Skip to main content

Advancements in Pain Research

  • Protocol
  • First Online:
Pain Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 851))

Abstract

After the publication of the First Edition of this book in the series of Methods in Molecular Medicine (volume 99 in the series) in 2004, pain research continues its rapid acceleration until 2009, during which it experienced a plateau of growth that likely resulted from the economic downturn started in 2008 (Fig. 1.1). This rapid growth in pain research could be the driving force for an impressive 66% increase in new randomized, double-blind, placebo-control trials for neuropathic pain medications in the past 5 years compared with the last four decades. Unfortunately, little improvement in pain medications has been obtained [1] due to primarily our limited understanding of mechanisms mediating different pain states, especially that for chronic pain. It is highly possible that the growth in pain research will continue for decades to come due to three main reasons. First, there is an urgent need for more efficacious and safer pain medications that are necessary for better and individualized pain management. The increase in life expectancy of the general population and patients due to improvements in quality of health care and medicine is likely to increase the demand for better pain medications for improving the quality of daily life of those living with pain. It is estimated that the continuous increase in percentage of patients suffering from chronic pain (pain conditions lasting more than 6 months) arranges from 11 to 47% between 40 and 75 years of age [2], which will inevitably and continually increase the demand for better pain medications. Second, the cost of pain conditions to our society is high, estimated $55 billion per year in loss of productivity from full-time workers alone [3], so better pain management can significantly help economic growth and stability. Third, the swift advancement in technologies and our better understanding of sensory circuitries and pain pathways serves as a driving force for timely drug discovery research and development at an unprecedented pace to meet the demand for better pain medications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finnerup, N. B., Sindrup, S. H., and Jensen, T. S. (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150, 573–81.

    Article  PubMed  Google Scholar 

  2. Kopf, A. (2010) Pain in Old Age and Dementia, in Guide to Pain Management in Low-Resource Settings (Kopf, A., and Patel, N. B., Eds.), pp 269–75, International Association for the Study of Pain, Seattle.

    Google Scholar 

  3. Katz, N. (2002) The impact of pain management on quality of life. J Pain Symptom Manage 24, S38–47.

    Article  PubMed  Google Scholar 

  4. Neely, G. G., Hess, A., Costigan, M., Keene, A. C., Goulas, S., Langeslag, M., Griffin, R. S., Belfer, I., Dai, F., Smith, S. B., Diatchenko, L., Gupta, V., Xia, C. P., Amann, S., Kreitz, S., Heindl-Erdmann, C., Wolz, S., Ly, C. V., Arora, S., Sarangi, R., Dan, D., Novatchkova, M., Rosenzweig, M., Gibson, D. G., Truong, D., Schramek, D., Zoranovic, T., Cronin, S. J., Angjeli, B., Brune, K., Dietzl, G., Maixner, W., Meixner, A., Thomas, W., Pospisilik, J. A., Alenius, M., Kress, M., Subramaniam, S., Garrity, P. A., Bellen, H. J., Woolf, C. J., and Penninger, J. M. (2010) A genome-wide Drosophila screen for heat nociception identifies alpha2delta3 as an evolutionarily conserved pain gene. Cell 143, 628–38.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, H., Ramsay, E., Lee, H., Wahl, S., and Dionne, R. A. (2009) Genome-wide association study of acute post-surgical pain in humans. Pharmacogenomics 10, 171–9.

    Article  PubMed  CAS  Google Scholar 

  6. Fukuda, K., Hayashida, M., Ide, S., Saita, N., Kokita, Y., Kasai, S., Nishizawa, D., Ogai, Y., Hasegawa, J., Nagashima, M., Tagami, M., Komatsu, H., Sora, I., Koga, H., Kaneko, Y., and Ikeda, K. (2009) Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain 147, 194–201.

    Article  PubMed  CAS  Google Scholar 

  7. Lotsch, J., Klepstad, P., Doehring, A., and Dale, O. (2010) A GTP cyclohydrolase 1 genetic variant delays cancer pain. Pain 148, 103–6.

    Article  PubMed  Google Scholar 

  8. Costigan, M., Belfer, I., Griffin, R. S., Dai, F., Barrett, L. B., Coppola, G., Wu, T., Kiselycznyk, C., Poddar, M., Lu, Y., Diatchenko, L., Smith, S., Cobos, E. J., Zaykin, D., Allchorne, A., Shen, P. H., Nikolajsen, L., Karppinen, J., Mannikko, M., Kelempisioti, A., Goldman, D., Maixner, W., Geschwind, D. H., Max, M. B., Seltzer, Z., and Woolf, C. J. (2010) Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1. Brain 133, 2519–27.

    Article  PubMed  Google Scholar 

  9. Nissenbaum, J., Devor, M., Seltzer, Z., Gebauer, M., Michaelis, M., Tal, M., Dorfman, R., Abitbul-Yarkoni, M., Lu, Y., Elahipanah, T., delCanho, S., Minert, A., Fried, K., Persson, A. K., Shpigler, H., Shabo, E., Yakir, B., Pisante, A., and Darvasi, A. (2010) Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2. Genome Res 20, 1180–90.

    Article  PubMed  CAS  Google Scholar 

  10. Treister, R., Pud, D., Ebstein, R. P., Laiba, E., Gershon, E., Haddad, M., and Eisenberg, E. (2009) Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain 147, 187–93.

    Article  PubMed  CAS  Google Scholar 

  11. Estevez, M., and Gardner, K. L. (2004) Update on the genetics of migraine. Hum Genet 114, 225–35.

    Article  PubMed  CAS  Google Scholar 

  12. Luo, Z. D., and Figueroa, K. W. (2008) Multilevel genomic approach in pain research: basic science and clinical implications. Rev. Analg. 10, 45–58.

    CAS  Google Scholar 

  13. Wang, H., Sun, H., Della Penna, K., Benz, R. J., Xu, J., Gerhold, D. L., Holder, D. J., and Koblan, K. S. (2002) Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 114, 529–46.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, D. S., Figueroa, K. W., Li, K. W., Boroujerdi, A., Yolo, T., and David Luo, Z. (2009) Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors (corrected]. Pain 143, 114–22.

    Article  PubMed  CAS  Google Scholar 

  15. Costigan, M., Befort, K., Karchewski, L., Griffin, R. S., D’Urso, D., Allchorne, A., Sitarski, J., Mannion, J. W., Pratt, R. E., and Woolf, C. J. (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3, 16. Print 2002 Oct 25.

    Google Scholar 

  16. Bauer, C. S., Nieto-Rostro, M., Rahman, W., Tran-Van-Minh, A., Ferron, L., Douglas, L., Kadurin, I., Sri Ranjan, Y., Fernandez-Alacid, L., Millar, N. S., Dickenson, A. H., Lujan, R., and Dolphin, A. C. (2009) The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci 29, 4076–88.

    Article  PubMed  CAS  Google Scholar 

  17. Boroujerdi, A., Kim, H. K., Lyu, Y. S., Kim, D. S., Figueroa, K. W., Chung, J. M., and Luo, Z. D. (2008) Injury discharges regulate calcium channel alpha-2-delta-1 subunit upregulation in the dorsal horn that contributes to initiation of neuropathic pain. Pain 139, 358–66.

    Article  PubMed  CAS  Google Scholar 

  18. Boroujerdi, A., Zeng, J., Sharp, K., Kim, D., Steward, O., and Luo, Z. D. (2011) Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury induced neuropathic pain states. Pain 152 , 649–55.

    Article  PubMed  CAS  Google Scholar 

  19. Li, C. Y., Song, Y. H., Higuera, E. S., and Luo, Z. D. (2004) Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 24, 8494–9.

    Article  PubMed  CAS  Google Scholar 

  20. Luo, Z. D., Calcutt, N. A., Higuera, E. S., Valder, C. R., Song, Y. H., Svensson, C. I., and Myers, R. R. (2002) Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303, 1199–205.

    Article  PubMed  CAS  Google Scholar 

  21. Luo, Z. D., Chaplan, S. R., Higuera, E. S., Sorkin, L. S., Stauderman, K. A., Williams, M. E., and Yaksh, T. L. (2001) Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J. Neurosci. 21, 1868–75.

    PubMed  CAS  Google Scholar 

  22. Newton, R. A., Bingham, S., Case, P. C., Sanger, G. J., and Lawson, S. N. (2001) Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 95, 1–8.

    Article  PubMed  CAS  Google Scholar 

  23. Valder, C. R., Liu, J. J., Song, Y. H., and Luo, Z. D. (2003) Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development. J Neurochem 87, 560–73.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, X. M., Wu, T. X., Hamza, M., Ramsay, E. S., Wahl, S. M., and Dionne, R. A. (2007) Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain 128, 136–47.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, X. M., Hamza, M., Gordon, S. M., Wahl, S. M., and Dionne, R. A. (2008) COX inhibitors downregulate PDE4D expression in a clinical model of inflammatory pain. Clin Pharmacol Ther 84, 39–42.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, X. M., Hamza, M., Wu, T. X., and Dionne, R. A. (2009) Upregulation of IL-6, IL-8 and CCL2 gene expression after acute inflammation: Correlation to clinical pain. Pain 142, 275–83.

    Article  PubMed  CAS  Google Scholar 

  27. Kim, H., Clark, D., and Dionne, R. A. (2009) Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research. J Pain 10, 663–93.

    PubMed  Google Scholar 

  28. Espina, V., Woodhouse, E. C., Wulfkuhle, J., Asmussen, H. D., Petricoin, E. F., 3rd, and Liotta, L. A. (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290, 121–33.

    Article  PubMed  CAS  Google Scholar 

  29. Sandoz, G., Thummler, S., Duprat, F., Feliciangeli, S., Vinh, J., Escoubas, P., Guy, N., Lazdunski, M., and Lesage, F. (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K(+) channels into open leak channels. Embo J 25, 5864–72.

    Article  PubMed  CAS  Google Scholar 

  30. Sung, H. J., Kim, Y. S., Kim, I. S., Jang, S. W., Kim, Y. R., Na, D. S., Han, K. H., Hwang, B. G., Park, D. S., and Ko, J. (2004) Proteomic analysis of differential protein expression in neuropathic pain and electroacupuncture treatment models. Proteomics 4, 2805–13.

    Article  PubMed  CAS  Google Scholar 

  31. Kunz, S., Tegeder, I., Coste, O., Marian, C., Pfenninger, A., Corvey, C., Karas, M., Geisslinger, G., and Niederberger, E. (2005) Comparative proteomic analysis of the rat spinal cord in inflammatory and neuropathic pain models. Neurosci Lett 381, 289–93.

    Article  PubMed  CAS  Google Scholar 

  32. Park, S., and Lee, J. (2009) Proteomic analysis to identify early molecular targets of pregabalin in C6 glial cells. Cell Biol Int 34, 27–33.

    PubMed  Google Scholar 

  33. Riedl, M. S., Braun, P. D., Kitto, K. F., Roiko, S. A., Anderson, L. B., Honda, C. N., Fairbanks, C. A., and Vulchanova, L. (2009) Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing. J Neurosci 29, 13377–88.

    Article  PubMed  CAS  Google Scholar 

  34. Singh, O. V., Yaster, M., Xu, J. T., Guan, Y., Guan, X., Dharmarajan, A. M., Raja, S. N., Zeitlin, P. L., and Tao, Y. X. (2009) Proteome of synaptosome-associated proteins in spinal cord dorsal horn after peripheral nerve injury. Proteomics 9, 1241–53.

    Article  PubMed  CAS  Google Scholar 

  35. Wu, L. J., Ko, S. W., and Zhuo, M. (2007) Kainate receptors and pain: from dorsal root ganglion to the anterior cingulate cortex. Curr Pharm Des 13, 1597–605.

    Article  PubMed  CAS  Google Scholar 

  36. Xu, H., Wu, L. J., Wang, H., Zhang, X., Vadakkan, K. I., Kim, S. S., Steenland, H. W., and Zhuo, M. (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28, 7445–53.

    Article  PubMed  CAS  Google Scholar 

  37. Li, X. Y., Ko, H. G., Chen, T., Descalzi, G., Koga, K., Wang, H., Kim, S. S., Shang, Y., Kwak, C., Park, S. W., Shim, J., Lee, K., Collingridge, G. L., Kaang, B. K., and Zhuo, M. (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330, 1400–4.

    Article  PubMed  CAS  Google Scholar 

  38. Qu, X. X., Cai, J., Li, M. J., Chi, Y. N., Liao, F. F., Liu, F. Y., Wan, Y., Han, J. S., and Xing, G. G. (2009) Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 215, 298–307.

    Article  PubMed  CAS  Google Scholar 

  39. Sunesen, M., and Jacobsen, R. B. (2011) Study of TRP Channels by Automated Patch Clamp Systems. Adv Exp Med Biol 704, 107–23.

    Article  PubMed  Google Scholar 

  40. Perret, D. M., Kim, D.-S., Li, K.-W., Sinavsky, K., Newcomb, R. L., Miller, J. M., and Luo, Z. D. (2011) Application of Pulsed Radiofrequency Currents to Rat Dorsal Root Ganglia Modulates Nerve Injury-Induced Tactile Allodynia. Anesthesia & Analgesia 113, 610–6.

    Google Scholar 

  41. Braz, J. M., Nassar, M. A., Wood, J. N., and Basbaum, A. I. (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47, 787–93.

    Article  PubMed  CAS  Google Scholar 

  42. Braz, J. M., and Basbaum, A. I. (2009) Triggering genetically-expressed transneuronal tracers by peripheral axotomy reveals convergent and segregated sensory neuron-spinal cord connectivity. Neuroscience 163, 1220–32.

    Article  PubMed  CAS  Google Scholar 

  43. Neumann, S., Braz, J. M., Skinner, K., Llewellyn-Smith, I. J., and Basbaum, A. I. (2008) Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J Neurosci 28, 7936–44.

    Article  PubMed  CAS  Google Scholar 

  44. Braz, J. M., and Basbaum, A. I. (2008) Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits. J Comp Neurol 507, 1990–2003.

    Article  PubMed  Google Scholar 

  45. Li, C. Y., Zhang, X. L., Matthews, E. A., Li, K. W., Kurwa, A., Boroujerdi, A., Gross, J., Gold, M. S., Dickenson, A. H., Feng, G., and Luo, Z. D. (2006) Calcium channel alpha2delta1 subunit mediates spinal hyperexcitability in pain modulation. Pain 125, 20–34.

    Article  PubMed  CAS  Google Scholar 

  46. Schorscher-Petcu, A., Sotocinal, S., Ciura, S., Dupre, A., Ritchie, J., Sorge, R. E., Crawley, J. N., Hu, S. B., Nishimori, K., Young, L. J., Tribollet, E., Quirion, R., and Mogil, J. S. (2010) Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci 30, 8274–84.

    Article  PubMed  CAS  Google Scholar 

  47. Sowa, N. A., Taylor-Blake, B., and Zylka, M. J. (2010) Ecto-5′-nucleotidase (CD73) inhibits nociception by hydrolyzing AMP to adenosine in nociceptive circuits. J Neurosci 30, 2235–44.

    Article  PubMed  CAS  Google Scholar 

  48. Diaz, J. L., Zamanillo, D., Corbera, J., Baeyens, J. M., Maldonado, R., Pericas, M. A., Vela, J. M., and Torrens, A. (2009) Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 9, 172–83.

    PubMed  CAS  Google Scholar 

  49. Jones, R. C., 3rd, Xu, L., and Gebhart, G. F. (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25, 10981–9.

    Article  PubMed  CAS  Google Scholar 

  50. Yuan, F. L., Chen, F. H., Lu, W. G., and Li, X. (2009) Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis. Mol Biol Rep 37, 3233–8.

    Article  PubMed  Google Scholar 

  51. Vardanyan, A., Wang, R., Vanderah, T. W., Ossipov, M. H., Lai, J., Porreca, F., and King, T. (2009) TRPV1 receptor in expression of opioid-induced hyperalgesia. J Pain 10, 243–52.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, Z. Y., Wang, P., Merriam, F. V., and Bjorling, D. E. (2008) Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139, 158–67.

    Article  PubMed  CAS  Google Scholar 

  53. Kim, H. Y., Kim, K., Li, H. Y., Chung, G., Park, C. K., Kim, J. S., Jung, S. J., Lee, M. K., Ahn, D. K., Hwang, S. J., Kang, Y., Binshtok, A. M., Bean, B. P., Woolf, C. J., and Oh, S. B. (2010) Selectively targeting pain in the trigeminal system. Pain 150, 29–40.

    Article  PubMed  Google Scholar 

  54. Fioravanti, B., De Felice, M., Stucky, C. L., Medler, K. A., Luo, M. C., Gardell, L. R., Ibrahim, M., Malan, T. P., Jr., Yamamura, H. I., Ossipov, M. H., King, T., Lai, J., Porreca, F., and Vanderah, T. W. (2008) Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci 28, 11593–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the National Institutes of Health (DE019298, NS064341) (Z.D. Luo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. David Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luo, Z.D. (2012). Advancements in Pain Research. In: Luo, Z. (eds) Pain Research. Methods in Molecular Biology, vol 851. Humana Press. https://doi.org/10.1007/978-1-61779-561-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-561-9_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-560-2

  • Online ISBN: 978-1-61779-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics