Skip to main content

Applications of Laser in Dentistry

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry

Abstract

With the introduction of laser technology into biomedical science, we are witnessing significant advances in medicine, especially in the field of diagnosis and treatment of complex diseases. The importance of using modern technologies—such as laser therapy—leads to high-quality treatment and fewer side effects.

This chapter is to review capabilities of low-power lasers and photobiomodulation, as well as the combined effect of nanotechnology/laser in dentistry. More specifically, this chapter describes the applications of low-power laser in tissue engineering and regenerative dentistry, such as bone regeneration, wound healing, anti-inflammatory, pain therapy, nerve regeneration, and stem cells. The role of nanotechnology in the laser-related dental applications is further explained. The new approaches to laser therapy—such as oral cancer treatment, antimicrobial activity, prevention of dental caries, treatment of periodontitis and peri-implantitis—are other features of this chapter. At the end, we discuss the importance of the global perspective and the vision of the World Association for Laser Therapy (WALT), which provides therapeutic protocols for the use of photobiomodulation in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romanos, G. (2015). Current concepts in the use of lasers in periodontal and implant dentistry. Journal of Indian Society of Periodontology, 19(5), 490.

    Article  Google Scholar 

  2. Karandish, M. (2014). The efficiency of laser application on the enamel surface: A systematic review. Journal of Lasers in Medical Sciences, 5(3), 108.

    Google Scholar 

  3. Walsh, L. (2003). The current status of laser applications in dentistry. Australian Dental Journal, 48(3), 146–155.

    Article  Google Scholar 

  4. Anders, J. J., Lanzafame, R. J., & Arany, P. R. (2015). Low-level light/laser therapy versus photobiomodulation therapy. New Rochelle, NY: Mary Ann Liebert, Inc..

    Book  Google Scholar 

  5. Chiari, S. (2016). Photobiomodulation and lasers. In Tooth movement, 118–123. Karger Publishers.

    Google Scholar 

  6. Fujita, S., et al. (2008). Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthodontics & Craniofacial Research, 11(3), 143–155.

    Article  Google Scholar 

  7. Moslemi, N., et al. Effect of 660nm low power laser on pain and healing in palatal donor sites a randomized controlled clinical trial. Journal of Dental Medicine, 27(1), 71–77.

    Google Scholar 

  8. Hamblin, M. R., & Demidova, T. N. (2006). Mechanisms of low level light therapy. In Mechanisms for low-light therapy. International Society for Optics and Photonics, 6140, 61001–61012.

    Google Scholar 

  9. Jere, S. W., Houreld, N. N., & Abrahamse, H. (2019). Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing. Cytokine & Growth Factor Reviews, 1–8.

    Google Scholar 

  10. Blair, J., Zheng, Y., & Dunstan, C. (2007). RANK ligand. The International Journal of Biochemistry & Cell Biology, 39(6), 1077–1081.

    Article  Google Scholar 

  11. Lopes, C. B., et al. (2007). Infrared laser photobiomodulation (λ 830 nm) on bone tissue around dental implants: A Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomedicine and Laser Surgery, 25(2), 96–101.

    Article  Google Scholar 

  12. Uzêda-e-Silva, V. D., et al. (2016). Laser phototherapy improves early stage of cutaneous wound healing of rats under hyperlipidic diet. Lasers in Medical Science, 31(7), 1363–1370.

    Article  Google Scholar 

  13. Arany, P. (2016). Craniofacial wound healing with photobiomodulation therapy: New insights and current challenges. Journal of Dental Research, 95(9), 977–984.

    Article  Google Scholar 

  14. Ribeiro, M. A. G., et al. (2009). Immunohistochemical assessment of myofibroblasts and lymphoid cells during wound healing in rats subjected to laser photobiomodulation at 660 nm. Photomedicine and Laser Surgery, 27(1), 49–55.

    Article  Google Scholar 

  15. Calil, J., et al. (2001). Clinical application of the VY posterior thigh fasciocutaneous flap. Revista da Associação Médica Brasileira, 47(4), 311–319.

    Article  Google Scholar 

  16. Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England Journal of Medicine, 341(10), 738–746.

    Article  Google Scholar 

  17. Ruh, A. C., et al. (2018). Laser photobiomodulation in pressure ulcer healing of human diabetic patients: Gene expression analysis of inflammatory biochemical markers. Lasers in Medical Science, 33(1), 165–171.

    Article  MathSciNet  Google Scholar 

  18. de Andrade, A. L. M., Bossini, P. S., & Parizotto, N. A. (2016). Use of low level laser therapy to control neuropathic pain: A systematic review. Journal of Photochemistry and Photobiology B: Biology, 164, 36–42.

    Article  Google Scholar 

  19. Forootan, S., et al. (2014). The comparison of treatment results of standard repair of traumatic injury of the distal third of the median nerve with the case of applying laser therapy after repair. Iranian Journal of Surgery, 22(1), 37–43.

    Google Scholar 

  20. Schwartz, F., et al. (2002). Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures. Journal of Photochemistry and Photobiology B: Biology, 66(3), 195–200.

    Article  Google Scholar 

  21. Freeman, R. S., et al. (2004). NGF deprivation-induced gene expression: after ten years, where do we stand? Progress in Brain Research, 146, 111–126.

    Article  Google Scholar 

  22. Andreo, L., et al. (2017). Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers in Medical Science, 32(9), 2155–2165.

    Article  Google Scholar 

  23. Hsieh, Y. L., et al. (2012). Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: Possible involvements in hypoxia-inducible factor 1α (HIF-1α). Journal of Comparative Neurology, 520(13), 2903–2916.

    Article  Google Scholar 

  24. Chen, Y.-J., et al. (2014). Effect of low level laser therapy on chronic compression of the dorsal root ganglion. PLoS One, 9(3), e89894.

    Article  Google Scholar 

  25. Theocharidou, A., et al. (2017). Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers in Medical Science, 32(1), 201–210.

    Article  Google Scholar 

  26. Karu, T. I. (2008). Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochemistry and Photobiology, 84(5), 1091–1099.

    Article  Google Scholar 

  27. Karu, T., & Kolyakov, S. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and Laser Therapy, 23(4), 355–361.

    Article  Google Scholar 

  28. Smith, K. C. (1991). The photobiological basis of low level laser radiation therapy. Laser Therapy, 3(1), 19–24.

    Article  Google Scholar 

  29. Sheykhhasan, M., & Ghiasi, M. (2017). Key transcription factors involved in the differentiation of mesenchymal stem cells. Tehran University Medical Journal TUMS Publications, 75(9), 621–631.

    Google Scholar 

  30. Manzano-Moreno, F. J., et al. (2015). The effect of low-level diode laser therapy on early differentiation of osteoblast via BMP-2/TGF-β1 and its receptors. Journal of Cranio-Maxillo-Facial Surgery, 43(9), 1926–1932.

    Article  Google Scholar 

  31. Fekrazad, R., et al. (2016). The combination of laser therapy and metal nanoparticles in cancer treatment originated from epithelial tissues: A literature review. Journal of Lasers in Medical Sciences, 7(2), 62.

    Article  Google Scholar 

  32. Virupakshappa, B. (2012). Applications of nanomedicine in oral cancer. Oral Health and Dental Management, 11(2), 62–68.

    Google Scholar 

  33. Melancon, M. P., et al. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600–7608.

    Article  Google Scholar 

  34. Kennedy, L. C., et al. (2011). T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Research Letters, 6(1), 283.

    Article  Google Scholar 

  35. Chanmee, T., et al. (2014). Tumor-associated macrophages as major players in the tumor microenvironment. Cancers, 6(3), 1670–1690.

    Article  Google Scholar 

  36. Bazak, R., et al. (2015). Cancer active targeting by nanoparticles: A comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 141(5), 769–784.

    Article  Google Scholar 

  37. Huang, X., et al. (2007). The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers in Surgery and Medicine, 39(9), 747–753.

    Article  Google Scholar 

  38. Ali, M. R., et al. (2017). Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proceedings of the National Academy of Sciences, 201703151.

    Google Scholar 

  39. Satapathy, S. R., et al. (2018). Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomedicine, 14(3), 883–896.

    Article  Google Scholar 

  40. Bansal, A., et al. (2018). In vivo wireless photonic photodynamic therapy. Proceedings of the National Academy of Sciences, 201717552.

    Google Scholar 

  41. Das, B., & Patra, S. (2017). Chapter 1-Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. In Nanostructures for antimicrobial therapy, Ficai, A., Grumezescu, A.M.,(Eds.) (pp. 1–22). Elsevier: Atlanta, GA, USA.

    Google Scholar 

  42. Fekrazad, R., Nejat, A., & Kalhori, K. A. (2017). Antimicrobial photodynamic therapy with nanoparticles versus conventional photosensitizer in oral diseases. In Nanostructures for antimicrobial therapy (pp. 237–259). Elsevier Inc.

    Google Scholar 

  43. Wang, Y., et al. (2019). Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal, 358, 74–90.

    Article  Google Scholar 

  44. Soukos, N. S., & Goodson, J. M. (2011). Photodynamic therapy in the control of oral biofilms. Periodontology 2000, 55(1), 143–166.

    Article  Google Scholar 

  45. Misba, L., Kulshrestha, S., & Khan, A. U. (2016). Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: A mechanism of type I photodynamic therapy. Biofouling, 32(3), 313–328.

    Article  Google Scholar 

  46. Haris, Z., & Khan, A. U. (2017). Selenium nanoparticle enhanced photodynamic therapy against biofilm forming streptococcus mutans. International Journal of Life-Sciences Scientific Research, 3(5), 1287–1294.

    Article  Google Scholar 

  47. Gholibegloo, E., et al. (2018). Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. Journal of Photochemistry and Photobiology B: Biology, 181, 14–22.

    Article  Google Scholar 

  48. Long, F., et al. (2015). Imaging of smart dental composites using mesoscopic fluorescence molecular tomography: An ex vivo feasibility study. International Journal of Advanced Computer Science and Information Technology, 2, 43–46.

    Google Scholar 

  49. Paster, B. J., & Dewhirst, F. E. (2009). Molecular microbial diagnosis. Periodontology 2000, 51(1), 38–44.

    Article  Google Scholar 

  50. Fraga, R. S., et al. (2018). Is antimicrobial photodynamic therapy effective for microbial load reduction in peri-implantitis treatment? A systematic review and meta-analysis. Photochemistry and Photobiology, 94, 752.

    Article  Google Scholar 

  51. de Freitas, L. M., et al. (2016). Polymeric nanoparticle-based photodynamic therapy for chronic periodontitis in vivo. International Journal of Molecular Sciences, 17(5), 769.

    Article  Google Scholar 

  52. Paszko, E., et al. (2011). Nanodrug applications in photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 8(1), 14–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fekrazad, R. et al. (2020). Applications of Laser in Dentistry. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics