Skip to main content

Chemogenomic Approaches to Infer Drug–Target Interaction Networks

  • Protocol
  • First Online:
Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 939))

Abstract

The identification of drug–target interactions from heterogeneous biological data is critical in the drug development. In this chapter, we review recently developed in silico chemogenomic approaches to infer unknown drug–target interactions from chemical information of drugs and genomic information of target proteins. We review several kernel-based statistical methods from two different viewpoints: binary classification and dimension reduction. In the results, we demonstrate the usefulness of the methods on the prediction of drug–target interactions from chemical structure data and genomic sequence data. We also discuss the characteristics of each method, and show some perspectives toward future research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Xiao J, Suzek T, Zhang J, Wang J, Bryant S (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:D623–D633

    Article  Google Scholar 

  2. Butina D, Segall M, Frankcombe K (2002) Predicting ADME properties in silico: methods and models. Drug Discov Today 7:S83–S88

    Article  PubMed  CAS  Google Scholar 

  3. Byvatov E, Fechner U, Sadowski J, Schneider G (2003) Comparison of support vector machine and articial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43:1882–1889

    Article  PubMed  CAS  Google Scholar 

  4. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  PubMed  CAS  Google Scholar 

  5. Keiser M, Roth B, Armbruster B, Ernsberger P, Irwin J, Shoichet B (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    Article  PubMed  CAS  Google Scholar 

  6. Yildirim M, Goh K, Cusick M, Barabasi A, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  PubMed  CAS  Google Scholar 

  7. Zhu S, Okuno Y, Tsujimoto G, Mamitsuka H (2005) A probabilistic model for mining implicit “chemical compound-gene” relations from literature. Bioinformatics 21(Suppl 2):ii245–251

    Google Scholar 

  8. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita K, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–357

    Article  PubMed  CAS  Google Scholar 

  9. Stockwell B (2000) Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1:116–125

    Article  PubMed  CAS  Google Scholar 

  10. Dobson C (2004) Chemical space and biology. Nature 432:824–828

    Article  PubMed  CAS  Google Scholar 

  11. Bock JR, Gough DA (2005) Virtual screen for ligands of orphan G protein-coupled receptors. J Chem Inf Model 45:1402–1414

    Article  PubMed  CAS  Google Scholar 

  12. Erhan D, Lheureux P-J, Yue SY, Bengio Y (2006) Collaborative ltering on a family of biological targets. J Chem Inf Model 46:626–635

    Article  PubMed  CAS  Google Scholar 

  13. Nagamine N, Sakakibara Y (2007) Statistical prediction of proteinchemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 23:2004–2012

    Article  PubMed  CAS  Google Scholar 

  14. Faulon J, Misra M, Martin S, Sale K, Sapra R (2008) Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics 24:225–233

    Article  PubMed  CAS  Google Scholar 

  15. Jacob L, Vert J-P (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24:2149–2156

    Article  PubMed  CAS  Google Scholar 

  16. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25:2397–2403

    Article  PubMed  CAS  Google Scholar 

  17. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:i232–i240

    Article  PubMed  CAS  Google Scholar 

  18. Yamanishi Y (2009) Supervised bipartite graph inference. In Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in Neural Information Processing Systems, vol 21. MIT, Cambridge, MA, pp 1841–1848

    Google Scholar 

  19. Campillos M, Kuhn M, Gavin A, Jensen L, Bork P (2008) Drug target identification using side-effect similarity. Science 321(5886):263–266

    Article  PubMed  CAS  Google Scholar 

  20. Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254

    Article  PubMed  CAS  Google Scholar 

  21. Atias N, Sharan R (2011) An algorithmic framework for predicting side-effects of drugs. Journal of Computational Biology, 18, 207–218

    Google Scholar 

  22. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D485

    Google Scholar 

  23. Gunther S, Guenther S, Kuhn M, Dunkel M et al (2008) SuperTarget and Matador: resources for exploring drug–target relationships. Nucleic Acids Res 36(Database issue): D919–D922

    Google Scholar 

  24. Wishart D, Knox C, Guo A, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue): D901–D906

    Google Scholar 

  25. Hattori M, Okuno Y, Goto S, Kanehisa M (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125:11853–11865

    Article  PubMed  CAS  Google Scholar 

  26. Smith T, Waterman M (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  PubMed  CAS  Google Scholar 

  27. Schölkopf B, Tsuda K, Vert J (2004) Kernel methods in computational biology. MIT, Cambridge, MA

    Google Scholar 

  28. Lodhi H, Yamanishi Y (2010) Chemoinformatics and advanced machine learning perspectives: complex computational methods and collaborative techniques. IGI Global, USA

    Book  Google Scholar 

  29. Todeschini R, Consonni V (2002) Handbook of molecular descriptors. Wiley, New York

    Google Scholar 

  30. Kondor R, Lafferty J (2002) Diffusion kernels on graphs and other discrete input spaces. In: Faucett T, Mishra N (eds) Proceedings of the twentieth international conference on machine learning. AAAI Press, USA, pp 321–328

    Google Scholar 

  31. Scholkopf B, Smola A, Muller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  32. Wahba G (1990) Splines models for observational data: series in applied mathematics. SIAM, Philadelphia

    Book  Google Scholar 

  33. Girosi F, Jones M, Poggio T (1995) Regularization theory and neural networks architectures. Neural Computation 7:219–269

    Article  Google Scholar 

  34. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Bleakley K, Biau G, Vert J-P (2007) Supervised reconstruction of biological networks with local models. Bioinformatics 23:i57–i65

    Article  PubMed  CAS  Google Scholar 

  36. Joachims T (2003) Learning to classify text using support vector machines: methods, theory and algorithms. Kluwer Academic, Dordrecht

    Google Scholar 

  37. Ishibashi K, Hatano K, Takeda M (2008) Online learning of approximate maximum p-norm margin classiers with biases. Proceedings of the 21st annual conference on learning theory (COLT2008), 69–80

    Google Scholar 

  38. Mahe P, Ralaivola L, Stoven V, Vert J (2006) The pharmacophore kernel for virtual screening with support vector machines. J Chem Inf Model 46:2003–2014

    Article  PubMed  CAS  Google Scholar 

  39. Kratochwil N, Malherbe P, Lindemann L, Ebeling M, Hoener M, Muhlemann A, Porter R, Stahl M, Gerber P (2005) An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application. J Chem Inf Model 45:1324–1336

    Article  PubMed  CAS  Google Scholar 

  40. Jacob L, Hoffmann B, Stoven V, Vert J-P (2008) Virtual screening of gpcrs: an in silico chemogenomics approach. BMC Bioinformatics 9:363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Yamanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamanishi, Y. (2013). Chemogenomic Approaches to Infer Drug–Target Interaction Networks. In: Mamitsuka, H., DeLisi, C., Kanehisa, M. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 939. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-107-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-107-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-106-6

  • Online ISBN: 978-1-62703-107-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics