Skip to main content

Limbal Epithelial Cell Therapy: Past, Present, and Future

  • Protocol
  • First Online:
Corneal Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1014))

Abstract

The cornea, the clear window at the front of the eye, transmits light to the retina to enable vision. The corneal surface is renewed by stem cells located at the peripheral limbal region. These cells can be destroyed by a number of factors, including chemical burns, infections, and autoimmune diseases, which result in limbal stem cell deficiency (LSCD), a condition that can lead to blindness. Established therapy for LSCD based on ex vivo expanded limbal epithelial cells is currently at a stage of refinement. Therapy for LSCD is also rapidly evolving to include alternative cell types and clinical approaches as treatment modalities. In the present perspectives chapter, strategies to treat LSCD are discussed and advances in this important field of regenerative medicine are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissman BA, Fatt I, Rasson J (1981) Diffusion of oxygen in human corneas in vivo. Invest Ophthalmol Vis Sci 20:123–125

    PubMed  CAS  Google Scholar 

  2. Gottsch JD, Chen CH, Aguayo JB, Cousins JP, Strahlman ER, Stark WJ (1986) Glycolytic activity in the human cornea monitored with nuclear magnetic resonance spectroscopy. Arch Ophthalmol 104:886–889

    Article  PubMed  CAS  Google Scholar 

  3. Nishida T (2005) Cornea. In: Krachmer JH, Mannis MJ, Holland E (eds) Cornea. Fundamentals, diagnosis and management, 2nd edn. Elsevier, Mosby, Philadelphia, pp 3–26

    Google Scholar 

  4. Graymore CN (1970) Biochemistry of the eye. Academic, New York

    Google Scholar 

  5. Brandell BW, Goldstick TK, Deutsch TA, Ernest JT (1988) Tissue oxygen uptake from the atmosphere by a new, noninvasive polarographic technique with application to corneal metabolism. Adv Exp Med Biol 222:275–284

    Article  PubMed  CAS  Google Scholar 

  6. Rozsa AJ, Beuerman RW (1982) Density and organization of free nerve endings in the ­corneal epithelium of the rabbit. Pain 14:105–120

    Article  PubMed  CAS  Google Scholar 

  7. Beuerman RW, Pedroza L (1996) Ultrastructure of the human cornea. Microsc Res Tech 33:320–335

    Article  PubMed  CAS  Google Scholar 

  8. Pfister RR (1973) The normal surface of ­corneal epithelium: a scanning electron microscopic study. Invest Ophthalmol 12:654–668

    PubMed  CAS  Google Scholar 

  9. Klyce SD (1972) Electrical profiles in the corneal epithelium. J Physiol 226:407–429

    PubMed  CAS  Google Scholar 

  10. Pajoohesh-Ganji A, Stepp MA (2005) In search of markers for the stem cells of the corneal epithelium. Biol Cell 97:265–276

    Article  PubMed  CAS  Google Scholar 

  11. Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102:1476–1485

    PubMed  CAS  Google Scholar 

  12. Fini ME, Stramer BM (2005) How the ­cornea heals: cornea-specific repair mechanisms affecting surgical outcomes. Cornea 24:S2–S11

    Article  PubMed  Google Scholar 

  13. Meek KM, Dennis S, Khan S (2003) Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys J 85:2205–2212

    Article  PubMed  CAS  Google Scholar 

  14. Jester JV, Moller-Pederson T, Huang J, Sax CM, Kays WT, Cavangh HD et al (1999) The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci 112:613–622

    PubMed  CAS  Google Scholar 

  15. Nelson JD, Cameron JD (2005) The conjunctiva: anatomy and physiology. In: Krachmer J, Mannis M, Holland E (eds) Cornea. Fundamentals, diagnosis and management, 2nd edn. Elsevier, Mosby, Philadelphia, pp 37–44

    Google Scholar 

  16. Dilly PN (1994) Structure and function of the tear film. Adv Exp Med Biol 350:239–247

    Article  PubMed  CAS  Google Scholar 

  17. Tseng SC, Hirst LW, Maumenee AE, Kenyon KR, Sun TT, Green WR (1984) Possible mechanisms for the loss of goblet cells in mucin-deficient disorders. Ophthalmology 91:545–552

    PubMed  CAS  Google Scholar 

  18. Wolfley DE (2005) Eyelids. In: Krachmer JH, Mannis MJ, Holland EJ (eds) Cornea. Fundamentals, diagnosis and management, 2nd edn. Elsevier, Mosby, Philadelphia, pp 53–58

    Google Scholar 

  19. Doshi S (2004) Corneal anatomy, physiology and response to wounding. In: Naroo SA (ed) Refractive surgery: a guide to assessment and management. BH, Optician, pp 17–21

    Chapter  Google Scholar 

  20. Duke-Elder S (1968) System of ophthalmology. Kimpton, London

    Google Scholar 

  21. Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229:560–561

    Article  PubMed  CAS  Google Scholar 

  22. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  PubMed  CAS  Google Scholar 

  23. Zieske JD (1994) Perpetuation of stem cells in the eye. Eye (Lond) 8:163–169

    Article  Google Scholar 

  24. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  PubMed  CAS  Google Scholar 

  25. Beebe DC, Masters BR (1996) Cell lineage and the differentiation of corneal epithelial cells. Invest Ophthalmol Vis Sci 37:1815–1825

    PubMed  CAS  Google Scholar 

  26. Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24:1442–1443

    PubMed  CAS  Google Scholar 

  27. Watanabe K, Nakagawa S, Nishida T (1987) Stimulatory effects of fibronectin and EGF on migration of corneal epithelial cells. Invest Ophthalmol Vis Sci 28:205–211

    PubMed  CAS  Google Scholar 

  28. Welge-Lussen U, May CA, Neubauer AS, Priglinger S (2001) Role of tissue growth ­factors in aqueous humor homeostasis. Curr Opin Ophthalmol 12:94–99

    Article  PubMed  CAS  Google Scholar 

  29. Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45:S203–S210

    Article  PubMed  Google Scholar 

  30. West-Mays JA, Dwivedi DJ (2006) The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol 38:1625–1631

    Article  PubMed  CAS  Google Scholar 

  31. Schofield R (1983) The stem cell system. Biomed Pharmacother 37:375–380

    PubMed  CAS  Google Scholar 

  32. Watt FM (2000) Out of eden: stem cells and their niches. Science 287:1427–1430

    Article  PubMed  CAS  Google Scholar 

  33. Van Buskirk EM (1989) The anatomy of the limbus. Eye (Lond) 3:101–108

    Article  Google Scholar 

  34. Gipson IK (1989) The epithelial basement membrane zone of the limbus. Eye (Lond) 3:132–140

    Article  Google Scholar 

  35. Schlotzer-Schrehardt U, Dietrich T, Saito K, Sorokin L, Sasaki T, Paulsson M et al (2007) Characterization of extracellular matrix ­components in the limbal epithelial stem cell ­compartment. Exp Eye Res 85:845–860

    Article  PubMed  CAS  Google Scholar 

  36. Shanmuganathan VA, Foster T, Kulkarni BB, Hopkinson A, Gray T, Powe DG et al (2007) Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol 91:514–519

    Article  PubMed  Google Scholar 

  37. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532

    Article  PubMed  CAS  Google Scholar 

  38. Majo F, Rochat A, Nicolas M, Jaoude GA, Barrandon Y (2008) Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456:250–254

    Article  PubMed  CAS  Google Scholar 

  39. Dua HS, Miri A, Alomar T, Yeung AM, Said DG (2009) The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology 116:856–863

    Article  PubMed  Google Scholar 

  40. Pepose JS, Ubels JL (1992) The cornea. In: Hart WMJ (ed) Adler’s physiology of the e ye, 9th edn. Mosby Year Book Inc., St. Louis, pp 29–70

    Google Scholar 

  41. Sun TT, Tseng SC, Lavker RM (2010) Location of corneal epithelial stem cells. Nature 463:E10–E11

    Article  PubMed  CAS  Google Scholar 

  42. Emamy H, Ahmadian H (1977) Limbal ­dermoid with ectopic brain tissue. Report of a case and review of the literature. Arch Ophthalmol 95:2201–2202

    Article  PubMed  CAS  Google Scholar 

  43. Weinstein JM, Romano PE, O’Grady RB (1979) Bone formation in association with a limbal dermoid. Arch Ophthalmol 97:1121–1122

    Article  PubMed  CAS  Google Scholar 

  44. Mann I (1944) A study of epithelial regeneration in the living eye. Br J Ophthalmol 28:26–40

    Article  PubMed  CAS  Google Scholar 

  45. Hanna C (1966) Proliferation and migration of epithelial cells during corneal wound repair in the rabbit and the rat. Am J Ophthalmol 61:55–63

    PubMed  CAS  Google Scholar 

  46. Dua HS, Forrester JV (1990) The corneoscleral limbus in human corneal epithelial wound ­healing. Am J Ophthalmol 110:646–656

    PubMed  CAS  Google Scholar 

  47. Buck RC (1979) Cell migration in repair of mouse corneal epithelium. Invest Ophthalmol Vis Sci 18:767–784

    PubMed  CAS  Google Scholar 

  48. Kinoshita S, Friend J, Thoft RA (1981) Sex chromatin of donor corneal epithelium in rabbits. Invest Ophthalmol Vis Sci 21:434–441

    PubMed  CAS  Google Scholar 

  49. Srinivasan BD, Eakins KE (1979) The reepithelialization of rabbit cornea following single and multiple denudation. Exp Eye Res 29:595–600

    Article  PubMed  CAS  Google Scholar 

  50. Chen JJ, Tseng SC (1990) Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci 31:1301–1314

    PubMed  CAS  Google Scholar 

  51. Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32:2219–2233

    PubMed  CAS  Google Scholar 

  52. Huang AJ, Tseng SC (1991) Corneal ­epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 32:96–105

    PubMed  CAS  Google Scholar 

  53. Barrandon Y, Green H (1985) Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A 82:5390–5394

    Article  PubMed  CAS  Google Scholar 

  54. Romano AC, Espana EM, Yoo SH, Budak MT, Wolosin JM, Tseng SC (2003) Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Invest Ophthalmol Vis Sci 44:5125–5129

    Article  PubMed  Google Scholar 

  55. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ (2004) Characterization of putative stem cell phenotype in human ­limbal epithelia. Stem Cells 22:355–366

    Article  PubMed  Google Scholar 

  56. Schlotzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264

    Article  PubMed  CAS  Google Scholar 

  57. Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K et al (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565:6–10

    Article  PubMed  CAS  Google Scholar 

  58. Wolosin JM, Budak MT, Akinci MA (2004) Ocular surface epithelial and stem cell development. Int J Dev Biol 48:981–991

    Article  PubMed  Google Scholar 

  59. Budak MT, Alpdogan OS, Zhou M, Lavker RM, Akinci MA, Wolosin JM (2005) Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 118:8–24

    Article  CAS  Google Scholar 

  60. de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ (2005) ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23:63–73

    Article  PubMed  CAS  Google Scholar 

  61. Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M (2005) Isoforms of DeltaNp63 and the migration of ocular ­limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A 102:9523–9528

    Article  PubMed  CAS  Google Scholar 

  62. Chaloin-Dufau C, Sun TT, Dhouailly D (1990) Appearance of the keratin pair K3/K12 during embryonic and adult corneal ­epithelial differentiation in the chick and in the rabbit. Cell Differ Dev 32:97–108

    Article  PubMed  CAS  Google Scholar 

  63. Kiritoshi A, SundarRaj N, Thoft RA (1991) Differentiation in cultured limbal epithelium as defined by keratin expression. Invest Ophthalmol Vis Sci 32:3073–3077

    PubMed  CAS  Google Scholar 

  64. Chen WY, Mui MM, Kao WW, Liu CY, Tseng SC (1994) Conjunctival epithelial cells do not transdifferentiate in organotypic cultures: expression of K12 keratin is restricted to corneal epithelium. Curr Eye Res 13:765–778

    Article  PubMed  CAS  Google Scholar 

  65. Arpitha P, Prajna NV, Srinivasan M, Muthukkaruppan V (2005) High expression of p63 combined with a large N/C ratio defines a subset of human limbal epithelial cells: implications on epithelial stem cells. Invest Ophthalmol Vis Sci 46:3631–3636

    Article  PubMed  Google Scholar 

  66. Lindberg K, Brown ME, Chaves HV, Kenyon KR, Rheinwald JG (1993) In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci 34:2672–2679

    PubMed  CAS  Google Scholar 

  67. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P et al (1999) Location and clonal analysis of stem cells and their ­differentiated progeny in the human ocular surface. J Cell Biol 145:769–782

    Article  PubMed  CAS  Google Scholar 

  68. Bickenbach JR (1981) Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 60:1611–1620

    Article  PubMed  Google Scholar 

  69. Lavker RM, Dong G, Cheng SZ, Kudoh K, Cotsarelis G, Sun TT (1991) Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes. Invest Ophthalmol Vis Sci 32:1864–1875

    PubMed  CAS  Google Scholar 

  70. Tseng SC, Zhang SH (1995) Limbal epithelium is more resistant to 5-fluorouracil toxicity than corneal epithelium. Cornea 14:394–401

    PubMed  CAS  Google Scholar 

  71. Lehrer MS, Sun TT, Lavker RM (1998) Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111:2867–2875

    PubMed  CAS  Google Scholar 

  72. Schwartz GS, Holland EJ (2005) Classification and staging of ocular surface disease. In: Krachmer JH, Mannis MJ, Holland EJ (eds) Cornea, 2nd edn. Elsevier Mosby, Philadelphia, pp 1785–1797

    Google Scholar 

  73. Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye (Lond) 17:877–885

    Article  CAS  Google Scholar 

  74. Vemuganti GK, Sangwan VS (2010) Interview: affordability at the cutting edge: stem cell therapy for ocular surface reconstruction. Reg Anesth 5:337–340

    Google Scholar 

  75. Schwab IR, Isseroff RR (2000) Bioengineered corneas—the promise and the challenge. N Engl J Med 343:136–138

    Article  PubMed  CAS  Google Scholar 

  76. Espana EM, Grueterich M, Romano AC, Touhami A, Tseng SC (2002) Idiopathic limbal stem cell deficiency. Ophthalmology 109:2004–2010

    Article  PubMed  Google Scholar 

  77. Di Iorio E, Ferrari S, Fasolo A, Bohm E, Ponzin D, Barbaro V (2010) Techniques for culture and assessment of limbal stem cell grafts. Ocul Surf 8:146–153

    Article  PubMed  Google Scholar 

  78. Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ et al (2008) Ex vivo expansion and transplantation of limbal ­epithelial stem cells. Ophthalmology 115:1989–1997

    Article  PubMed  Google Scholar 

  79. Gomes JA, Pazos HS, Silva AB, Cristovam PC, Belfort Junior R (2009) Transplante de celulas-tronco epiteliais limbicas alogenas expandidas ex vivo sobre membrana amniotica: relato de caso. Arq Bras Oftalmol 72:254–256

    Article  PubMed  Google Scholar 

  80. Pauklin M, Fuchsluger TA, Westekemper H, Steuhl KP, Meller D (2010) Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 45:57–70

    Article  PubMed  Google Scholar 

  81. Nakamura T, Inatomi T, Sotozono C, Ang LP, Koizumi N, Yokoi N et al (2006) Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113:1765–1772

    Article  PubMed  Google Scholar 

  82. Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S (1995) Ocular surface abnormalities in aniridia. Am J Ophthalmol 120:368–375

    PubMed  CAS  Google Scholar 

  83. Desousa JL, Daya S, Malhotra R (2009) Adnexal surgery in patients undergoing ­ocular surface stem cell transplantation. Ophthalmology 116:235–242

    Article  PubMed  Google Scholar 

  84. Skeens HM, Brooks BP, Holland EJ (2011) Congenital aniridia variant: minimally abnormal irides with severe limbal stem cell ­deficiency. Ophthalmology 118:1260–1264

    PubMed  Google Scholar 

  85. Kivlin JD, Apple DJ, Olson RJ, Manthey R (1986) Dominantly inherited keratitis. Arch Ophthalmol 104:1621–1623

    Article  PubMed  CAS  Google Scholar 

  86. Pearce WG, Mielke BW, Hassard DT, Climenhaga HW, Climenhaga DB, Hodges EJ (1995) Autosomal dominant keratitis: a possible aniridia variant. Can J Ophthalmol 30:131–137

    PubMed  CAS  Google Scholar 

  87. Tseng SC, Meller D, Anderson DF, Touhami A, Pires RT, Gruterich M et al (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane for treating corneal diseases with total limbal stem cell deficiency. Adv Exp Med Biol 506((Pt B)):1323–1334

    Article  PubMed  Google Scholar 

  88. Tijmes NT, Zaal MJ, De Jong PT, Volker-Dieben HJ (1997) Two families with dyshidrotic ectodermal dysplasia associated with ingrowth of corneal vessels, limbal hair growth, and Bitot-like conjunctival ­anomalies. Ophthalmic Genet 18:185–192

    Article  PubMed  CAS  Google Scholar 

  89. Di Iorio E, Kaye SB, Ponzin D, Barbaro V, Ferrari S, Bohm E et al (2011) Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. Ophthalmology 119:74–83

    Article  PubMed  Google Scholar 

  90. Anderson NJ, Hardten DR, McCarty TM (2003) Penetrating keratoplasty and keratolimbal allograft transplantation for corneal perforations associated with the ectodermal dysplasia syndrome. Cornea 22:385–388

    Article  PubMed  Google Scholar 

  91. Messmer EM, Kenyon KR, Rittinger O, Janecke AR, Kampik A (2005) Ocular manifestations of keratitis-ichthyosis-deafness (KID) syndrome. Ophthalmology 112:e1–e6

    Article  PubMed  CAS  Google Scholar 

  92. Gicquel JJ, Lami MC, Catier A, Balayre S, Dighiero P (2002) Insuffisance limbique bilaterale associee a un syndrome KID. A propos d’un cas. J Fr Ophtalmol 25:1061–1064

    PubMed  Google Scholar 

  93. Fernandes M, Sangwan VS, Vemuganti GK (2004) Limbal stem cell deficiency and ­xeroderma pigmentosum: a case report. Eye (Lond) 18:741–743

    Article  CAS  Google Scholar 

  94. Inan UU, Yilmaz MD, Demir Y, Degirmenci B, Ermis SS, Ozturk F (2006) Characteristics of lacrimo-auriculo-dento-digital (LADD) syndrome: case report of a family and literature review. Int J Pediatr Otorhinolaryngol 70:1307–1314

    Article  PubMed  Google Scholar 

  95. Cortes M, Lambiase A, Sacchetti M, Aronni S, Bonini S (2005) Limbal stem cell deficiency associated with LADD syndrome. Arch Ophthalmol 123:691–694

    Article  PubMed  Google Scholar 

  96. Traboulsi EI, Azar DT, Jarudi N, Der Kaloustian VM (1985) Ocular findings in the candidiasis-endocrinopathy syndrome. Am J Ophthalmol 99:486–487

    PubMed  CAS  Google Scholar 

  97. Tarkkanen A, Merenmies L (2001) Corneal pathology and outcome of keratoplasty in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Acta Ophthalmol Scand 79:204–207

    Article  PubMed  CAS  Google Scholar 

  98. Usui T, Nakagawa S, Yokoo S, Mimura T, Yamagami S, Amano S (2010) Bilateral limbal stem cell deficiency with chromosomal translocation of 3p and 9p. Jpn J Ophthalmol 54:357–358

    Article  PubMed  Google Scholar 

  99. Thanos M, Pauklin M, Steuhl KP, Meller D (2010) Ocular surface reconstruction with cultivated limbal epithelium in a patient with unilateral stem cell deficiency caused by Epidermolysis Bullosa Dystrophica Hallopeau-Siemens. Cornea 29:462–464

    PubMed  Google Scholar 

  100. Espana EM, Raju VK, Tseng SC (2002) Focal limbal stem cell deficiency corresponding to an iris coloboma. Br J Ophthalmol 86:1451–1452

    Article  PubMed  CAS  Google Scholar 

  101. Aslan D, Akata RF (2010) Dyskeratosis ­congenita and limbal stem cell deficiency. Exp Eye Res 90:472–473

    Article  PubMed  CAS  Google Scholar 

  102. Shimazaki J, Shimmura S, Tsubota K (2002) Limbal stem cell transplantation for the treatment of subepithelial amyloidosis of the ­cornea (gelatinous drop-like dystrophy). Cornea 21:177–180

    Article  PubMed  Google Scholar 

  103. Sahu SK, Das S, Sachdeva V, Sangwan VS (2009) Alcaligenes xylosoxidans keratitis after autologous cultivated limbal epithelium ­transplant. Can J Ophthalmol 44:336–337

    Article  PubMed  Google Scholar 

  104. Baradaran-Rafii A, Ebrahimi M, Kanavi MR, Taghi-Abadi E, Aghdami N, Eslani M et al (2010) Midterm outcomes of autologous ­cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea 29:502–509

    Article  PubMed  Google Scholar 

  105. Colabelli Gisoldi RA, Pocobelli A, Villani CM, Amato D, Pellegrini G (2010) Evaluation of molecular markers in corneal regeneration by means of autologous cultures of limbal cells and keratoplasty. Cornea 29:715–722

    PubMed  Google Scholar 

  106. Fatima A, Vemuganti GK, Iftekhar G, Rao GN, Sangwan VS (2007) In vivo survival and stratification of cultured limbal epithelium. Clin Experiment Ophthalmol 35:96–98

    Article  PubMed  Google Scholar 

  107. Grueterich M (2002) Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology 109:1547–1552

    Article  PubMed  Google Scholar 

  108. Kawashima M, Kawakita T, Satake Y, Higa K, Shimazaki J (2007) Phenotypic study after cultivated limbal epithelial transplantation for limbal stem cell deficiency. Arch Ophthalmol 125:1337–1344

    Article  PubMed  Google Scholar 

  109. Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001) Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 108:1569–1574

    Article  PubMed  CAS  Google Scholar 

  110. Nakamura T, Koizumi N, Tsuzuki M, Inoki K, Sano Y, Sotozono C et al (2003) Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea 22:70–71

    Article  PubMed  Google Scholar 

  111. Nakamura T, Inatomi T, Sotozono C, Koizumi N, Kinoshita S (2004) Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmol Scand 82:468–471

    Article  PubMed  Google Scholar 

  112. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485

    Article  PubMed  CAS  Google Scholar 

  113. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    Article  PubMed  CAS  Google Scholar 

  114. Sangwan VS, Matalia HP, Vemuganti GK, Ifthekar G, Fatima A, Singh S et al (2005) Early results of penetrating keratoplasty after cultivated limbal epithelium transplantation. Arch Ophthalmol 123:334–340

    Article  PubMed  Google Scholar 

  115. Sangwan VS, Matalia HP, Vemuganti GK, Fatima A, Ifthekar G, Singh S et al (2006) Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54:29–34

    Article  PubMed  Google Scholar 

  116. Schwab IR, Reyes M, Isseroff RR (2000) Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19:421–426

    Article  PubMed  CAS  Google Scholar 

  117. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  PubMed  CAS  Google Scholar 

  118. Pan Z, Zhang W, Wu Y, Sun B (2002) Transplantation of corneal stem cells cultured on amniotic membrane for corneal burn: experimental and clinical study. Chin Med J (Engl) 115:767–769

    Google Scholar 

  119. Harkin DG, Barnard Z, Gillies P, Ainscough SL, Apel AJ (2004) Analysis of p63 and cytokeratin expression in a cultivated limbal autograft used in the treatment of limbal stem cell ­deficiency. Br J Ophthalmol 88:1154–1158

    Article  PubMed  CAS  Google Scholar 

  120. Marchini G, Pedrotti E, Pedrotti M, Barbaro V, Di Iorio E, Ferrari S et al (2011) Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clin Exp Ophthalmol 40:255–267

    Article  Google Scholar 

  121. Nakamura T, Sotozono C, Bentley AJ, Mano S, Inatomi T, Koizumi N et al (2010) Long-term phenotypic study after allogeneic ­cultivated corneal limbal epithelial transplantation for severe ocular surface diseases. Ophthalmology 117:2247–2254

    Article  PubMed  Google Scholar 

  122. Sharma S, Tandon R, Mohanty S, Sharma NMV, Sen S, Kashyap S et al (2011) Culture of corneal limbal epithelial stem cells: ­experience from benchtop to bedside in a ­tertiary care hospital in India. Cornea 30:1223–1232

    Article  PubMed  Google Scholar 

  123. Dobrowolski D, Wylegala E, Orzechowska-Wylegala B, Wowra B, Wroblewska-Czajka E (2011) Application of autologous cultivated corneal epithelium for corneal limbal stem cell insufficiency—short-term results. Klin Oczna 113:346–351

    PubMed  Google Scholar 

  124. Shigeyasu C, Shimazaki J (2011) Ocular surface reconstruction after exposure to high concentrations of antiseptic solutions. Cornea 31:59–65

    Article  Google Scholar 

  125. Sangwan VS, Vemuganti GK, Iftekhar G, Bansal AK, Rao GN (2003) Use of autologous cultured limbal and conjunctival ­epithelium in a patient with severe bilateral ocular surface disease induced by acid injury: a case report of unique application. Cornea 22:478–481

    Article  PubMed  Google Scholar 

  126. Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986

    PubMed  CAS  Google Scholar 

  127. Shimazaki J, Higa K, Morito F, Dogru M, Kawakita T, Satake Y et al (2007) Factors influencing outcomes in cultivated limbal epithelial transplantation for chronic cicatricial ocular surface disorders. Am J Ophthalmol 143:945–953

    Article  PubMed  Google Scholar 

  128. Sangwan VS, Basu S, Vemuganti GK, Sejpal K, Subramaniam SV, Bandyopadhyay S et al (2011) Clinical outcomes of xeno-free ­autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol 95:1525–1529

    Article  PubMed  Google Scholar 

  129. Kadar T, Horwitz V, Sahar R, Cohen M, Cohen L, Gez R et al (2011) Delayed loss of corneal epithelial stem cells in a chemical injury model associated with limbal stem cell deficiency in rabbits. Curr Eye Res 36:1098–1107

    Article  PubMed  Google Scholar 

  130. Ghasemi H, Ghazanfari T, Ghassemi-Broumand M, Javadi MA, Babaei M, Soroush MR et al (2009) Long-term ocular ­consequences of ­sulfur mustard in seriously eye-injured war ­veterans. Cutan Ocul Toxicol 28:71–77

    Article  PubMed  CAS  Google Scholar 

  131. Baradaran-Rafii A, Eslani M, Tseng SC (2011) Sulfur mustard-induced ocular surface disorders. Ocul Surf 9:163–178

    Article  PubMed  Google Scholar 

  132. Kadar T, Dachir S, Cohen L, Sahar R, Fishbine E, Cohen M et al (2009) Ocular injuries ­following sulfur mustard exposure–pathological mechanism and potential therapy. Toxicology 263:59–69

    Article  PubMed  CAS  Google Scholar 

  133. Javadi MA, Jafarinasab MR, Feizi S, Karimian F, Negahban K (2011) Management of ­mustard gas-induced limbal stem cell deficiency and keratitis. Ophthalmology 1187:1272–1281

    Google Scholar 

  134. Pleyer U, Sherif Z, Baatz H, Hartmann C (1999) Delayed mustard gas keratopathy: clinical findings and confocal microscopy. Am J Ophthalmol 128:506–507

    Article  PubMed  CAS  Google Scholar 

  135. Javadi MA, Yazdani S, Sajjadi H, Jadidi K, Karimian F, Einollahi B et al (2005) Chronic and delayed-onset mustard gas keratitis: report of 48 patients and review of literature. Ophthalmology 112:617–625

    Article  PubMed  Google Scholar 

  136. Kwok LS, Coroneo MT (1994) A model for pterygium formation. Cornea 13:219–224

    Article  PubMed  CAS  Google Scholar 

  137. Mahdy MA, Bhatia J (2009) Treatment of primary pterygium: role of limbal stem cells and conjunctival autograft transplantation. Oman J Ophthalmol 2:23–26

    Article  PubMed  Google Scholar 

  138. Dushku N, John MK, Schultz GS, Reid TW (2001) Pterygia pathogenesis: corneal invasion by matrix metalloproteinase expressing altered limbal epithelial basal cells. Arch Ophthalmol 119:695–706

    Article  PubMed  CAS  Google Scholar 

  139. Chui J, Coroneo MT, Tat LT, Crouch R, Wakefield D, Di Girolamo N (2011) Ophthalmic pterygium: a stem cell disorder with premalignant features. Am J Pathol 178:817–827

    Article  PubMed  Google Scholar 

  140. Dua HS, Azuara-Blanco A (1999) Allo-limbal transplantation in patients with limbal stem cell deficiency. Br J Ophthalmol 83:414–419

    Article  PubMed  CAS  Google Scholar 

  141. Holland EJ, Schwartz GS (1999) Epithelial stem-cell transplantation for severe ocular-surface disease. N Engl J Med 340:1752–1753

    Article  PubMed  CAS  Google Scholar 

  142. Kremer I, Ehrenberg M, Weinberger D (2009) Fresh-tissue corneolimbal covering graft for large corneal perforation following childhood trachoma. Ophthalmic Surg Lasers Imaging 40:245–250

    Article  PubMed  Google Scholar 

  143. Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646

    Article  PubMed  Google Scholar 

  144. Vemuganti GK, Fatima A, Madhira SL, Basti S, Sangwan VS (2009) Limbal stem cells: Application in ocular biomedicine. Int Rev Cell Mol Biol 275:133–181

    Article  PubMed  Google Scholar 

  145. Sangwan VS, Murthy SI, Vemuganti GK, Bansal AK, Gangopadhyay N, Rao GN (2005) Cultivated corneal epithelial transplantation for severe ocular surface disease in vernal ­keratoconjunctivitis. Cornea 24:426–430

    Article  PubMed  Google Scholar 

  146. Sangwan VS, Jain V, Vemuganti GK, Murthy SI (2011) Vernal keratoconjunctivitis with limbal stem cell deficiency. Cornea 30:491–496

    PubMed  Google Scholar 

  147. Satake Y, Shimmura S, Shimazaki J. (2009) Cultivated autologous limbal epithelial transplantation for symptomatic bullous keratopathy. BMJ Case Rep pii: bcr11.2008.1239.

    Google Scholar 

  148. Tan DT, Ficker LA, Buckley RJ (1996) Limbal transplantation. Ophthalmology 103:29–36

    PubMed  CAS  Google Scholar 

  149. Tsai RJ, Tseng SC (1994) Human allograft limbal transplantation for corneal surface reconstruction. Cornea 13:389–400

    Article  PubMed  CAS  Google Scholar 

  150. Di Girolamo N, Bosch M, Zamora K, Coroneo MT, Wakefield D, Watson SL (2009) A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation 87:1571–1578

    Article  PubMed  Google Scholar 

  151. Hong S, Kim EJ, Seong GJ, Seo KY (2010) Limbal stem cell transplantation for limbal dermoid. Ophthalmic Surg Lasers Imaging 9:1–2

    Google Scholar 

  152. Schwartz GS, Holland EJ (2001) Iatrogenic limbal stem cell deficiency: when glaucoma management contributes to corneal disease. J Glaucoma 10:443–445

    Article  PubMed  CAS  Google Scholar 

  153. Schwartz GS, Holland EJ (1998) Iatrogenic limbal stem cell deficiency. Cornea 17:31–37

    Article  PubMed  CAS  Google Scholar 

  154. Holland EJ, Schwartz GS (1997) Iatrogenic limbal stem cell deficiency. Trans Am Ophthalmol Soc 95:95–107

    PubMed  CAS  Google Scholar 

  155. Capella MJ, de Alvarez TJ, de la Paz MF (2011) Insuficiencia limbar secundaria a ­multiples inyecciones intravitreas. Arch Soc Esp Oftalmol 86:89–92

    Article  PubMed  CAS  Google Scholar 

  156. Nghiem-Buffet MH, Gatinel D, Jacquot F, Chaine G, Hoang-Xuan T (2003) Limbal stem cell deficiency following ­phototherapeutic keratectomy. Cornea 22:482–484

    Article  PubMed  Google Scholar 

  157. Cannon TC, Brown MF, Brown HH (2004) Regarding limbal stem cell deficiency following phototherapeutic keratectomy. Cornea 23:421

    Article  PubMed  Google Scholar 

  158. Fujishima H, Shimazaki J, Tsubota K (1996) Temporary corneal stem cell dysfunction after radiation therapy. Br J Ophthalmol 80:911–914

    Article  PubMed  CAS  Google Scholar 

  159. Smith GT, Deutsch GP, Cree IA, Liu CS (2000) Permanent corneal limbal stem cell dysfunction following radiotherapy for orbital lymphoma. Eye (Lond) 14:905–907

    Article  CAS  Google Scholar 

  160. Pires RT, Chokshi A, Tseng SC (2000) Amniotic membrane transplantation or conjunctival limbal autograft for limbal stem cell deficiency induced by 5-fluorouracil in glaucoma surgeries. Cornea 19:284–287

    Article  PubMed  CAS  Google Scholar 

  161. Dudney BW, Malecha MA (2004) Limbal stem cell deficiency following topical mitomycin C treatment of conjunctival-corneal intraepithelial neoplasia. Am J Ophthalmol 137:950–951

    Article  PubMed  Google Scholar 

  162. Lichtinger A, Pe’er J, Frucht-Pery J, Solomon A (2010) Limbal stem cell deficiency after topical mitomycin C therapy for primary acquired melanosis with atypia. Ophthalmology 117:431–437

    Article  PubMed  Google Scholar 

  163. Sauder G, Jonas JB (2006) Limbal stem cell deficiency after subconjunctival mitomycin C injection for trabeculectomy. Am J Ophthalmol 141:1129–1130

    Article  PubMed  CAS  Google Scholar 

  164. Ding X, Bishop RJ, Herzlich AA, Patel M, Chan CC (2009) Limbal stem cell deficiency arising from systemic chemotherapy with hydroxycarbamide. Cornea 28:221–223

    Article  PubMed  Google Scholar 

  165. Ellies P, Anderson DF, Topuhami A, Tseng SC (2001) Limbal stem cell deficiency arising from systemic chemotherapy. Br J Ophthalmol 85:373–374

    Article  PubMed  CAS  Google Scholar 

  166. Saghizadeh M, Soleymani S, Harounian A, Bhakta B, Troyanovsky SM, Brunken WJ et al (2011) Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol Vis 17:2177–2190

    PubMed  CAS  Google Scholar 

  167. Meller D, Fuchsluger T, Pauklin M, Steuhl KP (2009) Ocular surface reconstruction in graft-versus-host disease with HLA-identical living-related allogeneic cultivated limbal epithelium after hematopoietic stem cell transplantation from the same donor. Cornea 28:233–236

    Article  PubMed  Google Scholar 

  168. Ang LP, Sotozono C, Koizumi N, Suzuki T, Inatomi T, Kinoshita S (2007) A comparison between cultivated and conventional limbal stem cell transplantation for Stevens-Johnson syndrome. Am J Ophthalmol 143:178–180

    Article  PubMed  Google Scholar 

  169. Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S (2001) Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol 119:298–300

    PubMed  CAS  Google Scholar 

  170. Prabhasawat P, Tseng SC (1997) Impression cytology study of epithelial phenotype of ocular surface reconstructed by preserved human amniotic membrane. Arch Ophthalmol 115:1360–1367

    Article  PubMed  CAS  Google Scholar 

  171. Elder MJ, Bernauer W, Leonard J, Dart JK (1996) Progression of disease in ocular cicatricial pemphigoid. Br J Ophthalmol 80:292–296

    Article  PubMed  CAS  Google Scholar 

  172. Dua HS, Saini JS, Azuara-Blanco A, Gupta P (2000) Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 48:83–92

    PubMed  CAS  Google Scholar 

  173. Mohammadpour M, Javadi MA, Karimian F (2006) Limbal stem cell deficiency in the ­context of autoimmune polyendocrinopathy. Eur J Ophthalmol 16:870–872

    PubMed  CAS  Google Scholar 

  174. Solomon A, Ellies P, Anderson DF, Touhami A, Grueterich M, Espana EM et al (2002) Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology 109:1159–1166

    Article  PubMed  Google Scholar 

  175. Di Girolamo N, Kumar RK, Coroneo MT, Wakefield D (2002) UVB-mediated ­induction of interleukin-6 and -8 in pterygia and cultured human pterygium epithelial cells. Invest Ophthalmol Vis Sci 43:3430–3437

    PubMed  Google Scholar 

  176. Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425

    Article  PubMed  CAS  Google Scholar 

  177. Dua HS, Gomes JA, Singh A (1994) Corneal epithelial wound healing. Br J Ophthalmol 78:401–408

    Article  PubMed  CAS  Google Scholar 

  178. Holland EJ (1996) Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophthalmol Soc 94:677–743

    PubMed  CAS  Google Scholar 

  179. Tseng SC (1989) Concept and application of limbal stem cells. Eye (Lond) 3:141–157

    Article  Google Scholar 

  180. Kruse FE, Cursiefen C, Seitz B, Volcker HE, Naumann GO, Holbach L (2003) Klassifikation der Erkrankungen der Augenoberflache. Teil I. Ophthalmologe 100:899–915

    Article  PubMed  CAS  Google Scholar 

  181. Tseng SC (1996) Regulation and clinical implications of corneal epithelial stem cells. Mol Biol Rep 23:47–58

    Article  PubMed  CAS  Google Scholar 

  182. Kolli S, Ahmad S, Lako M, Figueiredo F (2010) Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells 28:597–610

    PubMed  CAS  Google Scholar 

  183. Egbert PR, Lauber S, Maurice DM (1977) A simple conjunctival biopsy. Am J Ophthalmol 84:798–801

    PubMed  CAS  Google Scholar 

  184. Singh R, Joseph A, Umapathy T, Tint NL, Dua HS (2005) Impression cytology of the ocular surface. Br J Ophthalmol 89:1655–1659

    Article  PubMed  CAS  Google Scholar 

  185. Thiel MA, Bossart W, Bernauer W (1997) Improved impression cytology techniques for the immunopathological diagnosis of ­superficial viral infections. Br J Ophthalmol 81:984–988

    Article  PubMed  CAS  Google Scholar 

  186. Tseng SC (1985) Staging of conjunctival squamous metaplasia by impression cytology. Ophthalmology 92:728–733

    PubMed  CAS  Google Scholar 

  187. Donisi PM, Rama P, Fasolo A, Ponzin D (2003) Analysis of limbal stem cell deficiency by corneal impression cytology. Cornea 22:533–538

    Article  PubMed  Google Scholar 

  188. Barbaro V, Ferrari S, Fasolo A, Pedrotti E, Marchini G, Sbabo A et al (2010) Evaluation of ocular surface disorders: a new diagnostic tool based on impression cytology and confocal laser scanning microscopy. Br J Ophthalmol 94:926–932

    Article  PubMed  Google Scholar 

  189. Jirsova K, Dudakova L, Kalasova S, Vesela V, Merjava S (2011) The OV-TL 12/30 clone of anti-cytokeratin 7 antibody as a new marker of corneal conjunctivalization in patients with limbal stem cell deficiency. Invest Ophthalmol Vis Sci 52:5892–5898

    Article  PubMed  CAS  Google Scholar 

  190. Ramirez-Miranda A, Nakatsu MN, Zarei-Ghanavati S, Nguyen CV, Deng SX (2011) Keratin 13 is a more specific marker of conjunctival epithelium than keratin 19. Mol Vis 17:1652–1661

    PubMed  CAS  Google Scholar 

  191. Vera LS, Gueudry J, Delcampe A, Roujeau JC, Brasseur G, Muraine M (2009) In vivo confocal microscopic evaluation of corneal changes in chronic Stevens-Johnson syndrome and toxic epidermal necrolysis. Cornea 28:401–407

    Article  PubMed  Google Scholar 

  192. Kurbanyan K, Sejpal KD, Aldave AJ, Deng SX (2012) In vivo confocal microscopic ­findings in Lisch corneal dystrophy. Cornea 31:437–441

    Article  PubMed  Google Scholar 

  193. Deng SX, Sejpal KD, Tang Q, Aldave AJ, Lee OL, Yu F (2011) Characterization of limbal stem cell deficiency by in vivo laser scanning confocal microscopy: a microstructural approach. Arch Ophthalmol 130:440–445

    PubMed  Google Scholar 

  194. Zarei-Ghanavati S, Ramirez-Miranda A, Deng SX (2011) Limbal lacuna: a novel limbal structure detected by in vivo laser scanning confocal microscopy. Ophthalmic Surg Lasers Imaging 42:e129–e131

    Article  PubMed  Google Scholar 

  195. Bizheva K, Hutchings N, Sorbara L, Moayed AA, Simpson T (2011) In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT. Biomed Opt Express 2:1794–1802

    Article  PubMed  Google Scholar 

  196. DeRötth A (1940) Plastic repair of conjunctival defects with fetal membrane. Arch Ophthalmol 23:522–525

    Article  Google Scholar 

  197. Dohlman CH, Barnes S, Ma J (2005) Keratoprosthesis. In: Krachmer J, Mannis M, Holland E (eds) Cornea. Fundamentals, diagnosis and management, 2nd edn. Elsevier, Mosby, Philadelphia, pp 1719–1728

    Google Scholar 

  198. Thoft RA (1979) Conjunctival transplantation as an alternative to keratoplasty. Ophthalmology 86:1084–1092

    PubMed  CAS  Google Scholar 

  199. Sorsby A, Symons HM (1946) Amniotic membrane grafts in caustic burns of the eye: burns of the second degree. Br J Ophthalmol 30:337–345

    Article  Google Scholar 

  200. Barraquer J (1965) The Cornea World Congress. Butterworths, Washington

    Google Scholar 

  201. Thoft RA (1977) Conjunctival transplantation. Arch Ophthalmol 95:1425–1427

    Article  PubMed  CAS  Google Scholar 

  202. Thoft RA (1984) Keratoepithelioplasty. Am J Ophthalmol 97:1–6

    PubMed  CAS  Google Scholar 

  203. Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722

    PubMed  CAS  Google Scholar 

  204. Turgeon PW, Nauheim RC, Roat MI, Stopak SS, Thoft RA (1990) Indications for keratoepithelioplasty. Arch Ophthalmol 108:233–236

    Article  PubMed  CAS  Google Scholar 

  205. Kenyon KR, Rapoza PA (1995) Limbal allograft transplantation for ocular surface disorders. Ophthalmology 102(suppl):102

    Google Scholar 

  206. Kwitko S, Marinho D, Barcaro S, Bocaccio F, Rymer S, Fernandes S et al (1995) Allograft conjunctival transplantation for bilateral ocular surface disorders. Ophthalmology 102:1020–1025

    PubMed  CAS  Google Scholar 

  207. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda M, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    Article  PubMed  CAS  Google Scholar 

  208. Reinhard T, Sundmacher R, Spelsberg H, Althaus C (1999) Homologous penetrating central limbo-keratoplasty (HPCLK) in bilateral limbal stem cell insufficiency. Acta Ophthalmol Scand 77:663–667

    Article  PubMed  CAS  Google Scholar 

  209. Nakamura T, Endo K, Cooper LJ, Fullwood NJ, Tanifuji N, Tsuzuki M et al (2003) The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci 44:106–116

    Article  PubMed  Google Scholar 

  210. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E et al (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    Article  PubMed  CAS  Google Scholar 

  211. Homma R, Yoshikawa H, Takeno M, Kurokawa MS, Masuda C, Takada E et al (2004) Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophthalmol Vis Sci 45:4320–4326

    Article  PubMed  Google Scholar 

  212. Tanioka H, Kawasaki S, Yamasaki K, Ang LP, Koizumi N, Nakamura T et al (2006) Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest Ophthalmol Vis Sci 47:3820–3827

    Article  PubMed  Google Scholar 

  213. Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E et al (2006) Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 24:315–321

    Article  PubMed  Google Scholar 

  214. Yang X, Qu L, Wang X, Zhao M, Li W, Hua J et al (2007) Plasticity of epidermal adult stem cells derived from adult goat ear skin. Mol Reprod Dev 74:386–396

    Article  PubMed  CAS  Google Scholar 

  215. Monteiro BG, Serafim RC, Melo GB, Silva MC, Lizier NF, Maranduba CM et al (2009) Human immature dental pulp stem cells share key characteristic features with limbal stem cells. Cell Prolif 42:587–594

    Article  PubMed  CAS  Google Scholar 

  216. Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlotzer-Schrehardt U, Kruse FE et al (2010) From hair to cornea: towards the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29:57–66

    Article  CAS  Google Scholar 

  217. Chun YS, Park IK, Kim JC (2011) Technique for autologous nasal mucosa transplantation in severe ocular surface disease. Eur J Ophthalmol 21:545–551

    Article  PubMed  Google Scholar 

  218. Reza HM, Ng BY, Gimeno FL, Phan TT, Ang LP (2011) Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev 7:935–947

    Article  PubMed  Google Scholar 

  219. Shimazaki J, Shimmura S, Fujishima H, Tsubota K (2000) Association of preoperative tear function with surgical outcome in severe Stevens-Johnson syndrome. Ophthalmology 107:1518–1523

    Article  PubMed  CAS  Google Scholar 

  220. Pellegrini G, Rama P, De LM (2010) Vision from the right stem. Trends Mol Med 17:1–7

    Article  Google Scholar 

  221. Tsai RJ, Tseng SC (1995) Effect of stromal inflammation on the outcome of limbal transplantation for corneal surface reconstruction. Cornea 14:439–449

    Article  PubMed  CAS  Google Scholar 

  222. Holland EJ, Schwartz GS, Nordlund ML (2005) Surgical techniques for ocular surface reconstruction. In: Krachmer JH, Mannis MJ, Holland EJ (eds) Cornea. Fundamentals, diagnosis and management, 2nd edn. Elsevier, Mosby, Philadelphia, pp 1799–1812

    Google Scholar 

  223. Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ et al (2007) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52:483–502

    Article  PubMed  Google Scholar 

  224. Tsubota K, Fukagawa K, Fujihara T, Shimmura S, Saito I, Saito K et al (1999) Regulation of human leukocyte antigen expression in human conjunctival epithelium. Invest Ophthalmol Vis Sci 40:28–34

    PubMed  CAS  Google Scholar 

  225. Iwata M, Yagihashi A, Roat MI, Zeevi A, Iwaki Y, Thoft RA (1994) Human leukocyte antigen-class II-positive human corneal epithelial cells activate allogeneic T cells. Invest Ophthalmol Vis Sci 35:3991–4000

    PubMed  CAS  Google Scholar 

  226. Santos MS, Gomes JA, Hofling-Lima AL, Rizzo LV, Romano AC, Belfort R Jr (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230

    Article  PubMed  Google Scholar 

  227. Ang LP, Tanioka H, Kawasaki S, Ang LP, Yamasaki K, Do TP et al (2010) Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci 51:758–764

    Article  PubMed  Google Scholar 

  228. Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Pereira C, da Silva M, Lizier NF et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414

    Article  PubMed  Google Scholar 

  229. Ueno H, Kurokawa MS, Kayama M, Homma R, Kumagai Y, Masuda C et al (2007) Experimental transplantation of corneal epithelium-like cells induced by Pax6 gene transfection of mouse embryonic stem cells. Cornea 26:1220–1227

    Article  PubMed  Google Scholar 

  230. Basu S, Mohamed A, Chaurasia S, Sejpal K, Vemuganti GK, Sangwan VS (2011) Clinical outcomes of penetrating keratoplasty after autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 152:917–924

    Article  PubMed  Google Scholar 

  231. Basu S, Ali H, Sangwan VS (2012) Clinical outcomes of repeat autologous cultivated ­limbal epithelial transplantation for ocular ­surface burns. Am J Ophthalmol 153:643–650

    Article  PubMed  Google Scholar 

  232. Jenkins C, Tuft S, Liu C, Buckley R (1993) Limbal transplantation in the management of chronic contact-lens-associated ­epitheliopathy. Eye (Lond) 7:629–633

    Article  Google Scholar 

  233. Gillette TE, Chandler JW, Greiner JV (1982) Langerhans cells of the ocular surface. Ophthalmology 89:700–711

    PubMed  CAS  Google Scholar 

  234. Kinoshita S, Koizumi N, Sotozono C, Yamada J, Nakamura T, Inatomi T (2004) Concept and clinical application of cultivated epithelial transplantation for ocular surface disorders. Ocul Surf 2:21–33

    Article  PubMed  Google Scholar 

  235. Lim P, Fuchsluger TA, Jurkunas UV (2009) Limbal stem cell deficiency and corneal ­neovascularization. Semin Ophthalmol 24:139–148

    Article  PubMed  Google Scholar 

  236. Espana EM, Di Pascuale M, Grueterich M, Solomon A, Tseng SC (2004) Keratolimbal allograft in corneal reconstruction. Eye (Lond) 18:406–417

    Article  CAS  Google Scholar 

  237. Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213

    Article  PubMed  Google Scholar 

  238. Sangwan VS, Vemuganti GK, Singh S, Balasubramanian D (2003) Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 23:169–174

    Article  PubMed  CAS  Google Scholar 

  239. Shimazaki J, Aiba M, Goto E, Kato N, Shimmura S, Tsubota K (2002) Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 109:1285–1290

    Article  PubMed  Google Scholar 

  240. Daya SM, Watson A, Sharpe JR, Giledi O, Rowe A, Martin R et al (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477

    Article  PubMed  Google Scholar 

  241. Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S (2011) 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 112:993–1002

    Article  PubMed  CAS  Google Scholar 

  242. Sharpe JR, Daya SM, Dimitriadi M, Martin R, James SE (2007) Survival of cultured ­allogeneic limbal epithelial cells following corneal repair. Tissue Eng 13:123–132

    Article  PubMed  Google Scholar 

  243. Pauklin M, Steuhl KP, Meller D (2009) Characterization of the corneal surface in limbal stem cell deficiency and after transplantation of cultivated limbal epithelium. Ophthalmology 116:1048–1056

    Article  PubMed  Google Scholar 

  244. Pauklin M, Kakkassery V, Steuhl KP, Meller D (2009) Expression of membrane-associated mucins in limbal stem cell deficiency and after transplantation of cultivated limbal ­epithelium. Curr Eye Res 34:221–230

    Article  PubMed  CAS  Google Scholar 

  245. Meller D, Pauklin M, Westekemper H, Steuhl KP (2010) Autologe Transplantation von kultiviertem Limbusepithel. Ophthalmologe 107:1133–1138

    Article  PubMed  CAS  Google Scholar 

  246. Fatima A, Matalia HP, Vemuganti GK, Honavar SG, Sangwan VS (2006) Pseudoepitheliomatous hyperplasia mimicking ocular surface squamous neoplasia following cultivated limbal epithelium transplantation. Clin Experiment Ophthalmol 34:889–891

    Article  PubMed  Google Scholar 

  247. Egarth M, Hellkvist J, Claesson M, Hanson C, Stenevi U (2005) Longterm survival of transplanted human corneal epithelial cells and corneal stem cells. Acta Ophthalmol Scand 83:456–461

    Google Scholar 

  248. Henderson TR, Findlay I, Mathews PL, Noble BA (2001) Identifying the origin of single corneal cells by DNA fingerprinting: part I—implications for corneal limbal allografting. Cornea 20:400–403

    Article  PubMed  CAS  Google Scholar 

  249. Williams KA, Brereton HM, Aggarwal R, Sykes PJ, Turner DR, Russ GR et al (1995) Use of DNA polymorphisms and the polymerase chain reaction to examine the survival of a human limbal stem cell allograft. Am J Ophthalmol 120:342–350

    PubMed  CAS  Google Scholar 

  250. Henderson TR, Findlay I, Matthews PL, Noble BA (2001) Identifying the origin of single corneal cells by DNA fingerprinting: part II—application to limbal allografting. Cornea 20:404–407

    Article  PubMed  CAS  Google Scholar 

  251. Du Y, Chen J, Funderburgh JL, Zhu X, Li L (2003) Functional reconstruction of rabbit corneal epithelium by human limbal cells ­cultured on amniotic membrane. Mol Vis 9:635–643

    PubMed  CAS  Google Scholar 

  252. Shimazaki J, Kaido M, Shinozaki N, Shimmura S, Munkhbat B, Hagihara M et al (1999) Evidence of long-term survival of donor-derived cells after limbal allograft transplantation. Invest Ophthalmol Vis Sci 40:1664–1668

    PubMed  CAS  Google Scholar 

  253. Henderson TR, McCall SH, Taylor GR, Noble BA (1997) Do transplanted corneal limbal stem cells survive in vivo long-term? Possible techniques to detect donor cell survival by polymerase chain reaction with the amelogenin gene and Y-specific probes. Eye (Lond) 11:779–785

    Article  Google Scholar 

  254. Djalilian AR, Mahesh SP, Koch CA, Nussenblatt RB, Shen D, Zhuang Z et al (2005) Survival of donor epithelial cells after limbal stem cell transplantation. Invest Ophthalmol Vis Sci 46:803–807

    Article  PubMed  Google Scholar 

  255. Reinhard T, Spelsberg H, Henke L, Kontopoulos T, Enczmann J, Wernet P et al (2004) Long-term results of allogeneic penetrating limbo-keratoplasty in total limbal stem cell deficiency. Ophthalmology 111:775–782

    Article  PubMed  Google Scholar 

  256. Pellegrini G, De Luca M, Arsenijevic Y (2007) Towards therapeutic application of ocular stem cells. Semin Cell Dev Biol 18:805–818

    Article  PubMed  CAS  Google Scholar 

  257. Shimazaki J, Higa K, Kato N, Satake Y (2009) Barrier function of cultivated limbal and oral mucosal epithelial cell sheets. Invest Ophthalmol Vis Sci 50:5672–5680

    Article  PubMed  Google Scholar 

  258. Hayashida Y, Nishida K, Yamato M, Watanabe K, Maeda N, Watanabe H et al (2005) Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci 46:1632–1639

    Article  PubMed  Google Scholar 

  259. Nakamura T, Kinoshita S (2003) Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea 22:S75–S80

    Article  PubMed  Google Scholar 

  260. Priya CG, Arpitha P, Vaishali S, Prajna NV, Usha K, Sheetal K et al (2011) Adult human buccal epithelial stem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye (Lond) 25:1641–1649

    Article  CAS  Google Scholar 

  261. Liu J, Sheha H, Fu Y, Giegengack M, Tseng SC (2011) Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. Am J Ophthalmol 152:739–747

    Article  PubMed  Google Scholar 

  262. Nakamura T, Takeda K, Inatomi T, Sotozono C, Kinoshita S (2011) Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 95:942–946

    Article  PubMed  Google Scholar 

  263. Kim JH, Chun YS, Lee SH, Mun SK, Jung HS, Lee SH et al (2010) Ocular surface reconstruction with autologous nasal mucosa in cicatricial ocular surface disease. Am J Ophthalmol 149:45–53

    Article  PubMed  Google Scholar 

  264. Chen HC, Chen HL, Lai JY, Chen CC, Tsai YJ, Kuo MT et al (2009) Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci 50:4660–4668

    Article  PubMed  Google Scholar 

  265. Ma DH, Kuo MT, Tsai YJ, Chen HC, Chen XL, Wang SF et al (2009) Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye (Lond) 23:1442–1450

    Article  CAS  Google Scholar 

  266. Satake Y, Dogru M, Yamane GY, Kinoshita S, Tsubota K, Shimazaki J (2008) Barrier function and cytologic features of the ocular ­surface. Arch Ophthalmol 126:23–28

    Article  PubMed  Google Scholar 

  267. Nakamura T, Inatomi T, Cooper LJ, Rigby H, Fullwood NJ, Kinoshita S (2007) Phenotypic investigation of human eyes with transplanted autologous cultivated oral mucosal epithelial sheets for severe ocular ­surface diseases. Ophthalmology 114:1080–1088

    Article  PubMed  Google Scholar 

  268. Ang LP, Nakamura T, Inatomi T, Sotozono C, Koizumi N, Yokoi N et al (2006) Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface disease. Arch Ophthalmol 124:1543–1551

    Article  PubMed  Google Scholar 

  269. Inatomi T, Nakamura T, Kojyo M, Koizumi N, Sotozono C, kinoshita S (2006) Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. Am J Ophthalmol 142:757–764

    Article  PubMed  Google Scholar 

  270. Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, kinoshita S (2006) Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol 141:267–275

    Article  PubMed  Google Scholar 

  271. Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S (2004) Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol 88:1280–1284

    Article  PubMed  CAS  Google Scholar 

  272. Takeda K, Nakamura T, Inatomi T, Sotozono C, Watanabe A, Kinoshita S (2011) Ocular surface reconstruction using the combination of autologous cultivated oral mucosal epithelial transplantation and eyelid surgery for severe ocular surface disease. Am J Ophthalmol 152:195–201

    Article  PubMed  Google Scholar 

  273. Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E et al (2011) Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal ­limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 53:1325–1331

    Article  Google Scholar 

  274. Kanayama S, Nishida K, Yamato M, Hayashi R, Sugiyama H, Soma T et al (2007) Analysis of angiogenesis induced by cultured corneal and oral mucosal epithelial cell sheets in vitro. Exp Eye Res 85:772–781

    Article  PubMed  CAS  Google Scholar 

  275. Kanayama S, Nishida K, Yamato M, Hayashi R, Maeda N, Okano T et al (2009) Analysis of soluble vascular endothelial growth factor receptor-1 secreted from cultured corneal and oral mucosal epithelial cell sheets in vitro. Br J Ophthalmol 93:263–267

    Article  PubMed  CAS  Google Scholar 

  276. Sekiyama E, Nakamura T, Kawasaki S, Sogabe H, Kinoshita S (2006) Different expression of angiogenesis-related factors between human cultivated corneal and oral epithelial sheets. Exp Eye Res 83:741–746

    Article  PubMed  CAS  Google Scholar 

  277. Ono K, Yokoo S, Mimura T, Usui T, Miyata K, Araie M et al (2007) Autologous transplantation of conjunctival epithelial cells ­cultured on amniotic membrane in a rabbit model. Mol Vis 13:1138–1143

    PubMed  Google Scholar 

  278. Omoto M, Miyashita H, Shimmura S, Higa K, Kawakita T, Yoshida S et al (2009) The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest Ophthalmol Vis Sci 50:2109–2115

    Article  PubMed  Google Scholar 

  279. Jiang TS, Cai L, Ji WY, Hui YN, Wang YS, Hu D et al (2010) Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 16:1304–1316

    PubMed  Google Scholar 

  280. Reinshagen H, Auw-Haedrich C, Sorg RV, Boehringer D, Eberwein P, Schwartzkopff J et al (2011) Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol 89:741–748

    Article  PubMed  Google Scholar 

  281. Yang X, Moldovan NI, Zhao Q, Mi S, Zhou Z, Chen D et al (2008) Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis 14:1064–1070

    PubMed  CAS  Google Scholar 

  282. van Herendael BJ, Oberti C, Brosens I (1978) Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am J Obstet Gynecol 131:872–880

    PubMed  Google Scholar 

  283. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  PubMed  CAS  Google Scholar 

  284. Ganatra MA (2003) Amniotic membrane in surgery. J Pak Med Assoc 53:29–32

    PubMed  CAS  Google Scholar 

  285. Tseng SC, Espana EM, Kawakita T, Di Pascuale MA, Li W, He H et al (2004) How does amniotic membrane work? Ocul Surf 2:177–187

    Article  PubMed  Google Scholar 

  286. Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  287. Fernandes M, Sridhar MS, Sangwan VS, Rao GN (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653

    Article  PubMed  Google Scholar 

  288. Gomes JA, Romano A, Santos MS, Dua HS (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16:233–240

    Article  PubMed  Google Scholar 

  289. Grueterich M, Espana E, Tseng SC (2002) Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Invest Ophthalmol Vis Sci 43:63–71

    PubMed  Google Scholar 

  290. Tseng, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    Article  PubMed  CAS  Google Scholar 

  291. Anderson DF, Ellies P, Pires RT, Tseng SC (2001) Amniotic membrane transplantation for partial limbal stem cell deficiency. Br J Ophthalmol 85:567–575

    Article  PubMed  CAS  Google Scholar 

  292. Gomes JA, Santos MS, Ventura AS, Donato WB, Cunha MC, Hofling-Lima AL (2003) Amniotic membrane with living related corneal limbal/conjunctival allograft for ocular surface reconstruction in Stevens-Johnson syndrome. Arch Ophthalmol 121:1369–1374

    Article  PubMed  Google Scholar 

  293. Sangwan VS, Matalia HP, Vemuganti GK, Rao GN (2004) Amniotic membrane transplantation for reconstruction of corneal epithelial surface in cases of partial limbal stem cell ­deficiency. Indian J Ophthalmol 52:281–285

    PubMed  Google Scholar 

  294. Kheirkhah A, Casas V, Raju VK, Tseng SC (2008) Sutureless amniotic membrane transplantation for partial limbal stem cell deficiency. Am J Ophthalmol 145:787–794

    Article  PubMed  Google Scholar 

  295. Liang L, Li W, Ling S, Sheha H, Qui W, Li C et al (2009) Amniotic membrane extraction solution for ocular chemical burns. Clin Experiment Ophthalmol 37:855–863

    Article  PubMed  Google Scholar 

  296. Baradaran-Rafii A, Eslani M, Jamali H, Karimian F, Tailor UA, Djalilian AR (2012) Postoperative complications of conjunctival limbal autograft surgery. Cornea. doi:10.1097/ICO.0b013e31823f095d

    PubMed  Google Scholar 

  297. Dua HS, Azuara-Blanco A (2000) Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. Br J Ophthalmol 84:273–278

    Article  PubMed  CAS  Google Scholar 

  298. Kenyon KR (1989) Limbal autograft transplantation for chemical and thermal burns. Dev Ophthalmol 18:53–58

    PubMed  CAS  Google Scholar 

  299. Tsai RJ, Sun TT, Tseng SC (1990) Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. Ophthalmology 97:446–455

    PubMed  CAS  Google Scholar 

  300. Basti S, Rao SK (2000) Current status of limbal conjunctival autograft. Curr Opin Ophthalmol 11:224–232

    Article  PubMed  CAS  Google Scholar 

  301. Wylegala E, Drobrowolski D, Tarnawska D, Janiszewska D, Gabryel B, Malecki A et al (2008) Limbal stem cells transplantation in the reconstruction of the ocular surface: 6 years experience. Eur J Ophthalmol 18:886–890

    PubMed  CAS  Google Scholar 

  302. Ronk JF, Ruiz-Esmenjaud S, Osorio M, Bacigalupi M, Goosey JD (1994) Limbal conjunctival autograft in a subacute alkaline corneal burn. Cornea 13:465–468

    Article  PubMed  CAS  Google Scholar 

  303. Rao SK, Rajagopal R, Sitalakshmi G, Padmanabhan P (1999) Limbal autografting: comparison of results in the acute and chronic phases of ocular surface burns. Cornea 18:164–171

    Article  PubMed  CAS  Google Scholar 

  304. Meallet MA, Espana EM, Grueterich M, Ti SE, Goto E, Tseng SC (2003) Amniotic membrane transplantation with conjunctival limbal autograft for total limbal stem cell ­deficiency. Ophthalmology 110:1585–1592

    Article  PubMed  Google Scholar 

  305. Yao YF, Zhang B, Zhou P, Jiang JK (2002) Autologous limbal grafting combined with deep lamellar keratoplasty in unilateral eye with severe chemical or thermal burn at late stage. Ophthalmology 109:2011–2017

    Article  PubMed  Google Scholar 

  306. Kheirkhah A, Raju VK, Tseng SC (2008) Minimal conjunctival limbal autograft for total limbal stem cell deficiency. Cornea 27:730–733

    Article  PubMed  Google Scholar 

  307. Huang T, Wang Y, Zhang H, Gao N, Hu A (2011) Limbal allografting from living-related donors to treat partial limbal deficiency secondary to ocular chemical burns. Arch Ophthalmol 129:1267–1273

    Article  PubMed  Google Scholar 

  308. Javadi MA, Baradaran-Rafii A (2009) Living-related conjunctival-limbal allograft for chronic or delayed-onset mustard gas keratopathy. Cornea 28:51–57

    Article  PubMed  Google Scholar 

  309. Tsubota K, Shimmura S, Shinozaki N, Holland EJ, Shimazaki J (2002) Clinical application of living-related conjunctival-limbal allograft. Am J Ophthalmol 133:134–135

    Article  PubMed  Google Scholar 

  310. Daya SM, Ilari FA (2001) Living related ­conjunctival limbal allograft for the treatment of stem cell deficiency. Ophthalmology 108:126–134

    Article  PubMed  CAS  Google Scholar 

  311. Rao SK, Rajagopal R, Sitalakshmi G, Padmanabhan P (1999) Limbal allografting from related live donors for corneal surface reconstruction. Ophthalmology 106:822–828

    Article  PubMed  CAS  Google Scholar 

  312. Ozdemir O, Tekeli O, Ornek K, Arslanpence A, Yalcindag NF (2004) Limbal autograft and allograft transplantations in patients with corneal burns. Eye (Lond) 18:241–248

    Article  CAS  Google Scholar 

  313. Sangwan VS, Basu S, Macneil S, Balasubramanian D (2012) Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. doi:10.1136/bjophthalmol-2011-301164

    Google Scholar 

  314. Ilari L, Daya SM (2002) Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmology 109:1278–1284

    Article  PubMed  Google Scholar 

  315. Holland EJ, Djalilian AR, Schwartz GS (2003) Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology 110:125–130

    Article  PubMed  Google Scholar 

  316. Liang L, Sheha H, Tseng SC (2009) Long-term outcomes of keratolimbal allograft for total limbal stem cell deficiency using ­combined immunosuppressive agents and correction of ocular surface deficits. Arch Ophthalmol 127:1428–1434

    Article  PubMed  Google Scholar 

  317. Espana EM, Grueterich M, Ti SE, Tseng SC (2003) Phenotypic study of a case receiving a keratolimbal allograft and amniotic membrane for total limbal stem cell deficiency. Ophthalmology 110:481–486

    Article  PubMed  Google Scholar 

  318. Biber JM, Skeens HM, Neff KD, Holland EJ (2011) The cincinnati procedure: technique and outcomes of combined living-related conjunctival limbal allografts and keratolimbal allografts in severe ocular surface failure. Cornea 30:765–771

    Article  PubMed  Google Scholar 

  319. Spelsberg H, Reinhard T, Henke L, Berschick P, Sundmacher R (2004) Penetrating limbo-keratoplasty for granular and lattice corneal dystrophy: survival of donor limbal stem cells and intermediate-term clinical results. Ophthalmology 111:1528–1533

    Article  PubMed  Google Scholar 

  320. Niederkorn JY (1995) Effect of cytokine-induced migration of Langerhans cells on corneal allograft survival. Eye (Lond) 9:215–218

    Article  Google Scholar 

  321. Rah MJ (2011) A review of hyaluronan and its ophthalmic applications. Optometry 82:38–43

    Article  PubMed  Google Scholar 

  322. Pflugfelder SC (2006) Is autologous serum a tonic for the ailing corneal epithelium? Am J Ophthalmol 142:316–317

    Article  PubMed  Google Scholar 

  323. Djalilian AR, Nussenblatt RB, Holland HJ (2001) Immunosuppressive therapy in ocular surface transplantation. In: Holland HJ, Mannis MJ (eds) Ocular surface disease: medical and surgical management. Springer, New York, pp 243–252

    Google Scholar 

  324. Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171

    PubMed  CAS  Google Scholar 

  325. Jeng BH, Halfpenny CP, Maisler DM, Stock EL (2010) Management of focal limbal stem cell deficiency associated with soft contact lens wear. Cornea 30:18–23

    Article  Google Scholar 

  326. Schornack MM (2011) Limbal stem cell ­disease: management with scleral lenses. Clin Exp Optom 94:592–594

    Article  PubMed  Google Scholar 

  327. Poon AC, Geerling G, Dart JK, Fraenkel GE, Daniels JT (2001) Autologous serum ­eyedrops for dry eyes and epithelial defects: clinical and in vitro toxicity studies. Br J Ophthalmol 85:1188–1197

    Article  PubMed  CAS  Google Scholar 

  328. Geerling G, Maclennan S, Hartwig D (2004) Autologous serum eye drops for ocular ­surface disorders. Br J Ophthalmol 88:1467–1474

    Article  PubMed  CAS  Google Scholar 

  329. Young AL, Cheng AC, Ng HK, Cheng LL, Leung GY, Lam DS (2004) The use of autologous serum tears in persistent corneal ­epithelial defects. Eye (Lond) 18:609–614

    Article  CAS  Google Scholar 

  330. Nussbaum JN (1853) Cornea artificialis, ein Substitut für die Transplantatio corneae. Dtsch Klin ed A Göschen 5:367–378

    Google Scholar 

  331. Sejpal K, Yu F, Aldave AJ (2011) The Boston keratoprosthesis in the management of ­corneal limbal stem cell deficiency. Cornea 30:1187–1194

    PubMed  Google Scholar 

  332. Colby KA, Koo EB (2011) Expanding indications for the Boston keratoprosthesis. Curr Opin Ophthalmol 22:267–273

    Article  PubMed  Google Scholar 

  333. Gomaa A, Comyn O, Liu C (2010) Keratoprostheses in clinical practice—a review. Clin Experiment Ophthalmol 38:211–224

    Article  PubMed  Google Scholar 

  334. Tan XW, Perera AP, Tan A, Tan D, Khor KA, Beuerman RW et al (2011) Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device. Invest Ophthalmol Vis Sci 52:21–29

    Article  PubMed  CAS  Google Scholar 

  335. Tan DT, Tay AB, Theng JT, Lye KW, Parthasarathy A, Por YM et al (2008) Keratoprosthesis surgery for end-stage corneal blindness in asian eyes. Ophthalmology 115:503–510

    Article  PubMed  Google Scholar 

  336. Tan A, Tan DT, Tan XW, Mehta JS (2012) Osteo-odonto keratoprosthesis: systematic review of surgical outcomes and complication rates. Ocul Surf 10:15–25

    Article  PubMed  Google Scholar 

  337. Michael R, Charoenrook V, de la Paz MF, Hitzl W, Temprano J, Barraquer RI (2008) Long-term functional and anatomical results of osteo- and osteoodonto-keratoprosthesis. Graefes Arch Clin Exp Ophthalmol 246:1133–1137

    Article  PubMed  Google Scholar 

  338. Liu C, Hille K, Tan D, Hicks C, Herold J (2008) Keratoprosthesis surgery. Dev Ophthalmol 41:171–186

    Article  PubMed  Google Scholar 

  339. de la Paz MF, De Toledo JA, Charoenrook V, Sel S, Temprano J, Barraquer RI et al (2011) Impact of clinical factors on the long-term ­functional and anatomic outcomes of osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis. Am J Ophthalmol 151:829–839

    Article  Google Scholar 

  340. de Araujo AL, Charoenrook V, de la Paz MF, Temprano J, Barraquer RI, Michael R (2011) The role of visual evoked potential and electroretinography in the preoperative assessment of osteo-keratoprosthesis or osteo-odonto-keratoprosthesis surgery. Acta Ophthalmol. doi:10.1111/j.1755-3768.2010.02086.x

    PubMed  Google Scholar 

  341. Dua HS (1998) The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol 82:1407–1411

    Article  PubMed  CAS  Google Scholar 

  342. Wu PC, Kuo HK, Tai MH, Shin SJ (2009) Topical bevacizumab eyedrops for limbal-conjunctival neovascularization in impending recurrent pterygium. Cornea 28:103–104

    Article  PubMed  Google Scholar 

  343. Bock F, Konig Y, Kruse F, Baier M, Cursiefen C (2008) Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 246:281–284

    Article  PubMed  CAS  Google Scholar 

  344. Chen WL, Lin CT, Lin NT, Tu IH, Li JW, Chow LP et al (2009) Subconjunctival injection of bevacizumab (avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci 50:1659–1665

    Article  PubMed  Google Scholar 

  345. Lin CT, Hu FR, Kuo KT, Chen YM, Chu HS, Lin YH et al (2010) The different effects of early and late bevacizumab (Avastin) injection on inhibiting corneal neovascularization and conjunctivalization in rabbit limbal insufficiency. Invest Ophthalmol Vis Sci 51:6277–6285

    Article  PubMed  Google Scholar 

  346. Araki Y, Sotozono C, Inatomi T, Ueta M, Yokoi N, Ueda E et al (2009) Successful treatment of Stevens-Johnson syndrome with steroid pulse therapy at disease onset. Am J Ophthalmol 147:1004–1011, 1011

    Article  PubMed  CAS  Google Scholar 

  347. Amirjamshidi H, Milani BY, Sagha HM, Movahedan A, Shafiq MA, Lavker RM et al (2011) Limbal fibroblast conditioned media: a non-invasive treatment for limbal stem cell deficiency. Mol Vis 17:658–666

    PubMed  CAS  Google Scholar 

  348. Sharifipour F, Baradaran-Rafii A, Idani E, Zamani M, Jabbarpoor Bonyadi MH (2011) Oxygen therapy for acute ocular chemical or thermal burns: a pilot study. Am J Ophthalmol 151:823–828

    Article  PubMed  CAS  Google Scholar 

  349. Daya SM, Chan CC, Holland EJ (2011) Cornea Society nomenclature for ocular surface rehabilitative procedures. Cornea 30:1115–1119

    Article  PubMed  Google Scholar 

  350. Schwartz GS, Gomes JA, Holland EJ (2002) Preoperative staging of disease severity. In: Holland EJ, Mannis MJ (eds) Ocular surface disease: medical and surgical management. Springer, New York, pp 158–160

    Chapter  Google Scholar 

  351. Lathrop KL, Gupta D, Kagemann L, Schuman JS, Sundarraj N (2012) Optical coherence tomography as a rapid, accurate, non-contact method of visualizing the palisades of Vogt. Invest Ophthalmol Vis Sci 53:1381–1387

    Article  PubMed  Google Scholar 

  352. Flom MC, Weymouth W, Kahnemad D (1963) Visual resolution and contour interaction. J Opt Soc Am 53:1026–1032

    Article  PubMed  CAS  Google Scholar 

  353. Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Berry S, Hays RD et al (2001) Development of the 25-item National eye institute visual function questionnaire. Arch Ophthalmol 119:1050–1058

    Article  PubMed  CAS  Google Scholar 

  354. Miri A, Mathew M, Dua HS (2010) Quality of life after limbal transplants. Ophthalmology 117:638

    Article  PubMed  Google Scholar 

  355. De Luca M, Pellegrini G, Green H (2006) Regeneration of squamous epithelia from stem cells of cultured grafts. Regen Med 1:45–57

    Article  PubMed  Google Scholar 

  356. Tandon R et al. (2007) Experience with using an outsourcing model for limbal stem cell culture and transplantation in a tropical developing country. Invest Ophthalmol Vis Sci. 48, E-Abstract 473. www.iovs.org

  357. Sotozono C et al. (2009) Multicenter prospective analysis of cultured corneal epithelial sheet transplantation. Invest Ophthalmol Vis Sci. 50, E-Abstract 1519. www.iovs.org

  358. Kito K, Kagami H, Kobayashi C, Ueda M, Terasaki H (2005) Effects of cryopreservation on histology and viability of cultured corneal epithelial cell sheets in rabbit. Cornea 24:735–741

    Article  PubMed  Google Scholar 

  359. Utheim TP, Raeder S, Utheim OA, Cai Y, Roald B, Drolsum L et al (2007) A novel method for preserving cultured limbal epithelial cells. Br J Ophthalmol 91:797–800

    Article  PubMed  Google Scholar 

  360. Raeder S, Utheim TP, Utheim OA, Nicolaissen B, Roald B, Cai Y et al (2007) Effects of organ culture and optisol-GS storage on structural integrity, phenotypes, and apoptosis in cultured corneal epithelium. Invest Ophthalmol Vis Sci 48:5484–5493

    Article  PubMed  Google Scholar 

  361. Yeh HJ, Yao CL, Chen HI, Cheng HC, Hwang SM (2008) Cryopreservation of human limbal stem cells ex vivo expanded on amniotic membrane. Cornea 27:327–333

    Article  PubMed  Google Scholar 

  362. Totey, S. et al. (2005) Tissue system with undifferentiated stem cells derived from corneal limbus. Appl.nr. PCT/IB2005/000203, Patent nr. WO/2005/079145. India

    Google Scholar 

  363. Raeder, S., et al. (2009) Genome-wide transcriptional analysis of cultured human limbal epithelial cells following hypothermic storage Optisol-GS. Invest Ophthalmol. Vis. Sci. 50, E-Abstract 1773/A441. www.iovs.org

  364. Oh JY, Kim MK, Shin KS, Shin MS, Wee WR, Lee JH et al (2007) Efficient cryopreservative conditions for cultivated limbal and conjunctival epithelial cells. Cornea 26:840–846

    Article  PubMed  Google Scholar 

  365. Raeder S, Utheim TP, Messelt E, Lyberg T (2010) The impact of de-epithelialization of the amniotic membrane matrix on morphology of cultured human limbal epithelial cells subject to eye bank storage. Cornea 29:439–445

    PubMed  Google Scholar 

  366. Utheim TP et al. (2011) Comparison of storage of cultured human limbal epithelial cells in HEPES-MEM, Optisol-GS and PAA Quantum 286 for 4 days at 23 °C. Invest Ophthalmol Vis Sci. 52, E-Abstract 5124. www.iovs.org.

  367. Utheim TP, Raeder S, Utheim OA, de la Paz M, Raold B, Lyberg T (2009) Sterility control and long-term eye-bank storage of cultured human limbal epithelial cells for transplantation. Br J Ophthalmol 93:980–983

    Article  PubMed  CAS  Google Scholar 

  368. Mi S, Yang X, Zhao Q, Qu L, Chen SM, Meek K et al (2008) Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in a goat model. Mol Reprod Dev 75:1607–1616

    Article  PubMed  CAS  Google Scholar 

  369. Bratanov M, Neronov A, Nikolova E (2009) Limbal explants from cryopreserved cadaver human corneas. Immunofluorescence and light microscopy of epithelial cells growing in culture. Cryo Letters 30:183–189

    PubMed  CAS  Google Scholar 

  370. Qu L, Yang X, Wang X, Zhao M, Mi S, Dou Z et al (2009) Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in a rabbit model. Vet J 179:392–400

    Article  PubMed  Google Scholar 

  371. Ahmad S, Osei-Bempong C, Dana R, Jurkunas U (2010) The culture and transplantation of human limbal stem cells. J Cell Physiol 225:15–19

    Article  PubMed  CAS  Google Scholar 

  372. Daniels JT, Secker GA, Shortt AJ, Tuft SJ, Seetharaman S (2006) Stem cell therapy delivery: treading the regulatory tightrope. Regen Med 1:715–719

    Article  PubMed  Google Scholar 

  373. Zakaria N, Koppen C, Van Tendeloo V, Berneman Z, Hopkinson A, Tassignon MJ (2010) Standardized limbal epithelial stem cell graft generation and transplantation. Tissue Eng Part C Methods 16:921–927

    Article  PubMed  CAS  Google Scholar 

  374. Hayashi R, Yamato M, Takayanagi H, Oie Y, Kubota A, Hori Y et al (2010) Validation ­system of tissue engineered epithelial cell sheets for corneal regenerative medicine. Tissue Eng Part C Methods 16:553–560

    Article  PubMed  CAS  Google Scholar 

  375. Higa K, Shimazaki J (2008) Recent advances in cultivated epithelial transplantation. Cornea 27:S41–S47

    Article  PubMed  Google Scholar 

  376. Proulx S, Fradette J, Gauvin R, Larouche D, Germain L (2010) Stem cells of the skin and cornea: their clinical applications in regenerative medicine. Curr Opin Organ Transplant. doi:10.1097/MOT.0b013e32834254f1

    Google Scholar 

  377. Kolli S, Lako M, Figueiredo F, Mudhar H, Ahmad S (2008) Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 3:329–342

    Article  PubMed  CAS  Google Scholar 

  378. Utheim TP, Raeder S, Olstad OK, Utheim OA, de la Paz M, Cheng R et al (2009) Comparison of the histology, gene expression profile, and phenotype of cultured human limbal epithelial cells from different limbal regions. Invest Ophthalmol Vis Sci 50:5165–5172

    Article  PubMed  Google Scholar 

  379. O’Callaghan AR, Daniels JT (2011) Limbal epithelial stem cell therapy: controversies and challenges. Stem Cells 29:1923–1932

    Article  PubMed  Google Scholar 

  380. (2011) Directive 2011/62/EU of the European Parliament and of the Council of 8 June 2011 amending Directive 2001/83/EC on the Community code relating to medicinal products for human use, as regards the ­prevention of the entry into the legal supply chain of falsified medicinal products (Text with EEA relevance)

    Google Scholar 

  381. (2010) Directive 2010/84/EU of the European Parliament and of the Council of 15 December 2010 amending, as regards pharmacovigilance, Directive 2001/83/EC on the Community code relating to medicinal products for human use (Text with EEA relevance)

    Google Scholar 

  382. (2009) Directive 2009/33/EC of the European Parliament and of the Council of 18 June 2009 amending Directive 2001/82/EC and Directive 2001/83/EC, as regards variations to the terms of marketing authorisations for medicinal products (Text with EEA relevance)

    Google Scholar 

  383. (2008) Directive 2008/29/EC of the European Parliament and of the Council of 11 March 2008 amending Directive 2001/83/EC on the Community code relating to medicinal products for human use, as regards the implementation powers conferred on the Commission

    Google Scholar 

  384. (2007) Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004 (Text with EEA relevance)

    Google Scholar 

  385. (2006) Regulation (EC) No 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for paediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004 (Text with EEA relevance)

    Google Scholar 

  386. (2004) Directive 2004/27/EC of the European Parliament and of the Council of 31 March 2004 amending Directive 2001/83/EC on the Community code relating to medicinal products for human use (Text with EEA relevance)

    Google Scholar 

  387. (2004) Directive 2004/24/EC of the European Parliament and of the Council of 31 March 2004 amending, as regards traditional herbal medicinal products, Directive 2001/83/EC on the Community code relating to medicinal products for human use

    Google Scholar 

  388. (2003) Commission Directive 2006/63/EC of 25 June 2003 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products of human use (Text with EEA relevance)

    Google Scholar 

  389. (2002) Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. 2001

    Google Scholar 

  390. (2001) Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use

    Google Scholar 

  391. (2003) Commission Directive 2003/94/EC, of 8 October 2003, laying down the principles and guidelines of good manufacturing practice in respect of medicinal products for human use and investigational medicinal products for human use

    Google Scholar 

  392. (2004) Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells

    Google Scholar 

  393. (2006) Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human ­tissues and cells

    Google Scholar 

  394. (2006) Commission Directive 2006/86/EC of 24 October 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards traceability requirements, notification of serious adverse reactions and events and certain technical requirements for the coding, processing, preservation, storage and distribution of human tissues and cells

    Google Scholar 

  395. Nakamura T, Kinoshita S (2011) New hopes and strategies for the treatment of severe ocular surface disease. Curr Opin Ophthalmol 22:274–278

    Article  PubMed  Google Scholar 

  396. Schwab IR, Johnson NT, Harkin DG (2006) Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch Ophthalmol 124:1734–1740

    Article  PubMed  Google Scholar 

  397. Mason SL, Stewart RM, Kearns VR, Williams RL, Sheridan CM (2011) Ocular epithelial transplantation: current uses and future potential. Regen Med 6:767–782

    Article  PubMed  Google Scholar 

  398. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  PubMed  CAS  Google Scholar 

  399. Tseng SC, Kruse FE, Merritt J, Li DQ (1996) Comparison between serum-free and fibroblast-cocultured single-cell clonal culture systems: evidence showing that epithelial anti-apoptotic activity is present in 3 T3 fibroblast-conditioned media. Curr Eye Res 15:973–984

    Article  PubMed  CAS  Google Scholar 

  400. Cristovam PC, Gloria MA, Melo GB, Gomes JA (2008) Importancia do co-cultivo com fibroblastos de camundongo 3 T3 para ­estabelecer cultura de suspensao de celulas epiteliais do limbo humano. Arq Bras Oftalmol 71:689–694

    Article  PubMed  Google Scholar 

  401. Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC (2010) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 17:537–548

    Article  CAS  Google Scholar 

  402. Grueterich M, Espana EM, Tseng SC (2003) Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3 T3 fibroblast feeder layer. Invest Ophthalmol Vis Sci 44:4230–4236

    Article  PubMed  Google Scholar 

  403. Aiuti F, Ensoli F, Fiorelli V, Mezzaroma I, Pinter E, Guerra E et al (1993) Silent HIV infection. Vaccine 11:538–541

    Article  PubMed  CAS  Google Scholar 

  404. Tolmach LJ (1961) Growth patterns in x-irradiated HeLa cells. Ann N Y Acad Sci 95:743–757

    Article  PubMed  CAS  Google Scholar 

  405. Pruss A, Kao M, Gohs U, Koscielny J, von Versen R, Pauli G (2002) Effect of gamma irradiation on human cortical bone ­transplants contaminated with enveloped and non-enveloped viruses. Biologicals 30:125–133

    Article  PubMed  Google Scholar 

  406. Rubin H (2005) Degrees and kinds of ­selection in spontaneous neoplastic transformation: an operational analysis. Proc Natl Acad Sci U S A 102:9276–9281

    Article  PubMed  CAS  Google Scholar 

  407. Brewer LA, Lwamba HC, Murtaugh MP, Palmenberg AC, Brown C, Njenga MK (2001) Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells. J Virol 75:11621–11629

    Article  PubMed  CAS  Google Scholar 

  408. Meng XJ, Purcell RH, Halbur PG, Lehman JR, Webb DM, Tsareva TS et al (1997) A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci U S A 94:9860–9865

    Article  PubMed  CAS  Google Scholar 

  409. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485

    Article  PubMed  CAS  Google Scholar 

  410. Hultman CS, Brinson GM, Siltharm S, deSerres S, Cairns BA, Peterson HD et al (1996) Allogeneic fibroblasts used to grow cultured epidermal autografts persist in vivo and sensitize the graft recipient for accelerated second-set rejection. J Trauma 41:51–58

    Article  PubMed  CAS  Google Scholar 

  411. Ramarli D, Giri A, Reina S, Poffe O, Cancedda R, Varnier O et al (1995) HIV-1 spreads from lymphocytes to normal human keratinocytes suitable for autologous and allogenic transplantation. J Invest Dermatol 105:644–647

    Article  PubMed  CAS  Google Scholar 

  412. Boneva RS, Folks TM, Chapman LE (2001) Infectious disease issues in xenotransplantation. Clin Microbiol Rev 14:1–14

    Article  PubMed  CAS  Google Scholar 

  413. Notara M, Haddow DB, MacNeil S, Daniels JT (2007) A xenobiotic-free culture system for human limbal epithelial stem cells. Regen Med 2:919–927

    Article  PubMed  CAS  Google Scholar 

  414. Sharma SM, Fuchsluger T, Ahmad S, Katikireddy KR, Armant M, Dana R et al (2011) Comparative analysis of human-derived feeder layers with 3 T3 fibroblasts for the ex vivo expansion of human limbal and oral epithelium. Stem Cell Rev. doi:10.1007/s12015-011-9319-6

    PubMed  Google Scholar 

  415. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  PubMed  CAS  Google Scholar 

  416. Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76:5665–5668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Astrid Østerud at the Department of Ophthalmology, Oslo University Hospital, Norway; Ingrid Riphagen at the Unit for Applied Clinical Research, Norwegian University of Science and Technology, Norway; Sten Ræder at the Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway, and SynsLaser kirurgi, Oslo/Tromsø, Norway; and Øygunn Aass Utheim and Torstein Lyberg at the Department of Medical Biochemistry, Oslo University Hospital, Norway for excellent help and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Utheim, T.P. (2013). Limbal Epithelial Cell Therapy: Past, Present, and Future. In: Wright, B., Connon, C. (eds) Corneal Regenerative Medicine. Methods in Molecular Biology, vol 1014. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-432-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-432-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-431-9

  • Online ISBN: 978-1-62703-432-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics