Skip to main content

Visual Evoked Potential Recording in Rodents

  • Protocol
  • First Online:
Stimulation and Inhibition of Neurons

Part of the book series: Neuromethods ((NM,volume 78))

Abstract

The visual evoked potential (VEP) is an electronic potential recorded from the visual cortex in response to a visual stimulus. It provides a means to examine the function of the visual pathway from the retina to the occipital cortex. The most common animals employed in VEP laboratory studies are rats. In this chapter, we describe the basic ‘flash VEP’ recording protocol in rodents and discuss the practical aspects of the preparation including anaesthesia methods, electrode configuration, stimulus design, dark adaptation, filter settings and signal sampling with the authors’ personal experience. We also review the recent use of the VEP in laboratory researches in several optic nerve disease models, including glaucoma, ischemic optic neuropathy and optic neuritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creutzfeldt O, Maekawa K, Hosli L (1969) Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells. Prog Brain Res 31:265–273

    Article  PubMed  CAS  Google Scholar 

  2. Halliday A, McDonald W, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985

    Article  PubMed  CAS  Google Scholar 

  3. Towle V, Moskowitz A, Sokol S, Schwartz B (1983) The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size, and stimulation rate. Invest Ophthalmol Vis Sci 24:175–183

    PubMed  CAS  Google Scholar 

  4. Ridder W (2006) Visual evoked potentials in animals. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. The MIT Press, Cambridge, pp 935–947

    Google Scholar 

  5. Ridder W, Nusinowitz S (2006) The visual evoked potential in the mouse—origins and response characteristics. Vision Res 46:902–913

    Article  PubMed  Google Scholar 

  6. Creel D, Dustman R, Beck E (1973) Visually evoked responses in the rat, guinea pig, cat, monkey, and man. Exp Neurol 40:351–366

    Article  PubMed  CAS  Google Scholar 

  7. Creel D, Dustman RE, Beck EC (1974) Intensity of flash illumination and the visually evoked potential of rats, guinea pigs and cats. Vision Res 14:725–729

    Article  PubMed  CAS  Google Scholar 

  8. Heiduschka P, Schraermeyer U (2008) Comparison of visual function in pigmented and albino rats by electroretinography and visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 246:1559–1573

    Article  PubMed  Google Scholar 

  9. Iwamura Y, Fujii Y, Kamei C (2003) The effects of certain H1-antagonists on visual evoked potential in rats. Brain Res Bull 61:393–398

    Article  PubMed  CAS  Google Scholar 

  10. Iwamura Y, Fujii Y, Kamei C (2004) The effects of selective serotonin-reuptake inhibitor on visual evoked potential in rats. J Pharmacol Sci 94:271–276

    Article  PubMed  CAS  Google Scholar 

  11. Miyake K-I, Yoshida M, Inoue Y, Hata Y (2007) Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci 48:2356–2361

    Article  PubMed  Google Scholar 

  12. Jehle T, Wingert K, Dimitriu C, Meschede W, Lasseck J, Bach M, Lagreze WA (2008) Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 49:1056–1064

    Article  PubMed  Google Scholar 

  13. Papathanasiou ES, Peachey NS, Goto Y, Neafsey EJ, Castro AJ, Kartje GL (2006) Visual cortical plasticity following unilateral sensorimotor cortical lesions in the neonatal rat. Exp Neurol 199:122–129

    Article  PubMed  Google Scholar 

  14. Tomita H, Sugano E, Yawo H, Ishizuka T, Isago H, Narikawa S, Kugler S, Tamai M (2007) Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest Ophthalmol Vis Sci 48:3821–3826

    Article  PubMed  Google Scholar 

  15. Onofrj M, Harnois C, Bodis-Wollner I (1985) The hemispheric distribution of the transient rat VEP: a comparison of flash and pattern stimulation. Exp Brain Res 59:427–433

    Article  PubMed  CAS  Google Scholar 

  16. Meeren H, Van Luijtelaar E, Coenen A (1998) Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. Electroencephalogr Clin Neurophysiol 108:306–319

    Article  PubMed  CAS  Google Scholar 

  17. Goto Y, Furuta A, Tobimatsu S (2001) Magnesium deficiency differentially affects the retina and visual cortex of intact rats. J Nutr 131:2378–2381

    PubMed  CAS  Google Scholar 

  18. Yargicoglu P, Yaras N, Agar A, Gumuslu S, Bilmen S, Ozkaya G (2003) The effect of vitamin E on stress-induced changes in visual evoked potentials (VEPs) in rats exposed to different experimental stress models. Acta Ophthalmol Scand 81:181–187

    Article  PubMed  CAS  Google Scholar 

  19. Bernstein S, Guo Y, Kelman S, Flower R, Johnson M (2003) Functional and cellular responses in a noval rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 44:4153–4162

    Article  PubMed  Google Scholar 

  20. Herr D, Kim T, King D, Boyes W (1996) Possible confounding effects of strobe “clicks” on flash evoked potentials in rats. Physiol Behav 59:325–340

    Article  PubMed  CAS  Google Scholar 

  21. Green D, Herreros de Tejada P, Glover M (1994) Electrophysiological estimates of visual sensitivity in albino and pigmented mice. Vis Neurosci 11:919–925

    Article  PubMed  CAS  Google Scholar 

  22. Lopez L, Brusa A, Fadda A, Loizzo S, Martinangeli A, Sannita WG, Loizzo A (2002) Modulation of flash stimulation intensity and frequency: effects on visual evoked potentials and oscillatory potentials recorded in awake, freely moving mice. Brain Res 131:105–114

    Google Scholar 

  23. Mazzucchelli A, Conte S, D’Olimpio F, Ferlazzo F, Loizzo A, Palazzesi S, Renzi P (1995) Ultradian rhythms in the N1-P2 amplitude of the visual evoked potential in two inbred strains of mice: DBA/2J and C57BL/6. Behav Brain Res 67:81–84

    Article  PubMed  CAS  Google Scholar 

  24. Peachey NS, Roveri L, Messing A, McCall MA (1997) Functional consequences of oncogene-induced horizontal cell degeneration in the retinas of transgenic mice. Vis Neurosci 14:627–632

    Article  PubMed  CAS  Google Scholar 

  25. Porciatti V, Pizzourusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39:3071–3781

    Article  PubMed  CAS  Google Scholar 

  26. Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36

    Article  PubMed  Google Scholar 

  27. Henry K, Rhoades R (1978) Relation of albinism and drugs to the visual evoked potential of the mouse. J Comp Physiol Psychol 92:271–279

    Article  PubMed  CAS  Google Scholar 

  28. You Y, Klistorner A, Thie J, Graham S (2011) Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci 52:6911–6918

    Article  PubMed  Google Scholar 

  29. You Y, Klistorner A, Thie J, Graham S (2011) Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Doc Ophthalmol 123:109–119

    Article  PubMed  Google Scholar 

  30. Castro-Junior J, Resende L, Bertotti M, Fonseca R, Zanchetta S, Schelp A (2005) Comparision of the effects of barbiturate, benzodiazepine and ketamine on visual evoked potentials in rabbits. Electromyogr Clin Neurophysiol 45:259–262

    PubMed  CAS  Google Scholar 

  31. Anis N, Berry S, Burton N, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  PubMed  CAS  Google Scholar 

  32. Virtanen R, Savola J, Saano V, Nyman L (1988) Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol 150:9–14

    Article  PubMed  CAS  Google Scholar 

  33. Ridder W, Nusinowitz S, Heckenlively J (2002) Cause of cataract development in anesthetized mice. Exp Eye Res 75:365–370

    PubMed  CAS  Google Scholar 

  34. Weymouth AE, Vingrys AJ (2008) Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res 27:1–44

    Article  PubMed  CAS  Google Scholar 

  35. Smith KJ, Waxman SG (2005) The conduction properties of demyelinated and remyelinated axons. In: Waxman SG (ed) Multiple sclerosis as a neuronal disease. Elsevier Academic Press, Amsterdam, pp 85–100

    Chapter  Google Scholar 

  36. Boyes W, Padilla S, Dyer R (1985) Body temperature-dependent and independent actions of chlordimeform on visual evoked potentials and axonal transport in optic system of rat. Neuropharmacology 24:743–749

    Article  PubMed  CAS  Google Scholar 

  37. Hetzler B, Boyes W, Creason J, Dyer R (1988) Temperature-dependent changes in visual evoked potentials of rats. Electroencephalogr Clin Neurophysiol 70:137–154

    Article  PubMed  CAS  Google Scholar 

  38. Fahle M, Bach M (2006) Origin of the visual evoked potentials. In: Heckenlively J, Arden G (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 207–234

    Google Scholar 

  39. Leamey CA, Protti DA, Dreher B (2008) Comparative survey of the mammalian visual system with reference to the mouse. In: Chalupa LM, Williams RW (eds) Eye, retina, and visual system of the mouse. MIT Press, Cambridge, pp 35–60

    Google Scholar 

  40. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119

    Article  PubMed  Google Scholar 

  41. McCall M, Robinson S, Dreher B (1987) Differential retinal growth appears to be the primary factor producing the ganglion cell density gradient in the rat. Neurosci Lett 79:78–84

    Article  PubMed  CAS  Google Scholar 

  42. Shaw N (1992) The effects of low-pass filtering on the flash visual evoked potential of the albino rat. J Neurosci Methods 44:233–240

    Article  PubMed  CAS  Google Scholar 

  43. Narfstrom K, Ekesten B, Rosolen S, Spiess B, Percicot C, Ofri R (2002) Guidelines for clinical electroretinography in the dog. Doc Ophthalmol 105:83–92

    Article  PubMed  Google Scholar 

  44. Klistorner A, Crewther D, Crewther S (1997) Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP. Vision Res 37:2161–2169

    Article  PubMed  CAS  Google Scholar 

  45. Klistorner A, Graham S, Martins A, Grigg J, Arvind H, Kumar R, James A, Billson F (2007) Multifocal blue-on-yellow visual evoked potentials in early glaucoma. Ophthalmology 114:1613–1621

    Article  PubMed  Google Scholar 

  46. Klistorner A, Arvind H, Nguyen T, Garrick R, Paine M, Graham S, O’Day J, Grigg J, Billson F, Yiannikas C (2008) Axonal loss and myelin in early ON loss in postacute optic neuritis. Ann Neurol 64:325–331

    Article  PubMed  Google Scholar 

  47. Klistorner A, Graham S, Fraser C, Garrick R, Nguyen T, Paine M, O’Day J, Arvind H, Billson F (2007) Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest Ophthalmol Vis Sci 48:4549–4556

    Article  PubMed  Google Scholar 

  48. Youl B, Turano G, Miller D, Towell A, MacManus D, Moore S, Jones S, Barrett G, Kendall B, Moseley I (1991) The pathophysiology of acute optic neuritis: an association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114:2437–2450

    Article  PubMed  Google Scholar 

  49. Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, Bahr M (2001) Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci 21:6214–6220

    PubMed  CAS  Google Scholar 

  50. Diem R, Demmer I, Boretius S, Merkler D, Schmelting B, Williams S, Sattler M, Bahr M, Michaelis T, Frahm J, Bruck W, Fuchs E (2008) Autoimmune optic neuritis in the common marmoset monkey: comparison of visual evoked potentials with MRI and histopathology. Invest Ophthalmol Vis Sci 49:3707–3714

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart L. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

You, Y., Klistorner, A., Graham, S.L. (2013). Visual Evoked Potential Recording in Rodents. In: Pilowsky, P., Farnham, M., Fong, A. (eds) Stimulation and Inhibition of Neurons. Neuromethods, vol 78. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-233-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-233-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-232-2

  • Online ISBN: 978-1-62703-233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics