Skip to main content

Nanoparticles: Toxicity, Radicals, Electron Transfer, and Antioxidants

  • Protocol
  • First Online:
Oxidative Stress and Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1028))

Abstract

In recent years, nanoparticles have received increasing attention in research and technology, including a variety of practical applications. The bioactivity appears to be related to the small particle size, in addition to inherent chemical activity as electron transfer (ET) agents, generators of reactive oxygen species (ROS) with subsequent oxidative stress (OS), and as antioxidants (AOs). The mechanism of toxicity, therapeutic action, and AO property is addressed based on the ET-ROS-OS approach. There are several main classes of ET functionalities, namely, quinones (or phenolic precursors), metal compounds, aromatic nitro compounds (or reduction products), and imine or iminium species. Most of the nanospecies fall within the metal category. Cell signaling is also discussed. This review discusses recent developments based on ET-ROS-OS-AO framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacic P, Somanathan R (2010) Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species. J Nanosci Nanotechnol 10:7919–7930

    CAS  Google Scholar 

  2. Kovacic P, Becvar LE (2000) Mode of action of anti-infective agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 6:143–167

    CAS  Google Scholar 

  3. Kovacic P, Osuna JA (2000) Mechanisms of anticancer agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 6:277–309

    CAS  Google Scholar 

  4. Kovacic P, Jacintho JD (2001) Mechanism of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8:773–796

    CAS  Google Scholar 

  5. Kovacic P, Jacintho JD (2001) Reproductive toxins: pervasive theme of oxidative stress and electron transfer. Curr Med Chem 8:863–892

    CAS  Google Scholar 

  6. Kovacic P, Sacman A, Wu-Weis M (2002) Nephrotoxins: widespread role of oxidative stress and electron transfer. Curr Med Chem 9:823–847

    CAS  Google Scholar 

  7. Poli G, Cheeseman GH, Dianzani MU, Slater TF (1989) Free radicals in the pathogenesis of liver injury. Pergamon Pree, Oxford, pp 1–330

    Google Scholar 

  8. Kovacic P, Thurn LA (2005) Cardiovascular toxins from the perspective of oxidative stress and electron transfer. Curr Vasc Pharmacol 3:107–117

    CAS  Google Scholar 

  9. Kovacic P, Somanathan R (2005) Neurotoxicity: the broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem-CNS Agents 5:249–258

    CAS  Google Scholar 

  10. Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PG (2005) Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 5:2601–2623

    Google Scholar 

  11. Kovacic P, Cooksy AL (2005) Unifying mechanism for toxicity and addiction by abused drugs: electron transfer and reactive oxygen species. Med Hypotheses 64:357–366

    CAS  Google Scholar 

  12. Kovacic P, Somanathan R (2008) Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspect. Med Hypotheses 70:914–923

    CAS  Google Scholar 

  13. Kovacic P, Somanathan R (2008) Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct 28:323–346

    CAS  Google Scholar 

  14. Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Rad Res 1:56–69

    Google Scholar 

  15. Kovacic P, Somanathan R (2009) Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants. Rev Environ Contam Toxicol 201:41–69

    CAS  Google Scholar 

  16. Kovacic P, Somanathan R (2010) Dermal toxicity and environmental contamination: electron transfer, reactive oxygen species, oxidative stress, cell signaling, and protection by antioxidants. Rev Environ Contam Toxicol 203:119–138

    CAS  Google Scholar 

  17. Kourounakis PN, Tsiakitzis K, Kourounakis AP, Galanakis D (2000) Reduction of gastrointestinal toxicity of NSAIDs via molecular modifications leading to antioxidant anti-inflammatory drugs. Toxicology 144:205–210

    CAS  Google Scholar 

  18. Kovacic P, Edwards C (2010) Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. J Recept Signal Transduct 30:133–142

    CAS  Google Scholar 

  19. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, pp 1–936

    Google Scholar 

  20. van der Zande M, Junker R, Walboomers XF, Jansen JA (2010) Carbon nanotubes in animal models: a systemic review on toxic potential. Tissue Eng Part B Rev 17:58–69

    Google Scholar 

  21. Johnston HJ, Hutchinson GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–246

    CAS  Google Scholar 

  22. Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, Lee SH, Song KS, Kang CS, Yu IJ (2011) Aspect ratio has no effect on genotoxicity of multi-walled nanotubes. Arch Toxicol 85:775–786

    CAS  Google Scholar 

  23. Stella GM (2011) Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 6:1–17

    Google Scholar 

  24. Srivastava RK, Pant AB, Kashyap MP, Lohani M, Jonas L, Rahman Q (2011) Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cells line-A549. Nanotoxicology 5:195–207

    CAS  Google Scholar 

  25. Ye S, Wang Y, Jiao F, Zhang H, Lin C, Wu Y, Zhang Q (2011) The role of NADPH oxidase in multi-walled carbon nanotubes-induced oxidative stress and cytotoxicity in human macrophages. J Nanosci Nanotechnol 11:3773–3781

    CAS  Google Scholar 

  26. Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–242

    CAS  Google Scholar 

  27. Kovacic P, Somanathan R (2011) Inflammation and anti-inflammatory agent: reactive oxygen species and toxicity. In: Laher I (ed) Systems biology of free radicals and anti-oxidants. Springer, New York

    Google Scholar 

  28. Reddy AR, Rao MV, Krishna DR, Himabindu V, Reddy YN (2011) Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59:251–257

    CAS  Google Scholar 

  29. Reddy AR, Reddy YN, Krishna DR, Himabindu V (2010) Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK 293) cells. Toxicology 272:11–16

    CAS  Google Scholar 

  30. Takaya M, Serita F, Yamazaki K, Aiso S, Kubota H, Asalura M, Ikawa N, Nagano K, Arito H, Fukushima S (2010) Characteristics of multiwalled nanotubes for an intratracheal installation study with rats. Ind Health 48:452–459

    CAS  Google Scholar 

  31. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York, p 464

    Google Scholar 

  32. Clichici S, Mocan T, Filip A, Biris A, Simon S, Daicoviciu D, Decea N, Parvu A, Moldovan R, Muresan A (2011) Blood oxidative stress generation after interperitonial administration of functionalized single walled-carbon nanotubes in rats. Acta Physiol Hung 98:231–241

    CAS  Google Scholar 

  33. Inoue K, Yanagisawa R, Koike E, Nishkawa M, Takano H (2010) Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: possible role of oxidative stress. Free Rad Biol Med 48:924–934

    CAS  Google Scholar 

  34. Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ductman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217

    CAS  Google Scholar 

  35. Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM (2011) Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Particle Fibre Toxicol 8:24

    Google Scholar 

  36. Shevedova AA, Kisin E, Murray AR, Johnson VJ, Gorlik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:L552–L565

    Google Scholar 

  37. Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, Thomas R, Wilson BL, Jeffers R, Hall JC, Ramesh GT (2011) Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem 286:29725–29733

    CAS  Google Scholar 

  38. Wessels A, van Berlo D, Boots AW, Gerloff K, Scherbart AM, Casseee FR, Gerlofs-Niijland ME, van Schooten F-J, Albrecht C, Schins RPF (2011) Oxidative stress and DNA damage responses in rat and mice lung to inhaled carbon nanoparticles. Nanotoxicology 5:66–78

    CAS  Google Scholar 

  39. Murray AR, Kisin E, Leonard SS, Yoiung SH, Kommineni C, Kagan VE, Castronova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257:161–171

    CAS  Google Scholar 

  40. Limbach LK, Wick P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    CAS  Google Scholar 

  41. By GY, Brumno M, Wallace K, Winnik W, Prasad RY (2011) Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide. Proteomics 11:2406–2422

    Google Scholar 

  42. Buffet PE, Tankoua OF, Pan JF, Berhanu D, Herrenknecht C, Poirier L, Amiard-Triquet C, Amiard JC, Bérard JB, Risso C, Guibbolini M, Roméo M, Reip P, Valsami-Jones E, Mouneyrac C (2011) Behavioral and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticle. Chemosphere 84:166–174

    CAS  Google Scholar 

  43. Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signaling. Arch Toxicol 85:733–741

    CAS  Google Scholar 

  44. Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine. New York, Oxford, p 340

    Google Scholar 

  45. Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097

    CAS  Google Scholar 

  46. Beyerle A, Long AS, White PA, Kissel T, Stoeger T (2011) Poly(ethylene imine) nanocarriers do not induce mutations nor oxidative stress DNA damage in vitro in MutaMouse FE1 cells. Mol Pharm 8:976–981

    CAS  Google Scholar 

  47. Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83:461–467

    CAS  Google Scholar 

  48. Sikka SC (2001) Relative impact of oxidative stress on male reproductive function. Curr Med Chem 8:851–862

    CAS  Google Scholar 

  49. Kovacic P, Somanathan R (2006) Mechanisms of teratogenesis: electron transfer, reactive oxygen species and antioxidants. Birth Def Res 78:308–325

    CAS  Google Scholar 

  50. Kovacic P, Somanathan R (2011) Free radicals and teratogenesis. In: Laher I (ed) Systems biology of free radicals and antioxidants. Springer, New York

    Google Scholar 

  51. Møller P, Mikkelsen L, Vesterdal LK, Folkmann JK, Forchhammer L, Roursgaard M, Danielsen PH, Loft S (2011) Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol 41:339–368

    Google Scholar 

  52. Fubini B, Chaiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363

    CAS  Google Scholar 

  53. Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A (2010) Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 14:809–821

    CAS  Google Scholar 

  54. Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B (2010) Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7:S27–S40

    Google Scholar 

  55. Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Rad Res 44:1–46

    Google Scholar 

  56. McLeish JA, Chico TJ, Taylor HB, Tucker C, Donaldson K, Brown SB (2010) Skin exposure to micro-and nano-particles can cause haemostasis in zebrafish larvae. Thromb Haemost 103:797–807

    CAS  Google Scholar 

  57. Nemmar A, Al-Salam S, Zia S, Dhanasekaran S, Shudadevi M, Ali BH (2010) Time-course effects of systematically administered diesel exhaust particle in rats. Toxicol Lett 194:58–65

    CAS  Google Scholar 

  58. Li R, Ning Z, Majumdar R, Cui J, Takabe W, Jen N, Sioutas C, Hsiai T (2010) Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: implication of chemical components and NF-kappaB signaling. Part Fibre Toxicol 7:6

    Google Scholar 

  59. Turci F, Tomatis M, Lesci IG, Roveri N, Fubini B (2011) The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: a model study for high-aspect-ratio nanoparticles. Chemistry 17:350–358

    CAS  Google Scholar 

  60. Donaldson K, Borm PJ, Castronova V, Gulumian M (2009) The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part Fibre Toxicol 6:13

    Google Scholar 

  61. Brown T (2009) Silica exposure, smoking, silicosis and lung cancer-complex interactions. Occup Med 59:89–95

    Google Scholar 

  62. Wu J, Wang C, Sun J, Xue Y (2011) Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5:4476–4489

    CAS  Google Scholar 

  63. Song Y, Li X, Wang L, Rojanaskul Y, Castranova V, Li H, Ma J (2011) Nanomaterial in humans: identification, characteristics, and potential damage. Toxicol Pathol 39:841–849

    CAS  Google Scholar 

  64. Bhattacharjee S, de Haan LHJ, Evers NM, Jiang X, Marcelis ATM, Zuihof H, Rietjens IMCM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Particle Fibre Toxicol 7:25

    Google Scholar 

  65. Eom H-J, Choi J (2009) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol Vitro 23:1326–1332

    CAS  Google Scholar 

  66. Wang F, Gao F, Lan M, Yuan H, Huang Y, Liu J (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol Vitro 23:808–815

    CAS  Google Scholar 

  67. Li JJ, Muralikrishnan S, Ng C-T, Yung L-YL, Bay B-H (2010) Nanoparticles-induced pulmonary toxicity. Exp Biol Med 235:1025–1033

    CAS  Google Scholar 

  68. Hussain S, Thomassen LCJ, Ferecatu I, Borot M-C, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S (2010) Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Particle Fiber Toxicol 7:10

    Google Scholar 

  69. Muller J, Decordier I, Hoet PH, Lombaert FH, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29:427–433

    CAS  Google Scholar 

  70. Hussain S, Vanoirbeek JAJ, Luyts K, De Vooght V, Verbeken E, Thomassen LCJ, Martens JA, Dinsdale D, Boland S, Marano F, Nemery B, Hoet PHM (2011) Lung exposure to nanoparticles modulates an asthma response in mouse model. Eurp Respir J 37:299–309

    CAS  Google Scholar 

  71. Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, Liu H, Wang H, Hong F (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31:99–105

    CAS  Google Scholar 

  72. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8794

    CAS  Google Scholar 

  73. Bhattacharya K, Davoren M, Boertz J, Schins RPF, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle Fibre Toxicol 6:17

    Google Scholar 

  74. Gurr J-R, Wang ASS, Chen C-H, jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    CAS  Google Scholar 

  75. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352

    CAS  Google Scholar 

  76. Jeon Y-M, park S-K, Lee M-Y (2011) Toxicoproteomic identification of TiO2 nanoparticle-induced protein expression changes in mouse brain. Animal Cells Systems 15:107–114

    CAS  Google Scholar 

  77. Mallik A, Bryan S, Puukila S, Chen A, Khaper N (2011) Efficacy of Pt-modified TiO2 nanoparticles in cardiac cells. Exp Clin Cardiol 16:6–10

    CAS  Google Scholar 

  78. Choi O, Hu Z (2009) Reactive oxygen species in determining nitrification inhibition by metallic/oxide nanoparticles. J Environ Eng 135:1365–1370

    CAS  Google Scholar 

  79. Tran DT, Salmon R (2010) Potential photocarcinogenic effects of nanoparticle sunscreens. Australas J Dermatol. doi: 10.1111/j.1440-0960.2010.00677.x

  80. Haase A, Tentscher J, Jungnickel H, Graf P, Mantion A, Draude F, Plendl J, Goetz ME, Galla S, Mašić A, Thuenemann AF, Taubert A, Arlinghaus HF, Luch A (2011) Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys Conf Series 304(012030):1–15. doi:10.1088/ 1742-6596/304/1/ 012030

    Google Scholar 

  81. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACSNano 3:279–290

    CAS  Google Scholar 

  82. Sheikpranabu S, Kalishwaralal K, Venkataraman D, Ecom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-I-induced vascular permeability via dependent pathway in porcine retinal endothelial cells. J Nanotechnol 7:8. doi:10.1186/1477-3155-7-8

    Google Scholar 

  83. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    CAS  Google Scholar 

  84. Lin W, Huang Y-W, Zhou X-D, Ma Y (2006) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–457

    CAS  Google Scholar 

  85. Horie M, Fujita K (2011) Toxicity of metal oxides nanoparticles. In: Fishbein JC (ed) Advances in molecular toxicology. Elsevier, Oxford, UK, Chapter 4

    Google Scholar 

  86. Horie M, Nishio K, Kato H, Fujita K, Endoh S, Nakamura A, Miyauchi A, Kinugasa S, Yamamoto K, Niki E, Yoshida Y, Hagihara Y, Iwahashi H (2011) Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on cultured cells. J Biolchem doi: 10.1093/jb/mvr081

  87. Park E-J, Choi J, Park Y-K, Park K (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100

    CAS  Google Scholar 

  88. Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4:5321–5331

    CAS  Google Scholar 

  89. Wingard CJ, Walters DM, Cathey BL, Hildrbrand SC, Katwa P, Lin S, Ke PC, Podila R, Rao A, Lust RM, Brown JM (2010) Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology 4:1–15

    Google Scholar 

  90. Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtés C (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle Fibre Toxicol 8:10

    Google Scholar 

  91. Sharma V, Anderson D, Dhawan A (2011) Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7:98–99

    CAS  Google Scholar 

  92. Heng BC, Zhao X, Xiong S, Ng KW, Boey FY-C, Loo JC-C (2010) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chemical Toxicol 48:1762–1766

    CAS  Google Scholar 

  93. Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physiochemical study of toxicity mechanism. J Nanoparticle Res 12:1645–1654

    CAS  Google Scholar 

  94. Musarrat J, Saquib Q, Azam A, Naqvi AH (2009) Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. Int J Nanoparticles 2:401–415

    Google Scholar 

  95. Sharma V, Shukla RK, Saxena N, Parmar D, das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    CAS  Google Scholar 

  96. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    CAS  Google Scholar 

  97. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    CAS  Google Scholar 

  98. Busch W, Kühnel D, Schirmer K, Scholz S (2010) Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on gene expression level in human keratinocytes. BMC Genomics 11:65

    Google Scholar 

  99. Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

    CAS  Google Scholar 

  100. Horie M, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura S, Yamamoto K, Niki E, Yoshida Y, Iwahashi H (2011) Chromium (III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ Toxicol doi:10.1002/tox.20695

  101. Soudani N, Amara IB, Troudi A, Bouaziz H, Boudawara T, Zeghal N (2011) Oxidative stress induced by chromium (VI) in bone of suckling rats. Toxicol Ind Health doi: 10.1177/0748233710395992

  102. Stefanescu DM, Khoshnan A, Patterson PH, Hering JG (2011) Neurotoxicity of manganese oxide nanoparticles. J Nanoparticle Res 11:1957–1969

    Google Scholar 

  103. Frick R, Müller-Edenborn B, Schlicker A, Rothen-Rutishauser B, Raemy DO, Günther D, Hattendorf B, Stark W, Beck-Schimmer B (2011) Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells. Toxicol Lett 205:163–172

    CAS  Google Scholar 

  104. Ahamed M, Akgtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108

    CAS  Google Scholar 

  105. Morimoto Y, Ogami A, Todoroki M, Yamamoto M, Murakami M, Hirohashi M, Oyabu T, Myojo T, Nishi K-I, Kadoya C, Yamasaki S, Nagatomo H, Fujita K, Endoh S, Uchida K, Yamamoto K, Kobayashi N, Nakanishi J, Tanaka I (2010) Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology 4:161–176

    CAS  Google Scholar 

  106. Abedelhalim MAK, Jarrar BM (2011) Gold nanoparticles administration induced prominent inflammatory, central vein intima disruption, fatty change and Kupffer cells hyperplasia. Lipid Health Disease 10:133

    Google Scholar 

  107. Tefesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicol 100:178–186

    Google Scholar 

  108. Li JJ, Hartono D, Ong CN, Bay BH, Yung LY (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31:5996–6003

    CAS  Google Scholar 

  109. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076

    CAS  Google Scholar 

  110. Park E-J, Kim H, Kim Y, Park K (2010) Effects of platinum nanoparticles on the postnatal development of mouse pups by maternal exposure. Environ Health Toxicol 25:279–286

    Google Scholar 

  111. Kachi H, Noda M, Wataha JC, Nakaoki Y, Sano H (2011) Colloidal platinum nanoparticles increase mitochondrial stress induced by resin composite components. J Biomed Mater Res B Appl Biomater 96:193–198

    Google Scholar 

  112. Yuan Y, Tang J, Wei C, Han B, Yang X (2011) Oxidative damage of Fe3O4 nanoparticles on mouse hepatic cells in vitro. Bioinfor Biomed Eng 1–4, 5th international conference. doi:10.1109/icbbe.2011.5781375

  113. Naqvi S, Abdin MZ, Ahmed FJ, Maitra AN, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989

    CAS  Google Scholar 

  114. Keenan CR, Goth-Golsrein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43:4555–4560

    CAS  Google Scholar 

  115. Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, Sima C, Dinischiotu A (2010) Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochim Polon 57:355–360

    CAS  Google Scholar 

  116. Soenen SJH, Nuytten N, De Meyer SF, De Emedt SC, De Cuyper M (2010) High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 6:832–842

    CAS  Google Scholar 

  117. Kovacic P, Somanathan R (2006) Beneficial effects of antioxidants in relation to carcinogen, toxins and various illnesses. In: Panglossi HV (ed) Frontiers in antioxidants research. Nova Science, New York, pp 1–38, Chapter 1

    Google Scholar 

  118. Mocan T, Clichici S, Agoşton-Colea L, Mocan L, Şimon Ş, Ilie IR, Biriş AR (2010) Implications of oxidative stress mechanisms in toxicity of nanoparticles. Acta Physiol Hung 97:247–255

    CAS  Google Scholar 

  119. Elswaifi SF, Palmieri JR, Hockey KS, Rzigalinski BA (2009) Antioxidant nanoparticles for control of infectious disease. Infec Disord Drug Targets 9:445–452

    CAS  Google Scholar 

  120. Celardo I, Pederson JZ, Traversa E, Ghibell L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420

    CAS  Google Scholar 

  121. Amin KA, Hassan MS, Awad E-ST, Hashem KS (2011) The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline. Int J Nanomed 6:143–149

    CAS  Google Scholar 

  122. Niu J, Wang K, Kolattukudy PE (2011) Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-kB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther 338:53–61

    CAS  Google Scholar 

  123. Clark A, Zhu A, Sun K, Petty HR (2011) Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanopart Res 13(10):5547–5555. doi:10.1007/s11051-011-0544-3

    CAS  Google Scholar 

  124. Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM (2011) Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol doi:10.1002/tox.20704

  125. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed Nanotechnol Biol Med 5:225–231

    CAS  Google Scholar 

  126. Tsai Y-Y, Oca-Cossio J, Lin S-M, Woan K, Yu P-C, Sigmund W (2008) Reactive oxygen species scavenging properties of ZrO2–CeO2 solid solution nanoparticles. Nanomedicine 3:637–645

    CAS  Google Scholar 

  127. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559

    CAS  Google Scholar 

  128. Schbert D, Dargusch R, Raitano J, Chan S-W (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Google Scholar 

  129. Zhang L, Laug L, Münchgesang W, Pippel E, Gösele U, Brandsch M, Knez M (2010) Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett 10:219–223

    Google Scholar 

  130. Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A (2009) Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulmonary Pharmacol Therap 22:340–349

    CAS  Google Scholar 

  131. Hikosaka K, kim J, Kajita M, Kanayama A, Miyamoto Y (2008) Platinum nanoparticles have an activity similar to mitochondrial NADH:ubiquinone oxidoreductase. Colloids Surf B: Biointerfaces 66:195–200

    CAS  Google Scholar 

  132. Sakaue Y, kim J, Miyamoto Y (2010) Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1. Int J Nanomed 5:687–695

    CAS  Google Scholar 

  133. Barath Mani Kanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn H-S, Eom S, Gurunathan S (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8:16

    Google Scholar 

  134. Sul O-J, Kim J-C, Kyung T-W, Kim H-J, Kim Y-Y, Kim S-H, Kim J-S, Choi H-S (2010) Gold nanoparticles inhibited the receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem 74:2209–2213

    CAS  Google Scholar 

  135. Mohammad G, Mishra V, Pandey HP (2008) Antioxidant properties of some nanoparticles may enhance wound healing in T2DM patient. Digest J Nanomat Biostruct 3:159–162

    Google Scholar 

  136. Yin J-J, Lao F, Fu P, Wamer WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J, Liang X-J, Chen C (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterial 30:611–621

    CAS  Google Scholar 

  137. Bawa R (2008) Nanoparticle-based therapeutics in humans; a survey. Nanotechnol Law Business 2008(5):135–155

    Google Scholar 

  138. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433

    CAS  Google Scholar 

  139. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149

    Google Scholar 

  140. Nair HB, Sung B, Yadev VR, Kannappan R, Chaturvedi MM, Aggarwal BB (2010) Delivery of anti-inflammatory nutraceuticals by nanoparticles for prevention and treatment of cancer. Biochem Pharmacol 80:1833–1843

    CAS  Google Scholar 

  141. Lim Z-ZJ, Li J-EJ, Ng C-T, Yung A-YL, Bay B-H (2011) Gold nanoparticles in cancer therapy. Acta Pharmacol Sinica 32:983–990

    CAS  Google Scholar 

  142. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles a revival in precious metal administration to patients. Nano Lett 11(10):4029–4036

    CAS  Google Scholar 

  143. Oo MKK, Yang X, Du H, Wang H (2008) Aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine 3:777–786

    CAS  Google Scholar 

  144. Kim D, Jeong YY, Jon S (2010) Drug-loaded aptamer-gold nanoparticle bioconjugated for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    CAS  Google Scholar 

  145. Reddy AK, Rathinaraj BS, Prathyusha P, BHargav TA, Rajani T, Rajamanickam V, Krishna Reddy P, Arul Selvam M (2011) Emerging trends of nanotechnology in cancer therapy. Int J Pharamc Biolo Arch 2:1

    Google Scholar 

  146. Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J, Kong B (2011) Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 22(28):285101

    Google Scholar 

  147. Ahamed M, Sldalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clinica Chimica Acta 411:841–1848

    Google Scholar 

  148. Lara HH, Ayala-Nuńez N, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1

    Google Scholar 

  149. Sriram MI, Mani Kanth SB, Kalishwaralal K (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 5:753–762

    CAS  Google Scholar 

  150. David AE, Cole AJ, Yang VC (2011) Magnetically targeted nanoparticles for brain tumor therapy; what does the future hold? Nanomedicine 6:1133–1135

    Google Scholar 

  151. Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occupational Med Toxicol 2:16

    Google Scholar 

  152. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Therp 11:1–10

    Google Scholar 

Download references

Acknowledgment

Editorial assistance by Thelma Chavez is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kovacic, P., Somanathan, R. (2013). Nanoparticles: Toxicity, Radicals, Electron Transfer, and Antioxidants. In: Armstrong, D., Bharali, D. (eds) Oxidative Stress and Nanotechnology. Methods in Molecular Biology, vol 1028. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-475-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-475-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-474-6

  • Online ISBN: 978-1-62703-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics