Skip to main content

Quantifying Cardiac Functions in Embryonic and Adult Zebrafish

  • Protocol
  • First Online:
Cardiovascular Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 843))

Abstract

Zebrafish embryos have been extensively used to study heart development and cardiac function, mainly due to the unique embryology and genetics of this model organism. Since most human heart disease occurs during adulthood, adult zebrafish models of heart disease are being created to dissect mechanisms of the disease and discover novel therapies. However, due to its small heart size, the use of cardiac functional assays in the adult zebrafish has been limited. To address this bottleneck, the transparent fish line casper;Tg(cmlc2:nuDsRed) that has a red fluorescent heart can be used to document beating hearts in vivo and to quantify cardiac functions in adult zebrafish. Here, we describe our methods for quantifying shortening fraction and heart rate in embryonic zebrafish, as well as in the juvenile and adult casper;Tg(cmlc2:nuDsRed) fish. In addition, we describe the red blood cell flow rate assay that can be used to reflect cardiac function indirectly in zebrafish at any stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chico, T. J., Ingham, P. W., and Crossman, D. C. (2008) Modeling cardiovascular disease in the zebrafish. Trends Cardiovasc Med 4, 150–155.

    Article  Google Scholar 

  2. Lieschke, G. J., and Currie, P. D. (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367.

    Article  PubMed  CAS  Google Scholar 

  3. Glickman, N. S., and Yelon, D. (2002) Cardiac development in zebrafish: coordination of form and function. Semin Cell Dev Biol 13, 507–513.

    Article  PubMed  Google Scholar 

  4. Nasevicius, A., and Ekker, S. C. (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26, 216–220.

    Article  PubMed  CAS  Google Scholar 

  5. Ekker, S. C. (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5, 121–123.

    Article  PubMed  CAS  Google Scholar 

  6. Moens, C. B., Donn, T. M., Wolf-Saxon, E. R., and Ma, T. P. (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7, 454–459.

    Article  PubMed  CAS  Google Scholar 

  7. Foley, J. E., Maeder, M. L., Pearlberg, J., Joung, J. K., Peterson, R. T., and Yeh, J. R. (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4, 1855–1867.

    Article  PubMed  CAS  Google Scholar 

  8. Pelster, B., and Burggren, W. W. (1996) Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ Res 79, 358–362.

    Article  PubMed  CAS  Google Scholar 

  9. Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M. (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133–144.

    Article  PubMed  CAS  Google Scholar 

  10. Stainier, D. Y., Fouquet, B., Chen, J. N., Warren, K. S., Weinstein, B. M., Meiler, S. E., Mohideen, M. A., Neuhauss, S. C., Solnica-Krezel, L., Schier, A. F., Zwartkruis, F., Stemple, D. L., Malicki, J., Driever, W., and Fishman, M. C. (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292.

    PubMed  CAS  Google Scholar 

  11. Stainier, D. Y. (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 39–48.

    Article  PubMed  CAS  Google Scholar 

  12. Warren, K. S., Wu, J. C., Pinet, F., and Fishman, M. C. (2000) The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci 355, 939–944.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, J. N., and Fishman, M. C. (2000) Genetics of heart development. Trends Genet 16, 383–388.

    Article  PubMed  CAS  Google Scholar 

  14. Dahme, T., Katus, H. A., and Rottbauer, W. (2009) Fishing for the genetic basis of cardiovascular disease. Dis Model Mech 2, 18–22.

    Article  PubMed  CAS  Google Scholar 

  15. MacRae, C. A., and Peterson, R. T. (2003) Zebrafish-based small molecule discovery. Chem Biol 10, 901–908.

    Article  PubMed  CAS  Google Scholar 

  16. Milan, D. J., Kim, A. M., Winterfield, J. R., Jones, I. L., Pfeufer, A., Sanna, S., Arking, D. E., Amsterdam, A. H., Sabeh, K. M., Mably, J. D., Rosenbaum, D. S., Peterson, R. T., Chakravarti, A., Kääb, S., Roden, D. M., and MacRae, C. A. (2009) Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation 120, 553–559.

    Article  PubMed  Google Scholar 

  17. Kaufman, C. K., White, R. M., and Zon, L. (2009) Chemical genetic screening in the zebrafish embryo. Nat Protoc 4, 1422–1432.

    Article  PubMed  CAS  Google Scholar 

  18. Zon, L. I., and Peterson, R. T. (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4, 35–44.

    Article  PubMed  CAS  Google Scholar 

  19. Peterson, R. T., Shaw, S. Y., Peterson, T. A., Milan, D. J., Zhong, T. P., Schreiber, S. L., MacRae, C. A., and Fishman, M. C. (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22, 595–599.

    Article  PubMed  CAS  Google Scholar 

  20. AHA (2010) Heart Disease and Stroke Statistics – 2010 Update. Dallas, Texas

    Google Scholar 

  21. Sun, X., Hoage, T., Bai, P., Ding, Y., Chen, Z., Zhang, R., Huang, W., Jahangir, A., Paw, B., Li, Y. G., and Xu, X. (2009) Cardiac hypertrophy involves both myocyte hypertrophy and hyperplasia in anemic zebrafish. PLoS One 4, e6596.

    Article  PubMed  Google Scholar 

  22. Nemtsas, P., Wettwer, E., Christ, T., Weidinger, G., and Ravens, U. (2010) Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol 48, 161–171.

    Article  PubMed  CAS  Google Scholar 

  23. Milan, D. J., Jones, I. L., Ellinor, P. T., and MacRae, C. A. (2006) In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291, H269–273.

    Article  PubMed  CAS  Google Scholar 

  24. Sun, L., Xu, X., Richard, W. D., Feng, C., Johnson, J. A., and Shung, K. K. (2008) A high-frame rate duplex ultrasound biomicroscopy for small animal imaging in vivo. IEEE Trans Biomed Eng 55, 2039–2049.

    Article  PubMed  Google Scholar 

  25. Sun, L., Lien, C. L., Xu, X., and Shung, K. K. (2008) In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45-75 MHz). Ultrasound Med Biol 34, 31–39.

    Article  PubMed  CAS  Google Scholar 

  26. Boppart, S. A., Tearney, G. J., Bouma, B. E., Southern, J. F., Brezinski, M. E., and Fujimoto, J. G. (1997) Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. Proc Natl Acad Sci U S A 94, 4256–4261.

    Article  PubMed  CAS  Google Scholar 

  27. Choma, M. A., Izatt, S. D., Wessells, R. J., Bodmer, R., and Izatt, J. A. (2006) Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography. Circulation 114, e35–36.

    Article  PubMed  Google Scholar 

  28. Manner, J., Thrane, L., Norozi, K., and Yelbuz, T. M. (2008) High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography. Dev Dyn 237, 953–961.

    Article  PubMed  Google Scholar 

  29. White, R. M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C. E., and Zon, L. I. (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189.

    Article  PubMed  CAS  Google Scholar 

  30. Mably, J. D., Mohideen, M. A., Burns, C. G., Chen, J. N., and Fishman, M. C. (2003) heart of glass regulates the concentric growth of the heart in zebrafish. Curr Biol 13, 2138–2147.

    Article  PubMed  CAS  Google Scholar 

  31. Brutsaert, D. L. (2006) Cardiac dysfunction in heart failure: the cardiologist’s love affair with time. Prog Cardiovasc Dis 49, 157–181.

    Article  PubMed  Google Scholar 

  32. Westerfield, M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. Univ. of Oregon Press, Eugene, Oregon.

    Google Scholar 

  33. Ocorr, K., Fink, M., Cammarato, A., Bernstein, S., and Bodmer, R. (2009) Semi-automated Optical Heartbeat Analysis of small hearts. J Vis Exp 31.

    Google Scholar 

  34. Fink, M., Callol-Massot, C., Chu, A., Ruiz-Lozano, P., Izpisua Belmonte, J. C., Giles, W., Bodmer, R., and Ocorr, K. (2009) A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46, 101–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Leonard Zon at Children’s Hospital, Boston, for sharing with us the casper fish; Dr. Geoff Burns at Massachusetts General Hospital, Boston, for the Tg(cmlc2:nuDsRed) fish; Jomok Beninio for his help with zebrafish husbandry; and Dr. Jingchun Yang and Dr. Xiaojing Sun for their advice on the shortening fraction methodology for zebrafish larvae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hoage, T., Ding, Y., Xu, X. (2012). Quantifying Cardiac Functions in Embryonic and Adult Zebrafish. In: Peng, X., Antonyak, M. (eds) Cardiovascular Development. Methods in Molecular Biology, vol 843. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-523-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-523-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-522-0

  • Online ISBN: 978-1-61779-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics