Skip to main content

Antibody Targeted siRNA Delivery

  • Protocol
  • First Online:
Therapeutic Oligonucleotides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 764))

Abstract

It is very clear that RNA interference (RNAi) is a potent and versatile tool for gene silencing. One of the hurdles to making siRNA/miRNA a human therapeutic includes effective in vivo delivery and being able to deliver drugs to target cells only. The commercial success of in vivo applications of RNAi hinges on the development of new delivery methods. Our strategy involves the use of antibody-based delivery agents to target and deliver siRNA into specific cell types. We have developed antibody-based agents for directed delivery into cultured cells and animal disease models. Using antibodies against various cell surface receptors, modified siRNAs are attached to antibody complexes using RNA carrier proteins. The complex can then be intravenously administered to in vivo models and taken up by specific cells via receptor-mediated endocytosis. The labile structure of the linking agents enables release of siRNA molecules post internalization. Using this targeting strategy, we have developed a method that allows any commercially available or recombinant antibody to be conjugated to siRNA for delivery purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., and Sharp, P. A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13, 3191–3197.

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  3. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen, T., Menocal, E. M., Harborth, J., and Fruehauf, J. H. (2008) RNAi therapeutics: an update on delivery. Curr Opin Mol Ther 10, 158–167.

    PubMed  CAS  Google Scholar 

  5. Rossi, J. J. (2005) Receptor-targeted siRNAs. Nat Biotechnol 23, 682–684.

    Article  PubMed  CAS  Google Scholar 

  6. Dykxhoorn, D. M., and Lieberman, J. (2006) Silencing viral infection. PLoS Med 3, e242.

    Article  PubMed  Google Scholar 

  7. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178.

    Article  PubMed  CAS  Google Scholar 

  8. McCaffrey, A. P., Nakai, H., Pandey, K., Huang, Z., Salazar, F. H., et al. (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21, 639–644.

    Article  PubMed  CAS  Google Scholar 

  9. Lasic, D. D., Vallner, J. J., and Working, P. K. (1999) Sterically stabilized liposomes in cancer therapy and gene delivery. Curr Opin Mol Ther 1, 177–185.

    PubMed  CAS  Google Scholar 

  10. Cho, W. G., Albuquerque, R. J., Kleinman, M. E., Tarallo, V., Greco, A., et al. (2009) Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA 106, 7137–7142.

    Article  PubMed  CAS  Google Scholar 

  11. Kariko, K., Bhuyan, P., Capodici, J., Ni, H., Lubinski, J., et al. (2004) Exogenous siRNA mediates sequence-independent gene suppression by signaling through toll-like receptor 3. Cells Tissues Organs 177, 132–138.

    Article  PubMed  CAS  Google Scholar 

  12. Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., et al. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23, 709–717.

    Article  PubMed  CAS  Google Scholar 

  13. Peer, D., Zhu, P., Carman, C. V., Lieberman, J., and Shimaoka, M. (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 104, 4095–4100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud M. Toloue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Toloue, M.M., Ford, L.P. (2011). Antibody Targeted siRNA Delivery. In: Goodchild, J. (eds) Therapeutic Oligonucleotides. Methods in Molecular Biology, vol 764. Humana Press. https://doi.org/10.1007/978-1-61779-188-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-188-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-187-1

  • Online ISBN: 978-1-61779-188-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics