Skip to main content

Management of Growth Plate Injuries

  • Chapter
  • First Online:
Children's Orthopaedics and Fractures

Abstract

Treatment of acute growth plate injuries is determined by a prognostic evaluation of the radiographs. The Salter and Harris classification [1] is the most widely used and has been modified by Ogden [2] and more recently by Peterson [3]. The present Ogden classification includes nine major types with subclassifications. For practical purposes the intra-articular fracture line and the degree of initial chondroepiphyseal displacement determine management, as originally proposed by Poland in 1898 [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Cloth bound cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg [Am] 1963; 45-A: 587–622

    Google Scholar 

  2. Ogden JA. Skeletal growth mechanism injury patterns. J Pediatr Orthop.1982; 2:371–377.

    Article  PubMed  CAS  Google Scholar 

  3. Peterson H. Physeal injuries and growth arrest. In: Beaty JH, Kasser JR, eds. Rockwood and Wilkins’ Fractures in Children. Philadelphia: Lippincott Williams & Wilkins; 2001:91–138.

    Google Scholar 

  4. Poland J. Separation of the epiphysis. London: Smith Elder; 1898.

    Google Scholar 

  5. Langenskiöld A. An operation for partial closure of an epiphysial plate in children, and its experimental basis. J Bone Joint Surg [Br] 1975; 57-B: 325–330.

    Google Scholar 

  6. Klassen RA, Peterson HA. Excision of physeal bars: The Mayo Clinic experience 1968–1978. Orthop Trans 1982; 6:65–75.

    Google Scholar 

  7. Bright RW. Operative correction of partial epiphyseal plate closure by osseous-bridge resection and silicone-rubber implant. An experimental study in dogs. J Bone Joint Surg [Am] 1974; 56-A: 655–664.

    Google Scholar 

  8. Monticelli G, Spinelli R. Distraction epiphysiolysis as a method of limb lengthening. III. Clinical applications. Clin Orthop Rel Res1981; 154:274–285.

    Google Scholar 

  9. De Bastiani G, Aldegheri R, Renzi Brivio L, et al. Chondrodiatasis-controlled symmetrical distraction of the epiphyseal plate. Limb lengthening in children. J Bone Joint Surg [Br] 1986; 68-B: 550–556.

    Google Scholar 

  10. Ilizarov GA, Soybelman LM. Some clinical and experimental data concerning bloodless lengthening of the lower extremities. Eksperimental’naya Khirurgiya i Anesteziologiya1969; 14:27–32.

    CAS  Google Scholar 

  11. Brighton CT. Longitudinal bone growth: the growth plate and its dysfunctions. Instruct Course Lect 1987; 36:3–25.

    CAS  Google Scholar 

  12. Kaufmann H. Appearance of secondary ossification centers. In: Lentner C, ed. Geigy Scientific Tables, Physical Chemistry, Composition of Blood, Hematology, Somatometric Data. Basle: Ciba-Geigy; 1984:316–318.

    Google Scholar 

  13. Johnstone EW, Leane PB, Kolesik P, et al. Spatial arrangement of physeal cartilage chondrocytes and the structure of the primary. J Ortho Sci 2000; 5:302–306.

    Article  Google Scholar 

  14. Vortkamp A, Lee K, Lanske, B et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein [see comments]. Science 1996; 273:613–622.

    Article  PubMed  CAS  Google Scholar 

  15. Kronenberg HM, Lanske B, Kovacs CS, et al. Functional analysis of the PTH/PTHrP network of ligands and receptors. Recent Prog Horm Res 1998; 53:283–301; discussion 301–303.

    PubMed  CAS  Google Scholar 

  16. Harris W. Epiphysial injuries. AAOS Instruct Course Lect1958; 32B: 5.

    Google Scholar 

  17. Trueta J, Morgan JD. The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Joint Surg [Br] 1960; 42:97–109.

    Google Scholar 

  18. Trueta O, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg [Br] 1960; 42:571–87.

    Google Scholar 

  19. Bright RW, Burstein AH, Elmore SM. Epiphyseal-plate cartilage. A biomechanical and histological analysis of failure modes. J Bone Joint Surg [Am] 1974; 56-A: 688–703.

    Google Scholar 

  20. Chung SM. The arterial supply of the developing proximal end of the human femur. J Bone Joint Surg [Am] 1976; 58-A: 961–970.

    Google Scholar 

  21. Rang M. The growth plate and its disorders. Edinburgh: Churchill Livingstone; 1969.

    Google Scholar 

  22. Salter RB. Textbook of Disorders and Injuries of the Musculoskeletal System. Baltimore: Williams and Wilkins; 1970.

    Google Scholar 

  23. Dale GG, Harris WR. Prognosis of epiphyseal separation. An experimental study. J Bone and Joint Surg [Br] 1958; 40:116–122.

    Google Scholar 

  24. Mizuta T, Benson W, Foster B, et al. Statistical analysis of the incidence of physeal injuries. J Pediatr Orthop 1987; 7:518–523.

    Article  PubMed  CAS  Google Scholar 

  25. Bowen JR, Schreiber FC, Foster BK, et al. Premature femoral neck physeal closure in Perthes’ disease. Clin Orthop Rel Res1982; 171:24–29.

    Google Scholar 

  26. Macnicol MF, Anagnostopoulos J. Arrest of the growth plate after arterial cannulation in infancy [Br] 2000; 82-B: 172–175.

    Google Scholar 

  27. Johnson JTH, Southwick WO. Growth following transepiphyseal bone grafts. An experimental study to explain continued growth following certain fusion operations. J Bone Joint Surg [Am] 1960; 42-A: 1381–1395.

    Google Scholar 

  28. Phemister DB. Operative arrestment of longitudinal growth of bones in the treatment of deformities. J Bone Joint Surg [Am] 1933; 15:1–15.

    Google Scholar 

  29. Rubin P. Dynamic classification of bone dysplasias. Chicago: Year Book Medical Publishers; 1964.

    Google Scholar 

  30. Peterson HA. Partial growth plate arrest and its treatment. J Pediatr Orthop1984; 4:246–258.

    Article  PubMed  CAS  Google Scholar 

  31. Rohmiller MT, Gaynor TP, Pawelek J, et al. Salter-Harris I and II fractures of the distal tibia: does mechanism of injury relate to premature physeal closure? J Pediatr Orthop 2006; 26:322–328.

    Article  PubMed  Google Scholar 

  32. Smith BG, Rand F, Jaramillo D, et al. Early MR imaging of lower-extremity physeal fracture-separations: a preliminary report. J Pediatr Orthop 1994; 14:526–533.

    Article  PubMed  CAS  Google Scholar 

  33. White PG, Mah JY, Friedman L. Magnetic resonance imaging in acute physeal injuries. Skeletal Radio1994; 23:627–631.

    Article  CAS  Google Scholar 

  34. Carey J, Spence L, Blickman H, et al. MRI of pediatric growth plate injury: correlation with plain film radiographs and clinical outcome. Skeletal Radiol 1998; 27:250–255.

    Article  PubMed  CAS  Google Scholar 

  35. Kamegaya M, Shinohara Y, Kurokawa M, et al. Assessment of stability in children’s minimally displaced lateral humeral condyle fracture by magnetic resonance imaging. J Pediatr Orthop 1999; 19:570–572.

    PubMed  CAS  Google Scholar 

  36. Howman Giles R, Trochei M, Yeates K, et al. Partial growth plate closure: apex view on bone scan. J Pediatr Orthop 1985; 5:109–111.

    Article  PubMed  CAS  Google Scholar 

  37. Laffosse JM, Cariven P, Accadbled F, et al. Osteosynthesis of a triplane fracture under arthroscopic control in a bilateral case. Foot Ankle Surg 2007; 13:83–90.

    Article  Google Scholar 

  38. Foster BK, John B, Hasler C. Free fat interpositional graft in acute physeal injuries. The anticipatory Langenskiöld procedure. J Pediat Orthop 2000; 20:282–285.

    CAS  Google Scholar 

  39. Bostman O, Vainionpaa S, Hirvensalo E, et al. Biodegradable internal fixation for malleolar fractures. A prospective randomised trial. J Bone Joint Surg Br 1987; 69:615–619.

    PubMed  CAS  Google Scholar 

  40. Bostman O, Makela EA, Tormala P, et al. Transphyseal fracture fixation using biodegradable pins. J Bone Joint Surg Br 1989; 71:706–707.

    PubMed  CAS  Google Scholar 

  41. Bostman O, Hirvensalo E, Partio E, et al. [Resorbable rods and screws of polyglycolide in stabilizing malleolar fractures. A clinical study of 600 patients]. Unfallchirurg 1992; 95:109–112.

    PubMed  CAS  Google Scholar 

  42. Bostman O, Paivarinta U, Partio E, et al. Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies. J Bone Joint Surg Am 1992; 74:1021–1031.

    PubMed  CAS  Google Scholar 

  43. Makela EA, Bostman O, Kekomaki M, et al. Biodegradable fixation of distal humeral physeal fractures. Clin Orthop Relat Res 1992; 283:237–243.

    PubMed  Google Scholar 

  44. Partio EK, Hirvensalo E, Bostman O, et al. [Absorbable rods and screws: a new method of fixation for fractures of the olecranon]. Int Orthop 1992; 16:250–254.

    Article  PubMed  CAS  Google Scholar 

  45. Partio EK, Hirvensalo E, Partio E, et al. Talocrural arthrodesis with absorbable screws, 12 cases followed for 1 year. Acta Orthop Scand 1992; 63:170–172.

    Article  PubMed  CAS  Google Scholar 

  46. Hara Y, Tagawa M, Ejima H, et al. Application of oriented poly-L-lactide screws for experimental Salter-Harris type 4 fracture in distal femoral condyle of the dog. J Vet Med Sci 1994; 56:817–822.

    Article  PubMed  CAS  Google Scholar 

  47. Peterson H. Treatment of physeal bony bridges by means of bridge resection and interposition of cranioplasty. In: Pablos J, ed. Surgery of the Growth Plate. Madrid: S.A Ediciones Ergon; 1998:299–307.

    Google Scholar 

  48. Zuege RC, Kempken TG, Blount WP. Epiphyseal stapling for angular deformity at the knee. J Bone Joint Surg Am 1979; 61:320–329.

    PubMed  CAS  Google Scholar 

  49. Langenskiöld A. Surgical treatment of partial closure of the growth plate. J Pediatr Orthop 1981; 1:3–11.

    Article  PubMed  Google Scholar 

  50. Foster B. Epiphyseal plate repair using fat interposition to reverse physeal deformity. An Experimental study. MD, Paediatrics. Adelaide: The University of Adelaide; 1989.

    Google Scholar 

  51. Borsa JJ, Peterson HA, Ehman RL. MR imaging of physeal bars. Radiology 1996; 199:683–687.

    PubMed  CAS  Google Scholar 

  52. Ecklund K, Jaramillo D. Patterns of premature physeal arrest: MR imaging of 111 children. AJR Am J Roentgenol 2002; 178:967–972.

    PubMed  Google Scholar 

  53. Sailhan F, Chotel F, Guibal AL, et al. Three-dimensional MR imaging in the assessment of physeal growth arrest. Eur Radiol 2004; 14:1600–1608.

    Article  PubMed  Google Scholar 

  54. Hasler CC, Foster BK. Secondary tethers after physeal bar resection: a common source of failure? Clin Orthop Relat Res 2002; 405:242–249.

    Article  PubMed  Google Scholar 

  55. Jouve JL, Guillaume JM, Frayssinet P, et al. Growth plate behavior after desepiphysiodesis: experimental study in rabbits. J Pediatr Orthop 2003; 23:774–779.

    Article  PubMed  Google Scholar 

  56. Marsh JS, Polzhofer GK. Arthroscopically assisted central physeal bar resection. J Pediatr Orthop 2006; 26:255–259.

    Article  PubMed  Google Scholar 

  57. Foster BK, Hansen AL, Gibson GJ, et al. Reimplantation of growth plate chondrocytes into growth plate defects in sheep. J Orthop Res 1990; 8:555–564.

    Article  PubMed  CAS  Google Scholar 

  58. Hansen AL, Foster BK, Gibson GJ, et al. Growth-plate chondrocyte cultures for reimplantation into growth-plate defects in sheep. Characterization of cultures. Clin Orthop Relat Res 1990; 256:286–298.

    PubMed  Google Scholar 

  59. Boyer MI, Danska JS, Nolan L, et al. Microvascular transplantation of physeal allografts. J Bone Joint Surg Br 1995; 77:806–814.

    PubMed  CAS  Google Scholar 

  60. Lee EH, Chen F, Chan J, et al. Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects. J Pediatr Orthop 1998; 18:155–160.

    PubMed  CAS  Google Scholar 

  61. Sims CD, Butler PE, Casanova R, et al. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 1996; 98:843–850.

    Article  PubMed  CAS  Google Scholar 

  62. Abad V, Uyeda JA, Temple HT, et al. Determinants of spatial polarity in the growth plate. Endocrinology 1999; 140:958–962.

    Article  PubMed  CAS  Google Scholar 

  63. Lee CW, Martinek V, Usas A, et al. Muscle-based gene therapy and tissue engineering for treatment of growth plate injuries. J Pediatr Orthop 2002; 22:565–572.

    PubMed  Google Scholar 

  64. Mc Carthy R. Stem cell repair of physeal cartilage. PhD Thesis. Adelaide: The University of Adelaide; 2007.

    Google Scholar 

  65. Xian CJ, Foster BK. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 2006; 1:213–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Accadbled, F., Foster, B.K. (2010). Management of Growth Plate Injuries. In: Benson, M., Fixsen, J., Macnicol, M., Parsch, K. (eds) Children's Orthopaedics and Fractures. Springer, London. https://doi.org/10.1007/978-1-84882-611-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-611-3_41

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-610-6

  • Online ISBN: 978-1-84882-611-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics