Skip to main content

Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

  • Protocol
  • First Online:
Magnetic Resonance Neuroimaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 711))

Abstract

The use of manganese ions (Mn2+) as an MRI contrast agent was introduced over 20 years ago in studies of Mn2+ toxicity in anesthetized rats (1). Manganese-enhanced MRI (MEMRI) evolved in the late nineties when Koretsky and associates pioneered the use of MEMRI for brain activity measurements (2) as well as neuronal tract tracing (3). Currently, MEMRI has three primary applications in biological systems: (1) contrast enhancement for anatomical detail, (2) activity-dependent assessment and (3) tracing of neuronal connections or tract tracing. MEMRI relies upon the following three main properties of Mn2+: (1) it is a paramagnetic ion that shortens the spin lattice relaxation time constant (T 1) of tissues, where it accumulates and hence functions as an excellent T 1 contrast agent; (2) it is a calcium (Ca2+) analog that can enter excitable cells, such as neurons and cardiac cells via voltage-gated Ca2+ channels; and (3) once in the cells Mn2+ can be transported along axons by microtubule-dependent axonal transport and can also cross synapses trans-synaptically to neighboring neurons. This chapter will emphasize the methodological approaches towards the use of MEMRI in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. London, R. E., Toney, G., Gabel, S. A., Funk, A. Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride. Brain Res Bull 1989;23:229–235.

    Article  PubMed  CAS  Google Scholar 

  2. Lin, Y. J., Koretsky, A. P. Manganese ion enhances T1-weighted MRI during brain activation: An approach to direct imaging of brain function. Magn Reson Med 1997;38:378–388.

    Article  PubMed  CAS  Google Scholar 

  3. Pautler, R. G., Silva, A. C., Koretsky, A. P. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998;40(5):740–748.

    Article  PubMed  CAS  Google Scholar 

  4. Santamaria, A. B. Manganese exposure, essentiality & toxicity. Indian J Med Res 2008;128:484–500.

    PubMed  CAS  Google Scholar 

  5. Hurley, L. S., Keen, C. L. Manganese. In: Trace Elements in Human Health and Animal Nutrition, Underwood, E., Mertz, W. (eds.) New York, NY: Academic Press; 1987, pp 185–225.

    Google Scholar 

  6. Zwingmann, C., Leibfritz, D., Hazell, A. S. Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: An ex vivo nuclear magnetic resonance study using [1–13 c]glucose. Neurotoxicology 2004;25:573–587.

    Article  PubMed  CAS  Google Scholar 

  7. Patchett, M. L., Daniel, R. M., Morgan, H. W. Characterisation of arginase from the extreme thermophile ‘Bacillus caldovelox’. Biochim Biophys Acta 1991;1077:291–298.

    Article  PubMed  CAS  Google Scholar 

  8. Wedler, F. C., Denman, R. B. Glutamine synthetase: The major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul 1984;24:153–169.

    PubMed  CAS  Google Scholar 

  9. Keen, C. Nutritional and toxicological aspects of manganese intake: an overview. In: Risk Assessment of Essential Elements, Mertz W., Abernathy C., Olin S. (eds.) Washington, DC: ILSI Press; 1994.

    Google Scholar 

  10. Strause, L. G., Hegenauer, J., Saltman, P., Cone, R., Resnick, D. Effects of long-term dietary manganese and copper deficiency on rat skeleton. J Nutr 1986;116:135–141.

    PubMed  CAS  Google Scholar 

  11. Friedman, B. J., Freeland-Graves, J. H., Bales, C. W., Behmardi, F., Shorey-Kutschke, R. L., Willis, R. A., Crosby, J. B., Trickett, P. C., Houston, S. D. Manganese balance and clinical observations in young men fed a manganese-deficient diet. J Nutr 1987;117:133–143.

    PubMed  CAS  Google Scholar 

  12. Venugopal, B., Luckey, T. Metal Toxicity in Mammals. Chemical Toxicity of Metals and Metalloids. New York, NY: Plenum Press; 1978.

    Google Scholar 

  13. Aschner, M., Guilarte, T. R., Schneider, J. S., Zheng, W. Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 2007;221:131–147.

    Article  PubMed  CAS  Google Scholar 

  14. Crossgrove, J., Zheng, W. Manganese toxicity upon overexposure. NMR Biomed 2004;17:544–553.

    Article  PubMed  CAS  Google Scholar 

  15. Sloot, W. N., Gramsbergen, J. B. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res 1994;657:124–132.

    Article  PubMed  CAS  Google Scholar 

  16. Takeda, A., Kodama, Y., Ishiwatari, S., Okada, S. Manganese transport in the neural circuit of rat CNS. Brain Res Bull 1998;45:149–152.

    Article  PubMed  CAS  Google Scholar 

  17. Tjälve, H., Mejàre, C., Borg-Neczak, K. Uptake and transport of manganese in primary and secondary olfactory neurones in pike. Pharmacol Toxicol 1995;77:23–31.

    Article  PubMed  Google Scholar 

  18. Takeda, A., Ishiwatari, S., Okada, S. In vivo stimulation-induced release of manganese in rat amygdala. Brain Res 1998;811:147–151.

    Article  PubMed  CAS  Google Scholar 

  19. Barbeau, A. Manganese and extrapyramidal disorders (a critical review and tribute to dr. George C. Cotzias). Neurotoxicology 1984;5:13–35.

    PubMed  CAS  Google Scholar 

  20. Mena, I., Marin, O., Fuenzalida, S., Cotzias, G. C. Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 1967;17:128–136.

    PubMed  CAS  Google Scholar 

  21. Finley, J. W. Manganese uptake and release by cultured human hepato-carcinoma (hep-G2) cells. Biol Trace Elem Res 1998;64:101–118.

    Article  PubMed  CAS  Google Scholar 

  22. Kerper, L. E., Hinkle, P. M. Cellular uptake of lead is activated by depletion of intracellular calcium stores. J Biol Chem 1997;272:8346–8352.

    Article  PubMed  CAS  Google Scholar 

  23. Mason, M. J., Mayer, B., Hymel, L. J. Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am J Physiol 1993;264:C654–C662.

    PubMed  CAS  Google Scholar 

  24. Murphy, V. A., Smith, Q. R., Rapoport, S. I. Saturable transport of ca into CSF in chronic hypo- and hypercalcemia. J Neurosci Res 1991;30:421–426.

    Article  PubMed  CAS  Google Scholar 

  25. Takeda, A. Manganese action in brain function. Brain Res Brain Res Rev 2003;41:79–87.

    Article  PubMed  CAS  Google Scholar 

  26. Chance, B. The energy-linked reaction of calcium with mitochondria. J Biol Chem 1965;240:2729–2748.

    PubMed  CAS  Google Scholar 

  27. Huang, C., Cheng, H., Lin, K., Cheng, J., Tsai, J., Liao, W., Fang, Y., Jan, C. Tamoxifen-induced [Ca2+]i rise and apoptosis in corneal epithelial cells. Toxicology 2009;255:58–64.

    Article  PubMed  CAS  Google Scholar 

  28. Tas, P. W. L., Stössel, C., Roewer, N. Inhibition of the histamine-induced Ca2+ influx in primary human endothelial cells (HUVEC) by volatile anaesthetics. Eur J Anaesthesiol 2008;25:976–985.

    Article  PubMed  CAS  Google Scholar 

  29. Merritt, J. E., Jacob, R., Hallam, T. J. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem 1989;264:1522–1527.

    PubMed  CAS  Google Scholar 

  30. Narita, K., Kawasaki, F., Kita, H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res 1990;510:289–295.

    Article  PubMed  CAS  Google Scholar 

  31. Simpson, P. B., Challiss, R. A., Nahorski, S. R. Divalent cation entry in cultured rat cerebellar granule cells measured using Mn2+ quench of fura 2 fluorescence. Eur J Neurosci 1995;7:831–840.

    Article  PubMed  CAS  Google Scholar 

  32. Cory, D. A., Schwartzentruber, D. J., Mock, B. H. Ingested manganese chloride as a contrast agent for magnetic resonance imaging. Magn Reson Imaging 1987;5:65–70.

    Article  PubMed  CAS  Google Scholar 

  33. Geraldes, C. F., Sherry, A. D., Brown, R. D., Koenig, S. H. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging. Magn Reson Med 1986;3:242–250.

    Article  PubMed  CAS  Google Scholar 

  34. Fornasiero, D., Bellen, J. C., Baker, R. J., Chatterton, B. E. Paramagnetic complexes of manganese(II), iron(III), and gadolinium(III) as contrast agents for magnetic resonance imaging. The influence of stability constants on the biodistribution of radioactive aminopolycarboxylate complexes. Invest Radiol 1987;22:322–327.

    Article  PubMed  CAS  Google Scholar 

  35. Mendonça-Dias, M. H., Gaggelli, E., Lauterbur, P. C. Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin Nucl Med 1983;13:364–376.

    Article  PubMed  Google Scholar 

  36. Pautler, R. G. Biological applications of manganese-enhanced magnetic resonance imaging. Methods Mol Med 2006;124:365–386.

    PubMed  CAS  Google Scholar 

  37. Silva, A. C., Lee, J. H., Aoki, I., Koretsky, A. P. Manganese-enhanced magnetic resonance imaging (MEMRI): Methodological and practical considerations. NMR Biomed 2004;17:532–543.

    Article  PubMed  CAS  Google Scholar 

  38. Natt, O., Watanabe, T., Boretius, S., Radulovic, J., Frahm, J., Michaelis, T. High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. J. Neurosci Methods 2002;120:203–209.

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe, T., Natt, O., Boretius, S., Frahm, J., Michaelis, T. In vivo 3D MRI staining of mouse brain after subcutaneous application of MnCl2. Magn Reson Med 2002;48:852–859.

    Article  PubMed  Google Scholar 

  40. Watanabe, T., Radulovic, J., Spiess, J., Natt, O., Boretius, S., Frahm, J., Michaelis, T. In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2. Neuroimage 2004;22:860–867.

    Article  PubMed  Google Scholar 

  41. Watanabe, T., Radulovic, J., Boretius, S., Frahm, J., Michaelis, T. Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI. Magn Reson Imaging 2006;24:209–215.

    Article  PubMed  Google Scholar 

  42. Bock, N. A., Paiva, F. F., Nascimento, G. C., Newman, J. D., Silva, A. C. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res 2008;1198:160–170.

    Article  PubMed  CAS  Google Scholar 

  43. Silva, A. C., Lee, J. H., Wu, C. W., Tucciarone, J., Pelled, G., Aoki, I., Koretsky, A. P. Detection of cortical laminar architecture using manganese-enhanced MRI. J Neurosci Methods 2008;167:246–257.

    Article  PubMed  CAS  Google Scholar 

  44. Aoki, I., Wu, Y. L., Silva, A. C., Lynch, R. M., Koretsky, A. P. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 2004;22:1046–1059.

    Article  PubMed  Google Scholar 

  45. Deans, A. E., Wadghiri, Y. Z., Berrios-Otero, C. A., Turnbull, D. H. Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system. Magn Reson Med 2008;59:1320–1328.

    Article  PubMed  Google Scholar 

  46. Duong, T. Q., Silva, A. C., Lee, S. P., Kim, S. G. Functional MRI of calcium-dependent synaptic activity: Cross correlation with CBF and BOLD measurements. Magn Reson Med 2000;43:383–392.

    Article  PubMed  CAS  Google Scholar 

  47. Aoki, I., Tanaka, C., Takegami, T., Ebisu, T., Umeda, M., Fukunaga, M., Fukuda, K., Silva, A. C., Koretsky, A. P., Naruse, S. Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med 2002;48:927–933.

    Article  PubMed  CAS  Google Scholar 

  48. Yu, X., Wadghiri, Y. Z., Sanes, D. H., Turnbull, D. H. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 2005;8(7):961–968.

    PubMed  CAS  Google Scholar 

  49. Parkinson, J. R. C., Chaudhri, O. B., Bell, J. D. Imaging appetite-regulating pathways in the central nervous system using manganese-enhanced magnetic resonance imaging. Neuroendocrinology 2009;89:121–130.

    Article  PubMed  CAS  Google Scholar 

  50. Weng, J., Chen, J., Yang, P., Tseng, W. I. Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast. Neuroimage 2007;36:1179–1188.

    Article  PubMed  Google Scholar 

  51. Lu, H., Xi, Z., Gitajn, L., Rea, W., Yang, Y., Stein, E. A. Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI). Proc Natl Acad Sci USA 2007;104:2489–2494.

    Article  PubMed  CAS  Google Scholar 

  52. Chuang, K., Lee, J. H., Silva, A. C., Belluscio, L., Koretsky, A. P. Manganese enhanced MRI reveals functional circuitry in response to odorant stimuli. Neuroimage 2009;44:363–372.

    Article  PubMed  Google Scholar 

  53. Wendland, M. F. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to imaging of the heart. NMR Biomed 2004;17:581–594.

    Article  PubMed  CAS  Google Scholar 

  54. Murayama, Y., Weber, B., Saleem, K. S., Augath, M., Logothetis, N. K. Tracing neural circuits in vivo with Mn-enhanced MRI. Magn Reson Imaging 2006;24:349–358.

    Article  PubMed  CAS  Google Scholar 

  55. Saleem, K. S., Pauls, J. M., Augath, M., Trinath, T., Prause, B. A., Hashikawa, T., Logothetis, N. K. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 2002;34:685–700.

    Article  PubMed  CAS  Google Scholar 

  56. Tindemans, I., Verhoye, M., Balthazart, J., Van Der Linden, A. In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 2003;18:3352–3360.

    Article  PubMed  CAS  Google Scholar 

  57. Van der Linden, A., Verhoye, M., Van Meir, V., Tindemans, I., Eens, M., Absil, P., Balthazart, J. In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience 2002;112:467–474.

    Article  PubMed  Google Scholar 

  58. Van der Linden, A., Van Meir, V., Tindemans, I., Verhoye, M., Balthazart, J. Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 2004;17:602–612.

    Article  PubMed  Google Scholar 

  59. Van Meir, V., Verhoye, M., Absil, P., Eens, M., Balthazart, J., Van der Linden, A. Differential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: A manganese enhanced-magnetic resonance imaging study. Neuroimage 2004;21:914–923.

    Article  PubMed  Google Scholar 

  60. Pautler, R. G. In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 2004;17:595–601.

    Article  PubMed  CAS  Google Scholar 

  61. Pautler, R. G., Koretsky, A. P. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002;16:441–448.

    Article  PubMed  Google Scholar 

  62. Watanabe, T., Michaelis, T., Frahm, J. Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn Reson Med 2001;46(3):424–429.

    Article  PubMed  CAS  Google Scholar 

  63. Lee, J., Park, J., Lee, J., Bae, S., Lee, S., Jung, J., Kim, M., Lee, J., Woo, S., Chang, Y. Manganese-enhanced auditory tract-tracing MRI with cochlear injection. Magn Reson Imaging 2007;25:652–656.

    Article  PubMed  CAS  Google Scholar 

  64. Serrano, F., Deshazer, M., Smith, K. D. B., Ananta, J. S., Wilson, L. J., Pautler, R. G. Assessing transneuronal dysfunction utilizing manganese-enhanced MRI (MEMRI). Magn Reson Med 2008;60:169–175.

    Article  PubMed  Google Scholar 

  65. Smith, K. D. B., Kallhoff, V., Zheng, H., Pautler, R. G. In vivo axonal transport rates decrease in a mouse model of alzheimer’s disease. Neuroimage 2007;35:1401–1408.

    Article  PubMed  Google Scholar 

  66. Aoki, I., Naruse, S., Tanaka, C. Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia. NMR Biomed 2004;17:569–580.

    Article  PubMed  CAS  Google Scholar 

  67. Kidoguchi, K., Tamaki, M., Mizobe, T., Koyama, J., Kondoh, T., Kohmura, E., Sakurai, T., Yokono, K., Umetani, K. In vivo X-ray angiography in the mouse brain using synchrotron radiation. Stroke 2006;37:1856–1861.

    Article  PubMed  Google Scholar 

  68. Zhao, X., Wu, N., Deng, M., Yin, Y., Zhou, J., Fang, Y., Huang, L. An improved method of left ventricular catheterization in rats. Physiol Meas 2006;27:N27–N33.

    Article  PubMed  Google Scholar 

  69. Brown, R. H., Walters, D. M., Greenberg, R. S., Mitzner, W. A method of endotracheal intubation and pulmonary functional assessment for repeated studies in mice. J Appl Physiol 1999;87:2362–2365.

    PubMed  CAS  Google Scholar 

  70. Bissig, D., Berkowitz, B. A. Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats. Neuroimage 2009;44:627–635.

    Article  PubMed  Google Scholar 

  71. Pautler, R. G., Mongeau, R., Jacobs, R. E. In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn Reson Med 2003;50:33–39.

    Article  PubMed  Google Scholar 

  72. Watanabe, T., Frahm, J., Michaelis, T. Functional mapping of neural pathways in rodent brain in vivo using manganese-enhanced three-dimensional magnetic resonance imaging. NMR Biomed 2004;17:554–568.

    Article  PubMed  CAS  Google Scholar 

  73. Burnett, K. R., Goldstein, E. J., Wolf, G. L., Sen, S., Mamourian, A. C. The oral administration of MnCl2: A potential alternative to IV injection for tissue contrast enhancement in magnetic resonance imaging. Magn Reson Imaging 1984;2:307–314.

    Article  PubMed  CAS  Google Scholar 

  74. Kita, H., Narita, K., Van der Kloot, W. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions. Brain Res 1981;205:111–121.

    Article  PubMed  CAS  Google Scholar 

  75. Drapeau, P., Nachshen, D. A. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol (Lond) 1984;348:493–510.

    CAS  Google Scholar 

  76. Rabin, O., Hegedus, L., Bourre, J. M., Smith, Q. R. Rapid brain uptake of manganese(II) across the blood-brain barrier. J Neurochem 1993;61:509–517.

    Article  PubMed  CAS  Google Scholar 

  77. Murphy, V. A., Rosenberg, J. M., Smith, Q. R., Rapoport, S. I. Elevation of brain manganese in calcium-deficient rats. Neurotoxicology 1991;12:255–263.

    PubMed  CAS  Google Scholar 

  78. Yu, X., Sanes, D. H., Aristizabal, O., Wadghiri, Y. Z., Turnbull, D. H. Large-scale reorganization of the tonotopic map in mouse auditory midbrain revealed by MRI. Proc Natl Acad Sci USA 2007;104:12193–12198.

    Article  PubMed  CAS  Google Scholar 

  79. Yu, X., Zou, J., Babb, J. S., Johnson, G., Sanes, D. H., Turnbull, D. H. Statistical mapping of sound-evoked activity in the mouse auditory midbrain using Mn-enhanced MRI. Neuroimage 2008;39:223–230.

    Article  PubMed  Google Scholar 

  80. Berkowitz, B. A., Gradianu, M., Bissig, D., Kern, T. S., Roberts, R. Retinal ion regulation in a mouse model of diabetic retinopathy: Natural history and the effect of Cu/Zn superoxide dismutase overexpression. Invest Ophthalmol Vis Sci 2009;50:2351–2358.

    Article  PubMed  Google Scholar 

  81. Hu, T. C., Pautler, R. G., MacGowan, G. A., Koretsky, A. P. Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 2001;46:884–890.

    Article  PubMed  CAS  Google Scholar 

  82. Lee, J. H., Silva, A. C., Merkle, H., Koretsky, A. P. Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: Dose-dependent and temporal evolution of T1 contrast. Magn Reson Med 2005;53:640–648.

    Article  PubMed  CAS  Google Scholar 

  83. Bock, N. A., Kocharyan, A., Silva, A. C. Manganese-enhanced MRI visualizes V1 in the non-human primate visual cortex. NMR Biomed 2009, Available at: http://www.ncbi.nlm.nih.gov/pubmed/19322808 [Accessed July 21, 2009].

  84. Federle, M. P., Chezmar, J. L., Rubin, D. L., Weinreb, J. C., Freeny, P. C., Semelka, R. C., Brown, J. J., Borello, J. A., Lee, J. K., Mattrey, R., Dachman, A. H., Saini, S., Harmon, B., Fenstermacher, M., Pelsang, R. E., Harms, S. E., Mitchell, D. G., Halford, H. H., Anderson, M. W., Johnson, C. D., Francis, I. R., Bova, J. G., Kenney, P. J., Klippenstein, D. L., Foster, G. S., Turner, D. A. Safety and efficacy of mangafodipir trisodium (MnDPDP) injection for hepatic MRI in adults: Results of the U.S. multicenter phase III clinical trials (safety). J Magn Reson Imaging 2000;12:186–197.

    Article  PubMed  CAS  Google Scholar 

  85. Wolf, G. L., Baum, L. Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit. AJR Am J Roentgenol 1983;141:193–197.

    PubMed  CAS  Google Scholar 

  86. Storey, P., Chen, Q., Li, W., Seoane, P. R., Harnish, P. P., Fogelson, L., Harris, K. R., Prasad, P. V. Magnetic resonance imaging of myocardial infarction using a manganese-based contrast agent (EVP 1001-1): Preliminary results in a dog model. J Magn Reson Imaging 2006;23:228–234.

    Article  PubMed  Google Scholar 

  87. Storey, P., Danias, P. G., Post, M., Li, W., Seoane, P. R., Harnish, P. P., Edelman, R. R., Prasad, P. V. Preliminary evaluation of EVP 1001-1: A new cardiac-specific magnetic resonance contrast agent with kinetics suitable for steady-state imaging of the ischemic heart. Invest Radiol 2003;38:642–652.

    Article  PubMed  CAS  Google Scholar 

  88. Zuo, C. S., Seoane, P., Lanigan, T., Harnish, P., Prasad, P. V., Storey, P., Li, W., Rofsky, N. M. T1 efficacy of EVP-ABD: A potential manganese-based MR contrast agent for hepatic vascular and tissue phase imaging. J Magn Reson Imaging 2002;16:668–675.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia A. Massaad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Massaad, C.A., Pautler, R.G. (2011). Manganese-Enhanced Magnetic Resonance Imaging (MEMRI). In: Modo, M., Bulte, J. (eds) Magnetic Resonance Neuroimaging. Methods in Molecular Biology, vol 711. Humana Press. https://doi.org/10.1007/978-1-61737-992-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-992-5_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-991-8

  • Online ISBN: 978-1-61737-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics