CAS  Google Scholar 

  120. Azuma-Mukai, A., Oguri, H., Mituyama, T., Qian, Z. R., Asai, K., Siomi, H., and Siomi, M. C. (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing, Proc Natl Acad Sci USA 105, 7964–7969.

    Article  PubMed  CAS  Google Scholar 

  121. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol Cell 15, 185–197.

    Article  PubMed  CAS  Google Scholar 

  122. Eulalio, A., Huntzinger, E., and Izaurralde, E. (2008) Getting to the root of miRNA-mediated gene silencing, Cell 132, 9–14.

    Article  PubMed  CAS  Google Scholar 

  123. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., and Hannon, G. J. (2004) Argonaute2 is the catalytic engine of mammalian RNAi, Science 305, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  124. Yekta, S., Shih, I. H., and Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA, Science 304, 594–596.

    Article  PubMed  CAS  Google Scholar 

  125. Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S. F., Doerks, T., Dorner, S., Bork, P., Boutros, M., and Izaurralde, E. (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing, Genes Dev 21, 2558–2570.

    Article  PubMed  CAS  Google Scholar 

  126. Kiriakidou, M., Tan, G. S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P. T., and Mourelatos, Z. (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation, Cell 129, 1141–1151.

    Article  PubMed  CAS  Google Scholar 

  127. Chendrimada, T. P., Finn, K. J., Ji, X., Baillat, D., Gregory, R. I., Liebhaber, S. A., Pasquinelli, A. E., and Shiekhattar, R. (2007) MicroRNA silencing through RISC recruitment of eIF6, Nature 447, 823–828.

    Article  PubMed  CAS  Google Scholar 

  128. Maroney, P. A., Yu, Y., Fisher, J., and Nilsen, T. W. (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells, Nat Struct Mol Biol 13, 1102–1107.

    Article  PubMed  CAS  Google Scholar 

  129. Maroney, P. A., Yu, Y., and Nilsen, T. W. (2006) MicroRNAs, mRNAs, and translation, Cold Spring Harb Symp Quant Biol 71, 531–535.

    Article  PubMed  CAS  Google Scholar 

  130. Beilharz, T. H., Humphreys, D. T., Clancy, J. L., Thermann, R., Martin, D. I., Hentze, M. W., and Preiss, T. (2009) microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells, PLoS One 4, e6783.

    Article  PubMed  CAS  Google Scholar 

  131. Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A. E. (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation, Cell 122, 553–563.

    Article  PubMed  CAS  Google Scholar 

  132. Behm-Ansmant, I., Rehwinkel, J., and Izaurralde, E. (2006) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay, Cold Spring Harb Symp Quant Biol 71, 523–530.

    Article  PubMed  CAS  Google Scholar 

  133. Wu, L., and Belasco, J. G. (2005) Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells, Mol Cell Biol 25, 9198–9208.

    Article  PubMed  CAS  Google Scholar 

  134. Pauley, K. M., Eystathioy, T., Jakymiw, A., Hamel, J. C., Fritzler, M. J., and Chan, E. K. (2006) Formation of GW bodies is a consequence of microRNA genesis, EMBO Rep 7, 904–910.

    Article  PubMed  CAS  Google Scholar 

  135. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., and Kim, V. N. (2004) The Drosha-DGCR8 complex in primary microRNA processing, Genes Dev 18, 3016–3027.

    Article  PubMed  CAS  Google Scholar 

  136. Hwang, H. W., Wentzel, E. A., and Mendell, J. T. (2007) A hexanucleotide element directs microRNA nuclear import, Science 315, 97–100.

    Article  PubMed  CAS  Google Scholar 

  137. Kennedy, S., Wang, D., and Ruvkun, G. (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans, Nature 427, 645–649.

    Article  PubMed  CAS  Google Scholar 

  138. Ramachandran, V., and Chen, X. (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis, Science 321, 1490–1492.

    Article  PubMed  CAS  Google Scholar 

  139. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., and Jacks, T. (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis, Nat Genet 39, 673–677.

    Article  PubMed  CAS  Google Scholar 

  140. Blenkiron, C., Goldstein, L. D., Thorne, N. P., Spiteri, I., Chin, S. F., Dunning, M. J., Barbosa-Morais, N. L., Teschendorff, A. E., Green, A. R., Ellis, I. O., Tavare, S., Caldas, C., and Miska, E. A. (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype, Genome Biol 8, R214.

    Article  PubMed  CAS  Google Scholar 

  141. Chiosea, S., Jelezcova, E., Chandran, U., Luo, J., Mantha, G., Sobol, R. W., and Dacic, S. (2007) Overexpression of Dicer in precursor lesions of lung adenocarcinoma, Cancer Res 67, 2345–2350.

    Article  PubMed  CAS  Google Scholar 

  142. Karube, Y., Tanaka, H., Osada, H., Tomida, S., Tatematsu, Y., Yanagisawa, K., Yatabe, Y., Takamizawa, J., Miyoshi, S., Mitsudomi, T., and Takahashi, T. (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients, Cancer Sci 96, 111–115.

    Article  PubMed  CAS  Google Scholar 

  143. Muralidhar, B., Goldstein, L. D., Ng, G., Winder, D. M., Palmer, R. D., Gooding, E. L., Barbosa-Morais, N. L., Mukherjee, G., Thorne, N. P., Roberts, I., Pett, M. R., and Coleman, N. (2007) Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels, J Pathol 212, 368–377.

    Article  PubMed  CAS  Google Scholar 

  144. Melo, S. A., Ropero, S., Moutinho, C., Aaltonen, L. A., Yamamoto, H., Calin, G. A., Rossi, S., Fernandez, A. F., Carneiro, F., Oliveira, C., Ferreira, B., Liu, C. G., Villanueva, A., Capella, G., Schwartz, S., Jr., Shiekhattar, R., and Esteller, M. (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function, Nat Genet 41, 365–370.

    Article  PubMed  CAS  Google Scholar 

  145. Ma, E., MacRae, I. J., Kirsch, J. F., and Doudna, J. A. (2008) Autoinhibition of human dicer by its internal helicase domain, J Mol Biol 380, 237–243.

    Article  PubMed  CAS  Google Scholar 

  146. Forman, J. J., Legesse-Miller, A., and Coller, H. A. (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence, Proc Natl Acad Sci U S A 105, 14879–14884.

    Article  PubMed  CAS  Google Scholar 

  147. Carmell, M. A., Xuan, Z., Zhang, M. Q., and Hannon, G. J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis, Genes Dev 16, 2733–2742.

    Article  PubMed  CAS  Google Scholar 

  148. Nelson, P., Kiriakidou, M., Sharma, A., Maniataki, E., and Mourelatos, Z. (2003) The microRNA world: small is mighty, Trends Biochem Sci 28, 534–540.

    Article  PubMed  CAS  Google Scholar 

  149. Qi, H. H., Ongusaha, P. P., Myllyharju, J., Cheng, D., Pakkanen, O., Shi, Y., Lee, S. W., Peng, J., and Shi, Y. (2008) Prolyl 4-hydroxylation regulates Argonaute 2 stability, Nature 455, 421–424.

    Article  PubMed  CAS  Google Scholar 

  150. Rudel, S., and Meister, G. (2008) Phos­phorylation of Argonaute proteins: regulating gene regulators, Biochem J 413, e7–e9.

    Article  PubMed  Google Scholar 

  151. Zeng, Y., Sankala, H., Zhang, X., and Graves, P. R. (2008) Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies, Biochem J 413, 429–436.

    Article  PubMed  CAS  Google Scholar 

  152. Diederichs, S., Jung, S., Rothenberg, S. M., Smolen, G. A., Mlody, B. G., and Haber, D. A. (2008) Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites, Proc Natl Acad Sci U S A 105, 9284-9289.

    Article  PubMed  CAS  Google Scholar 

  153. Saito, K., Ishizuka, A., Siomi, H., and Siomi, M. C. (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells, PLoS Biol 3, e235.

    Article  PubMed  CAS  Google Scholar 

  154. Guil, S., and Caceres, J. F. (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a, Nat Struct Mol Biol 14, 591–596.

    Article  PubMed  CAS  Google Scholar 

  155. Michlewski, G., Guil, S., Semple, C. A., and Caceres, J. F. (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops, Mol Cell 32, 383–393.

    Article  PubMed  CAS  Google Scholar 

  156. Chan, J. A., Krichevsky, A. M., and Kosik, K. S. (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells, Cancer Res 65, 6029–6033.

    Article  PubMed  CAS  Google Scholar 

  157. Davis, B. N., Hilyard, A. C., Lagna, G., and Hata, A. (2008) SMAD proteins control DROSHA-mediated microRNA maturation, Nature 454, 56–61.

    Article  PubMed  CAS  Google Scholar 

  158. Suzuki, H. I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009) Modulation of microRNA processing by p53, Nature 460, 529–533.

    Article  PubMed  CAS  Google Scholar 

  159. Lu, L., Katsaros, D., Shaverdashvili, K., Qian, B., Wu, Y., de la Longrais, I. A., Preti, M., Menato, G., and Yu, H. (2009) Pluripotent factor lin-28 and its homologue lin-28b in epithelial ovarian cancer and their associations with disease outcomes and expression of let-7a and IGF-II, Eur J Cancer 45(12), 2212–2218.

    Google Scholar 

  160. Newman, M. A., Thomson, J. M., and Hammond, S. M. (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA 14, 1539–1549.

    Article  PubMed  CAS  Google Scholar 

  161. Piskounova, E., Viswanathan, S. R., Janas, M., LaPierre, R. J., Daley, G. Q., Sliz, P., and Gregory, R. I. (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28, J Biol Chem 283, 21310–21314.

    Article  PubMed  CAS  Google Scholar 

  162. Viswanathan, S. R., Daley, G. Q., and Gregory, R. I. (2008) Selective blockade of microRNA processing by Lin28, Science 320, 97–100.

    Article  PubMed  CAS  Google Scholar 

  163. Heo, I., Joo, C., Cho, J., Ha, M., Han, J., and Kim, V. N. (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA, Mol Cell 32, 276–284.

    Article  PubMed  CAS  Google Scholar 

  164. Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., Yeom, K. H., Han, J., and Kim, V. N. (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation., Cell 138, 696–708.

    Article  PubMed  CAS  Google Scholar 

  165. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R., and Wulczyn, F. G. (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment, Nat Cell Biol 10, 987–993.

    Article  PubMed  CAS  Google Scholar 

  166. Duan, R., Pak, C., and Jin, P. (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA, Hum Mol Genet 16, 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  167. Scadden, A. D. (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage, Nat Struct Mol Biol 12, 489–496.

    Article  PubMed  CAS  Google Scholar 

  168. Yang, W., Chendrimada, T. P., Wang, Q., Higuchi, M., Seeburg, P. H., Shiekhattar, R., and Nishikura, K. (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases, Nat Struct Mol Biol 13, 13–21.

    Article  PubMed  CAS  Google Scholar 

  169. Kawahara, Y., Megraw, M., Kreider, E., Iizasa, H., Valente, L., Hatzigeorgiou, A. G., and Nishikura, K. (2008) Frequency and fate of microRNA editing in human brain, Nucleic Acids Res 36, 5270–5280.

    Article  PubMed  CAS  Google Scholar 

  170. Kawahara, Y., Zinshteyn, B., Chendrimada, T. P., Shiekhattar, R., and Nishikura, K. (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex, EMBO Rep 8, 763–769.

    Article  PubMed  CAS  Google Scholar 

  171. Kawahara, Y., Zinshteyn, B., Sethupathy, P., Iizasa, H., Hatzigeorgiou, A. G., and Nishikura, K. (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs, Science 315, 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  172. Kim, V. N., Han, J., and Siomi, M. C. (2009) Biogenesis of small RNAs in animals, Nat Rev Mol Cell Biol 10, 126–139.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to the many researchers whose important work in the microRNA field could not be cited due to space constraints. We are grateful for the support of our research by the Helmholtz Society (VH-NG-504), the Marie Curie Programme of the European Union (239308), the German Research Foundation (TRR77 TP B03), the German Cancer Research Center, and the Institute of Pathology at the University of Heidelberg. We would also like to thank all members of our lab for helpful discussions on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Winter, J., Diederichs, S. (2011). MicroRNA Biogenesis and Cancer. In: Wu, W. (eds) MicroRNA and Cancer. Methods in Molecular Biology, vol 676. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-863-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-863-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-862-1

  • Online ISBN: 978-1-60761-863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics