Skip to main content

Conformational Analysis of Recombinant Monoclonal Antibodies with Hydrogen/Deuterium Exchange Mass Spectrometry

  • Protocol
  • First Online:
Glycosylation Engineering of Biopharmaceuticals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 988))

Abstract

Understanding the conformation of antibodies, especially those of therapeutic value, is of great interest. Many of the current analytical methods used to probe protein conformation face issues in the analysis of antibodies, either due to the nature of the antibody itself or due to the limitations of the method. One method that has recently been utilized for conformational analysis of antibodies is hydrogen/deuterium exchange mass spectrometry (H/DX MS). H/DX MS can be used to probe the conformation and dynamics of proteins in solution, requires small sample quantities, is compatible with many buffer systems, and provides peptide-level resolution. The application of H/DX MS to immunoglobulin gamma 1 (IgG1) recombinant monoclonal antibodies can provide information about IgG1 conformation, dynamics, and changes to conformation as a result of protein modification(s), changes in storage conditions, purification procedures, formulation, and many other parameters. In this article we provide a comprehensive H/DX MS protocol for the analysis of an antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan AC, Carter PJ (2010) Antibody therapeutics for autoimmunity and inflammation. Nat Rev Immunol 10:301–316

    Article  PubMed  CAS  Google Scholar 

  2. Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6:349–356

    Article  PubMed  CAS  Google Scholar 

  3. Weiner LM, Surana R, Wang S (2010) Antibody-targeted cancer immunotherapy: magic bullets with memory. Nat Rev Immunol 10:317–327

    Article  PubMed  CAS  Google Scholar 

  4. Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62

    Article  PubMed  CAS  Google Scholar 

  5. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    Article  PubMed  CAS  Google Scholar 

  6. Leavy O (2010) Therapeutic antibodies: past, present and future. Nat Rev Immunol 10:297

    Article  PubMed  CAS  Google Scholar 

  7. Davies DR, Padlan EA, Segal DM (1975) Three-dimensional structure of immunoglobulins. Annu Rev Biochem 44:639–667

    Article  PubMed  CAS  Google Scholar 

  8. Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM et al (2001) Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293:1155–1159

    Article  PubMed  CAS  Google Scholar 

  9. Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR (2009) Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem 81:2644–2651

    Article  PubMed  CAS  Google Scholar 

  10. Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728

    Article  PubMed  CAS  Google Scholar 

  11. Englander SW, Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16:521–655

    Article  PubMed  CAS  Google Scholar 

  12. Smith DL, Deng Y, Zhang Z (1997) Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32:135–146

    Article  PubMed  CAS  Google Scholar 

  13. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158–170

    Article  PubMed  CAS  Google Scholar 

  14. Hoofnagle AN, Resing KA, Ahn NG (2003) Protein analysis by hydrogen exchange mass spectrometry. Annu Rev Biophys Biomol Struct 32:1–25, Epub;%2003 Feb 18., 1–25

    Article  PubMed  CAS  Google Scholar 

  15. Brier S, Engen JR (2008) Protein analysis by hydrogen exchange mass spectrometry. In: Chance M (ed) Mass spectrometry analysis for protein–protein interactions an dynamics. Wiley-Blackwell, New York, pp 11–43

    Google Scholar 

  16. Engen JR (2009) Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal Chem 81:7870–7875

    Article  PubMed  CAS  Google Scholar 

  17. Maier CS, Deinzer ML (2005) Protein conformations, interactions, and H/D exchange. Methods Enzymol 402:312–360

    Article  PubMed  CAS  Google Scholar 

  18. Yan X, Maier CS (2009) Hydrogen/deuterium exchange mass spectrometry. Methods Mol Biol 492:255–271

    Article  PubMed  CAS  Google Scholar 

  19. Konermann L, Tong X, Pan Y (2008) Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. J Mass Spectrom 43:1021–1036

    Article  PubMed  CAS  Google Scholar 

  20. Morgan CR, Engen JR (2009) Investigating solution-phase protein structure and dynamics by hydrogen exchange mass spectrometry. Curr Protoc Protein Sci. 2009 Nov; Chapter 17:Unit 17.6.1–17. doi: 10.1002/0471140864.ps1706s58

    Google Scholar 

  21. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2:522–531

    Article  PubMed  CAS  Google Scholar 

  22. Weis DD, Engen JR, Kass IJ (2006) Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J Am Soc Mass Spectrom 17:1700–1703

    Article  PubMed  CAS  Google Scholar 

  23. Wales TE, Fadgen KE, Gerhardt GC, Engen JR (2008) High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem 80:6815–6820

    Article  PubMed  CAS  Google Scholar 

  24. Wu Y, Engen JR, Hobbins WB (2006) Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom 17:163–167

    Article  PubMed  CAS  Google Scholar 

  25. Woods VL, Jr, Hamuro Y (2001) High resolution, high-throughput amide deuterium exchange-mass spectrometry (DXMS) determination of protein binding site structure and dynamics: utility in pharmaceutical design. J Cell Biochem Suppl 37:89–98

    Google Scholar 

  26. Wang L, Pan H, Smith DL (2002) Hydrogen exchange-mass spectrometry: optimization of digestion conditions. Mol Cell Proteomics 1:132–138

    Article  PubMed  CAS  Google Scholar 

  27. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  28. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  29. Noble JE, Bailey MJ (2009) Quantitation of protein. Methods Enzymol 463:73–95

    Article  PubMed  CAS  Google Scholar 

  30. Pascal BD, Chalmers MJ, Busby SA, Mader CC, Southern MR, Tsinoremas NF et al (2007) The Deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data. BMC Bioinformatics 8:156

    Article  PubMed  CAS  Google Scholar 

  31. Pascal BD, Chalmers MJ, Busby SA, Griffin PR (2009) HD desktop: an integrated platform for the analysis and visualization of H/D exchange data. J Am Soc Mass Spectrom 20:601–610

    Article  PubMed  CAS  Google Scholar 

  32. Slysz GW, Baker CA, Bozsa BM, Dang A, Percy AJ, Bennett M et al (2009) Hydra: software for tailored processing of H/D exchange data from MS or tandem MS analyses. BMC Bioinformatics 10:162

    Article  PubMed  Google Scholar 

  33. Hotchko M, Anand GS, Komives EA, Ten Eyck LF (2006) Automated extraction of backbone deuteration levels from amide H/2H mass spectrometry experiments. Protein Sci 15:583–601

    Article  PubMed  CAS  Google Scholar 

  34. Nikamanon P, Pun E, Chou W, Koter MD, Gershon PD (2008) “TOF2H”: a precision toolbox for rapid, high density/high coverage hydrogen–deuterium exchange mass spectrometry via an LC-MALDI approach, covering the data pipeline from spectral acquisition to HDX rate analysis. BMC Bioinformatics 9:387

    Article  PubMed  Google Scholar 

  35. Lou X, Kirchner M, Renard BY, Kothe U, Boppel S, Graf C et al (2010) Deuteration ­distribution estimation with improved sequence coverage for HX/MS experiments. Bioinformatics 26:1535–1541

    Article  PubMed  CAS  Google Scholar 

  36. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide1,2. J Phys Chem 64:188–190

    Article  CAS  Google Scholar 

  37. Fang J, Rand KD, Beuning PJ, Engen JR (2011) False EX1 signatures caused by sample carryover during HX MS analyses. Int J Mass Spectrom 302:19–25

    Article  PubMed  CAS  Google Scholar 

  38. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    PubMed  CAS  Google Scholar 

  39. Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100:2071–2086

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Steven A. Berkowitz for his advice and encouragement, Dr. Rohin Mhatre, Dr. Helena Madden, and Dr. Geoff Gerhardt for their support of H/DX MS, and Dr. Thomas E. Wales, Dr. Keith Fadgen, Dr. Martha Stapels, and Dr. Michael Eggertson for their technical assistance. This work was supported in part by funding from the NIH (GM-086507) and a research collaboration with Waters Corporation. This is contribution 974 from the Barnett Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Houde, D., Engen, J.R. (2013). Conformational Analysis of Recombinant Monoclonal Antibodies with Hydrogen/Deuterium Exchange Mass Spectrometry. In: Beck, A. (eds) Glycosylation Engineering of Biopharmaceuticals. Methods in Molecular Biology, vol 988. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-327-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-327-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-326-8

  • Online ISBN: 978-1-62703-327-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics