Skip to main content

Role of Bioactive Sphingolipids in Inflammation and Eye Diseases

  • Chapter
  • First Online:
The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1161))

Abstract

Inflammation is a common underlying factor in a diversity of ocular diseases, ranging from macular degeneration, autoimmune uveitis, glaucoma, diabetic retinopathy and microbial infection. In addition to the variety of known cellular mediators of inflammation, such as cytokines, chemokines and lipid mediators, there is now considerable evidence that sphingolipid metabolites also play a central role in the regulation of inflammatory pathways. Various sphingolipid metabolites, such as ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and lactosylceramide (LacCer) can contribute to ocular inflammatory diseases through multiple pathways. For example, inflammation generates Cer from sphingomyelins (SM) in the plasma membrane, which induces death receptor ligand formation and leads to apoptosis of retinal pigment epithelial (RPE) and photoreceptor cells. Inflammatory stress by reactive oxygen species leads to LacCer accumulation and S1P secretion and induces proliferation of retinal endothelial cells and eventual formation of new vessels. In sphingolipid/lysosomal storage disorders, sphingolipid metabolites accumulate in lysosomes and can cause ocular disorders that have an inflammatory etiology. Sphingolipid metabolites activate complement factors in the immune-response mediated pathogenesis of macular degeneration. These examples highlight the integral association between sphingolipids and inflammation in ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abcouwer SF (2013) Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol Suppl 1. https://doi.org/10.4172/2155-9899

  2. Adada MM, Orr-Gandy KA, Snider AJ, Canals D, Hannun YA, Obeid LM, Clarke CJ (2013) Sphingosine kinase 1 regulates tumor necrosis factor-mediated RANTES induction through p38 mitogen-activated protein kinase but independently of nuclear factor kappaB activation. J Biol Chem 288:27667–27679. https://doi.org/10.1074/jbc.M113.489443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aerts JM et al (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349. https://doi.org/10.2337/db06-1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aljohani AJ, Edwards G, Guerra Y, Dubovy S, Miller D, Lee RK, Bhattacharya SK (2014) Human trabecular meshwork sphingolipid and ceramide profiles and potential latent fungal commensalism. Invest Ophthalmol Vis Sci 55:3413–3422. https://doi.org/10.1167/iovs.13-13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aljohani AJ, Munguba GC, Guerra Y, Lee RK, Bhattacharya SK (2013) Sphingolipids and ceramides in human aqueous humor. Mol Vis 19:1966–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarez SE et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088. https://doi.org/10.1038/nature09128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431

    Article  CAS  Google Scholar 

  8. Anderson DH et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112. https://doi.org/10.1016/j.preteyeres.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  9. Arai T, Bhunia AK, Chatterjee S, Bulkley GB (1998) Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ Res 82:540–547

    Article  CAS  Google Scholar 

  10. Arbore G, Kemper C (2016) A novel “complement-metabolism-inflammasome axis” as a key regulator of immune cell effector function. Eur J Immunol 46:1563–1573. https://doi.org/10.1002/eji.201546131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arciniega JC, Uchiyama E, Butovich IA (2013) Disruption and destabilization of meibomian lipid films caused by increasing amounts of ceramides and cholesterol. Invest Ophthalmol Vis Sci 54:1352–1360. https://doi.org/10.1167/iovs.12-10662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baeyens A, Fang V, Chen C, Schwab SR (2015) Exit Strategies: S1P Signaling and T Cell Migration. Trends Immunol 36:778–787. https://doi.org/10.1016/j.it.2015.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barak A, Morse LS, Goldkorn T (2001) Ceramide: a potential mediator of apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:247–254

    CAS  PubMed  Google Scholar 

  14. Baudouin C et al (2016) Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol 100:300–306. https://doi.org/10.1136/bjophthalmol-2015-307415

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baudry M, Yao Y, Simmons D, Liu J, Bi X (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184:887–903. https://doi.org/10.1016/S0014-4886(03)00345-5

    Article  CAS  PubMed  Google Scholar 

  16. Bhunia AK, Han H, Snowden A, Chatterjee S (1996) Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J Biol Chem 271:10660–10666

    Article  CAS  Google Scholar 

  17. Bhunia AK, Han H, Snowden A, Chatterjee S (1997) Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J Biol Chem 272:15642–15649

    Article  CAS  Google Scholar 

  18. Blaho VA et al (2015) HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523:342–346. https://doi.org/10.1038/nature14462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bron AJ et al (2014) Rethinking dry eye disease: a perspective on clinical implications. Ocul Surf 12:S1–S31. https://doi.org/10.1016/j.jtos.2014.02.002

    Article  PubMed  Google Scholar 

  20. Busik JV, Mohr S, Grant MB (2008) Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57:1952–1965. https://doi.org/10.2337/db07-1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caspi RR (2010) A look at autoimmunity and inflammation in the eye. J Clin Invest 120:3073–3083. https://doi.org/10.1172/JCI42440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caspi RR (2011) Understanding autoimmune uveitis through animal models. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 52:1872–1879. https://doi.org/10.1167/iovs.10-6909

    Article  CAS  PubMed  Google Scholar 

  23. Chen H, Chan AY, Stone DU, Mandal NA (2014) Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 59:64–76. https://doi.org/10.1016/j.survophthal.2013.02.005

    Article  PubMed  Google Scholar 

  24. Chen M, Muckersie E, Robertson M, Forrester JV, Xu H (2008) Up-regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina. Exp Eye Res 87:543–550. https://doi.org/10.1016/j.exer.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  25. Cho YH, Lee CH, Kim SG (2003) Potentiation of lipopolysaccharide-inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein beta in macrophages. Mol Pharmacol 63:512–523

    Article  CAS  Google Scholar 

  26. Commodaro AG, Peron JP, Lopes CT, Arslanian C, Belfort R Jr, Rizzo LV, Bueno V (2010) Evaluation of experimental autoimmune uveitis in mice treated with FTY720. Invest Ophthalmol Vis Sci 51:2568–2574. https://doi.org/10.1167/iovs.09-4769

    Article  PubMed  Google Scholar 

  27. Cousins SW, Espinosa-Heidmann DG, Csaky KG (2004) Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization? Arch Ophthalmol 122:1013–1018. https://doi.org/10.1001/archopht.122.7.1013

    Article  PubMed  Google Scholar 

  28. Cwiklik L (2016) Tear film lipid layer: a molecular level view. Biochim Biophys Acta 1858:2421–2430. https://doi.org/10.1016/j.bbamem.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  29. Dennis EA et al (2010) A mouse macrophage lipidome. J Biol Chem 285:39976–39985. https://doi.org/10.1074/jbc.M110.182915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511–523. https://doi.org/10.1038/nri3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dressler KA, Mathias S, Kolesnick RN (1992) Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science 255:1715–1718

    Article  CAS  Google Scholar 

  32. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424. https://doi.org/10.1126/science.1110189

    Article  CAS  PubMed  Google Scholar 

  33. Edwards G, Aribindi K, Guerra Y, Bhattacharya SK (2014) Sphingolipids and ceramides of mouse aqueous humor: comparative profiles from normotensive and hypertensive DBA/2J mice. Biochimie 105:99–109. https://doi.org/10.1016/j.biochi.2014.06.019

    Article  CAS  PubMed  Google Scholar 

  34. Emery JM, Green WR, Huff DS (1972) Krabbe’s disease. Histopathology and ultrastructure of the eye. Am J Ophthalmol 74:400–406

    Article  CAS  Google Scholar 

  35. Erikson A, Wahlberg I (1985) Gaucher disease–Norrbottnian type. Ocular abnormalities. Acta Ophthalmol (Copenh) 63:221–225

    Article  CAS  Google Scholar 

  36. Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783–791

    Article  CAS  Google Scholar 

  37. Forrester JV, Kuffova L, Dick AD (2018) Autoimmunity, autoinflammation, and infection in uveitis. Am J Ophthalmol 189:77–85. https://doi.org/10.1016/j.ajo.2018.02.019

    Article  PubMed  Google Scholar 

  38. Fox TE et al (2006) Diabetes alters sphingolipid metabolism in the retina: a potential mechanism of cell death in diabetic retinopathy. Diabetes 55:3573–3580. https://doi.org/10.2337/db06-0539

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fox TE et al (2007) Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282:12450–12457. https://doi.org/10.1074/jbc.M700082200

    Article  CAS  PubMed  Google Scholar 

  40. Fujiwaki T, Yamaguchi S, Tasaka M, Takayanagi M, Isobe M, Taketomi T (2004) Evaluation of sphingolipids in vitreous bodies from a patient with Gaucher disease, using delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 806:47–51. https://doi.org/10.1016/j.jchromb.2004.02.027

    Article  CAS  PubMed  Google Scholar 

  41. Gangoiti P et al (2010) Control of metabolism and signaling of simple bioactive sphingolipids: implications in disease. Prog Lipid Res 49:316–334. https://doi.org/10.1016/j.plipres.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  42. Giltiay NV, Karakashian AA, Alimov AP, Ligthle S, Nikolova-Karakashian MN (2005) Ceramide- and ERK-dependent pathway for the activation of CCAAT/enhancer binding protein by interleukin-1beta in hepatocytes. J Lipid Res 46:2497–2505. https://doi.org/10.1194/jlr.M500337-JLR200

    Article  CAS  PubMed  Google Scholar 

  43. Gomez-Munoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordonez M, Trueba M (2013) New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta 1831:1060–1066. https://doi.org/10.1016/j.bbalip.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  44. Gomez-Munoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordonez M (2016) Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 61:51–62. https://doi.org/10.1016/j.plipres.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  45. Gong N, Wei H, Chowdhury SH, Chatterjee S (2004) Lactosylceramide recruits PKCalpha/epsilon and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and adhesion to endothelial cells. Proc Natl Acad Sci USA 101:6490–6495. https://doi.org/10.1073/pnas.0308684101

    Article  CAS  PubMed  Google Scholar 

  46. Goni FM, Alonso A (2009) Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 1788:169–177. https://doi.org/10.1016/j.bbamem.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  47. Grassme H et al (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596. https://doi.org/10.1074/jbc.M101207200

    Article  CAS  PubMed  Google Scholar 

  48. Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R (2010) Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133:1591–1601. https://doi.org/10.1093/brain/awq080

    Article  PubMed  PubMed Central  Google Scholar 

  49. Greenwood J (1992) The blood-retinal barrier in experimental autoimmune uveoretinitis (EAU): a review. Curr Eye Res 11(Suppl):25–32

    Article  Google Scholar 

  50. Gregory MS et al (2011) Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One 6:e17659. https://doi.org/10.1371/journal.pone.0017659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guemes A, Kosmorsky GS, Moodie DS, Clark B, Meisler D, Traboulsi EI (1998) Corneal opacities in Gaucher disease. Am J Ophthalmol 126:833–835

    Article  CAS  Google Scholar 

  52. Hageman GS et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102:7227–7232. https://doi.org/10.1073/pnas.0501536102

    Article  CAS  PubMed  Google Scholar 

  53. Hait NC, Maiti A (2017) The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediat Inflamm 2017:4806541. https://doi.org/10.1155/2017/4806541

    Article  CAS  Google Scholar 

  54. Hankins JL, Fox TE, Barth BM, Unrath KA, Kester M (2011) Exogenous ceramide-1-phosphate reduces lipopolysaccharide (LPS)-mediated cytokine expression. J Biol Chem 286:44357–44366. https://doi.org/10.1074/jbc.M111.264010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859

    Article  CAS  Google Scholar 

  56. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  57. Heneka MT, McManus RM, Latz E (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19:610–621. https://doi.org/10.1038/s41583-018-0055-7

    Article  CAS  PubMed  Google Scholar 

  58. Hijioka K, Sonoda KH, Tsutsumi-Miyahara C, Fujimoto T, Oshima Y, Taniguchi M, Ishibashi T (2008) Investigation of the role of CD1d-restricted invariant NKT cells in experimental choroidal neovascularization. Biochem Biophys Res Commun 374:38–43. https://doi.org/10.1016/j.bbrc.2008.06.080

    Article  CAS  PubMed  Google Scholar 

  59. Hinze A, Stolzing A (2011) Differentiation of mouse bone marrow derived stem cells toward microglia-like cells. BMC Cell Biol 12:35. https://doi.org/10.1186/1471-2121-12-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holland WL et al (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870. https://doi.org/10.1172/JCI43378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Horai R et al (2013) Breakdown of immune privilege and spontaneous autoimmunity in mice expressing a transgenic T cell receptor specific for a retinal autoantigen. J Autoimmun 44:21–33. https://doi.org/10.1016/j.jaut.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Howell GR et al (2011a) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121:1429–1444. https://doi.org/10.1172/JCI44646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Howell GR et al (2012) Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 122:1246–1261. https://doi.org/10.1172/JCI61135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Howell GR, Walton DO, King BL, Libby RT, John SW (2011b) Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data. BMC Genomics 12:429. https://doi.org/10.1186/1471-2164-12-429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3:190–196. https://doi.org/10.1093/embo-reports/kvf022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature Working G (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140:509–516

    Article  Google Scholar 

  67. Jana A, Pahan K (2010) Sphingolipids in multiple sclerosis. NeuroMolecular Med 12:351–361. https://doi.org/10.1007/s12017-010-8128-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jeyakumar M et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126:974–987

    Article  CAS  Google Scholar 

  69. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73:887–896. https://doi.org/10.1006/exer.2001.1094

    Article  CAS  PubMed  Google Scholar 

  70. Kaarniranta K et al (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9:973–984. https://doi.org/10.4161/auto.24546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kady NM et al (2018) ELOVL4-mediated production of very long-chain ceramides stabilizes tight junctions and prevents diabetes-induced retinal vascular permeability. Diabetes 67:769–781. https://doi.org/10.2337/db17-1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kannan R, Jin M, Gamulescu MA, Hinton DR (2004) Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor. Free Radic Biol Med 37:166–175. https://doi.org/10.1016/j.freeradbiomed.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  73. Kappos L et al (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355:1124–1140. https://doi.org/10.1056/NEJMoa052643

    Article  CAS  PubMed  Google Scholar 

  74. Kaur G et al (2018) Aberrant early endosome biogenesis mediates complement activation in the retinal pigment epithelium in models of macular degeneration. Proc Natl Acad Sci USA 115:9014–9019. https://doi.org/10.1073/pnas.1805039115

    Article  CAS  PubMed  Google Scholar 

  75. Kim MY, Linardic C, Obeid L, Hannun Y (1991) Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266:484–489

    CAS  PubMed  Google Scholar 

  76. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495. https://doi.org/10.1016/j.ajo.2003.11.069

    Article  PubMed  Google Scholar 

  77. Kolmakova A, Rajesh M, Zang D, Pili R, Chatterjee S (2009) VEGF recruits lactosylceramide to induce endothelial cell adhesion molecule expression and angiogenesis in vitro and in vivo. Glycoconj J 26:547–558. https://doi.org/10.1007/s10719-008-9206-9

    Article  CAS  PubMed  Google Scholar 

  78. Lam SM, Tong L, Yong SS, Li B, Chaurasia SS, Shui G, Wenk MR (2011) Meibum lipid composition in Asians with dry eye disease. PLoS One 6:e24339. https://doi.org/10.1371/journal.pone.0024339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lamour NF, Wijesinghe DS, Mietla JA, Ward KE, Stahelin RV, Chalfant CE (2011) Ceramide kinase regulates the production of tumor necrosis factor alpha (TNFalpha) via inhibition of TNFalpha-converting enzyme. J Biol Chem 286:42808–42817. https://doi.org/10.1074/jbc.M111.310169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron 78:214–232. https://doi.org/10.1016/j.neuron.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  81. Ledesma MD, Prinetti A, Sonnino S, Schuchman EH (2011) Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 116:779–788. https://doi.org/10.1111/j.1471-4159.2010.07034.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253–263. https://doi.org/10.1002/glia.20928

    Article  PubMed  Google Scholar 

  83. Lentsch AB, Ward PA (2000) Regulation of inflammatory vascular damage. J Pathol 190:343–348. https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<343::AID-PATH522>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  84. LeVine SM, Brown DC (1997) IL-6 and TNFalpha expression in brains of twitcher, quaking and normal mice. J Neuroimmunol 73:47–56

    Article  CAS  Google Scholar 

  85. Li G, Veenstra AA, Talahalli RR, Wang X, Gubitosi-Klug RA, Sheibani N, Kern TS (2012) Marrow-derived cells regulate the development of early diabetic retinopathy and tactile allodynia in mice. Diabetes 61:3294–3303. https://doi.org/10.2337/db11-1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liang J et al (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23:107–120. https://doi.org/10.1016/j.ccr.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  87. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692. https://doi.org/10.1016/j.immuni.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luo C, Yang X, Kain AD, Powell DW, Kuehn MH, Tezel G (2010) Glaucomatous tissue stress and the regulation of immune response through glial Toll-like receptor signaling. Invest Ophthalmol Vis Sci 51:5697–5707. https://doi.org/10.1167/iovs.10-5407

    Article  PubMed  PubMed Central  Google Scholar 

  89. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67. https://doi.org/10.1038/nature13475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mandal P, Gupta A, Fusi-Rubiano W, Keane PA, Yang Y (2017) Fingolimod: therapeutic mechanisms and ocular adverse effects. Eye (Lond) 31:232–240. https://doi.org/10.1038/eye.2016.258

    Article  CAS  Google Scholar 

  91. Mann H (2010) Oral cladribine and fingolimod for relapsing multiple sclerosis. N Engl J Med 362:1738.; author reply 1739–1740. https://doi.org/10.1056/NEJMc1002550

    Article  CAS  PubMed  Google Scholar 

  92. Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ, Tabas I (1998) Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 273:4081–4088

    Article  CAS  Google Scholar 

  93. Mathers WD, Lane JA (1998) Meibomian gland lipids, evaporation, and tear film stability. Adv Exp Med Biol 438:349–360

    Article  CAS  Google Scholar 

  94. Mathias S, Dressler KA, Kolesnick RN (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci USA 88:10009–10013

    Article  CAS  Google Scholar 

  95. Matsushima GK, Taniike M, Glimcher LH, Grusby MJ, Frelinger JA, Suzuki K, Ting JP (1994) Absence of MHC class II molecules reduces CNS demyelination, microglial/macrophage infiltration, and twitching in murine globoid cell leukodystrophy. Cell 78:645–656

    Article  CAS  Google Scholar 

  96. McGovern MM, Wasserstein MP, Aron A, Desnick RJ, Schuchman EH, Brodie SE (2004) Ocular manifestations of Niemann-Pick disease type B. Ophthalmology 111:1424–1427. https://doi.org/10.1016/j.ophtha.2003.10.034

    Article  PubMed  Google Scholar 

  97. McVerry BJ, Garcia JG (2004) Endothelial cell barrier regulation by sphingosine 1-phosphate. J Cell Biochem 92:1075–1085. https://doi.org/10.1002/jcb.20088

    Article  CAS  PubMed  Google Scholar 

  98. Mitsutake S, Date T, Yokota H, Sugiura M, Kohama T, Igarashi Y (2012) Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett 586:1300–1305. https://doi.org/10.1016/j.febslet.2012.03.032

    Article  CAS  PubMed  Google Scholar 

  99. Mitter SK et al (2014) Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10:1989–2005. https://doi.org/10.4161/auto.36184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mohr S (2004) Potential new strategies to prevent the development of diabetic retinopathy. Expert Opin Investig Drugs 13:189–198. https://doi.org/10.1517/13543784.13.3.189

    Article  CAS  PubMed  Google Scholar 

  101. Mohri I et al (2006) Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J Neurosci 26:4383–4393. https://doi.org/10.1523/JNEUROSCI.4531-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moscatelli EA, Isaacson E (1969) Gas liquid chromatographic analysis of sphingosine bases in sphingolipids of human normal and multiple sclerosis cerebral white matter. Lipids 4:550–555

    Article  CAS  Google Scholar 

  103. Nakamura H, Moriyama Y, Makiyama T, Emori S, Yamashita H, Yamazaki R, Murayama T (2013) Lactosylceramide interacts with and activates cytosolic phospholipase A2alpha. J Biol Chem 288:23264–23272. https://doi.org/10.1074/jbc.M113.491431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nakaya-Onishi M, Suzuki A, Okamoto N, Fukada M (2000) Observations on time course changes of the cherry red spot in a patient with Tay-Sachs disease. Br J Ophthalmol 84:1320–1321

    Article  CAS  Google Scholar 

  105. Natoli R et al (2017) Retinal macrophages synthesize C3 and activate complement in AMD and in models of focal retinal degeneration. Invest Ophthalmol Vis Sci 58:2977–2990. https://doi.org/10.1167/iovs.17-21672

    Article  CAS  PubMed  Google Scholar 

  106. Nicolaides N, Kaitaranta JK, Rawdah TN, Macy JI, Boswell FM 3rd, Smith RE (1981) Meibomian gland studies: comparison of steer and human lipids. Invest Ophthalmol Vis Sci 20:522–536

    CAS  PubMed  Google Scholar 

  107. Novgorodov SA et al (2016) Lactosylceramide contributes to mitochondrial dysfunction in diabetes. J Lipid Res 57:546–562. https://doi.org/10.1194/jlr.M060061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nussenblatt RB, Liu B, Wei L, Sen HN (2013) The immunological basis of degenerative diseases of the eye. Int Rev Immunol 32:97–112. https://doi.org/10.3109/08830185.2012.740536

    Article  CAS  PubMed  Google Scholar 

  109. Ogretmen B (2018) Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18:33–50. https://doi.org/10.1038/nrc.2017.96

    Article  CAS  PubMed  Google Scholar 

  110. Ohashi Y, Dogru M, Tsubota K (2006) Laboratory findings in tear fluid analysis. Clin Chim Acta 369:17–28. https://doi.org/10.1016/j.cca.2005.12.035

    Article  CAS  PubMed  Google Scholar 

  111. Olivera A (2008) Unraveling the complexities of sphingosine-1-phosphate function: the mast cell model. Prostaglandins Other Lipid Mediat 86:1–11. https://doi.org/10.1016/j.prostaglandins.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Olivera A, Mizugishi K, Tikhonova A, Ciaccia L, Odom S, Proia RL, Rivera J (2007) The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26:287–297. https://doi.org/10.1016/j.immuni.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  113. Oo ML et al (2011) Engagement of S1P(1)-degradative mechanisms leads to vascular leak in mice. J Clin Invest 121:2290–2300. https://doi.org/10.1172/JCI45403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Opreanu M, Lydic TA, Reid GE, McSorley KM, Esselman WJ, Busik JV (2010) Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest Ophthalmol Vis Sci 51:3253–3263. https://doi.org/10.1167/iovs.09-4731

    Article  PubMed  PubMed Central  Google Scholar 

  115. Opreanu M et al (2011) The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes 60:2370–2378. https://doi.org/10.2337/db10-0550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pannu R, Singh AK, Singh I (2005) A novel role of lactosylceramide in the regulation of tumor necrosis factor alpha-mediated proliferation of rat primary astrocytes. Implications for astrogliosis following neurotrauma. J Biol Chem 280:13742–13751. https://doi.org/10.1074/jbc.M411959200

    Article  CAS  PubMed  Google Scholar 

  117. Pannu R, Won JS, Khan M, Singh AK, Singh I (2004) A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases. J Neurosci 24:5942–5954. https://doi.org/10.1523/JNEUROSCI.1271-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Paranjpe V, Tan J, Nguyen J, Lee J, Allegood J, Galor A, Mandal N (2018) Clinical signs of meibomian gland dysfunction (MGD) are associated with changes in meibum sphingolipid composition. Ocul Surf. https://doi.org/10.1016/j.jtos.2018.12.006

    Article  Google Scholar 

  119. Perez VL, Caspi RR (2015) Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 36:354–363. https://doi.org/10.1016/j.it.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pettus BJ, Bielawska A, Spiegel S, Roddy P, Hannun YA, Chalfant CE (2003) Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J Biol Chem 278:38206–38213. https://doi.org/10.1074/jbc.M304816200

    Article  CAS  PubMed  Google Scholar 

  121. Pettus BJ et al (2004) Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279:11320–11326. https://doi.org/10.1074/jbc.M309262200

    Article  CAS  PubMed  Google Scholar 

  122. Pettus BJ et al (2005) The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 68:330–335. https://doi.org/10.1124/mol.104.008722

    Article  CAS  PubMed  Google Scholar 

  123. Piippo N et al (2014) Decline in cellular clearance systems induces inflammasome signaling in human ARPE-19 cells. Biochim Biophys Acta 1843:3038–3046. https://doi.org/10.1016/j.bbamcr.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  124. Rajesh M, Kolmakova A, Chatterjee S (2005) Novel role of lactosylceramide in vascular endothelial growth factor-mediated angiogenesis in human endothelial cells. Circ Res 97:796–804. https://doi.org/10.1161/01.RES.0000185327.45463.A8

    Article  CAS  PubMed  Google Scholar 

  125. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171. https://doi.org/10.1172/JCI58644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635. https://doi.org/10.1038/nri3265

    Article  CAS  PubMed  Google Scholar 

  127. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581. https://doi.org/10.1038/nri1130

    Article  CAS  PubMed  Google Scholar 

  128. Rathinam VA, Fitzgerald KA (2016) Inflammasome complexes: emerging mechanisms and effector functions. Cell 165:792–800. https://doi.org/10.1016/j.cell.2016.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797. https://doi.org/10.1038/ni.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763. https://doi.org/10.1038/nri2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rosen H, Sanna G, Alfonso C (2003) Egress: a receptor-regulated step in lymphocyte trafficking. Immunol Rev 195:160–177

    Article  CAS  Google Scholar 

  132. Ruvolo PP (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47:383–392

    Article  CAS  Google Scholar 

  133. Saba JD (2015) A B cell-dependent mechanism restrains T cell transendothelial migration. Nat Med 21:424–426. https://doi.org/10.1038/nm.3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sakaguchi M, Sugita S, Sagawa K, Itoh K, Mochizuki M (1998) Cytokine production by T cells infiltrating in the eye of uveitis patients. Jpn J Ophthalmol 42:262–268

    Article  CAS  Google Scholar 

  135. Sandhoff K, Harzer K (2013) Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 33:10195–10208. https://doi.org/10.1523/JNEUROSCI.0822-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sanvicens N, Cotter TG (2006) Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem 98:1432–1444. https://doi.org/10.1111/j.1471-4159.2006.03977.x

    Article  CAS  PubMed  Google Scholar 

  137. Sassa T, Tadaki M, Kiyonari H, Kihara A (2018) Very long-chain tear film lipids produced by fatty acid elongase ELOVL1 prevent dry eye disease in mice. FASEB J 32:2966–2978. https://doi.org/10.1096/fj.201700947R

    Article  CAS  PubMed  Google Scholar 

  138. Schroder S, Palinski W, Schmid-Schonbein GW (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 139:81–100

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776

    Article  CAS  Google Scholar 

  140. Sims K et al (2010) Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 285:38568–38579. https://doi.org/10.1074/jbc.M110.170621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Singh I, Pahan K, Khan M, Singh AK (1998) Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem 273:20354–20362

    Article  CAS  Google Scholar 

  142. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516. https://doi.org/10.1172/JCI31123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Snider AJ, Kawamori T, Bradshaw SG, Orr KA, Gilkeson GS, Hannun YA, Obeid LM (2009) A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J 23:143–152. https://doi.org/10.1096/fj.08-118109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sodi A, Ioannidis AS, Mehta A, Davey C, Beck M, Pitz S (2007) Ocular manifestations of Fabry’s disease: data from the Fabry Outcome Survey. Br J Ophthalmol 91:210–214. https://doi.org/10.1136/bjo.2006.100602

    Article  PubMed  Google Scholar 

  145. Soulet D, Rivest S (2008) Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 8:508–518. https://doi.org/10.1016/j.coph.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  146. Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854. https://doi.org/10.1074/jbc.R200007200

    Article  CAS  PubMed  Google Scholar 

  147. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407. https://doi.org/10.1038/nrm1103

    Article  CAS  PubMed  Google Scholar 

  148. Streilein JW (2003) Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 74:179–185

    Article  CAS  Google Scholar 

  149. Strettoi E, Gargini C, Novelli E, Sala G, Piano I, Gasco P, Ghidoni R (2010) Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 107:18706–18711. https://doi.org/10.1073/pnas.1007644107

    Article  CAS  PubMed  Google Scholar 

  150. Subramanian P, Stahelin RV, Szulc Z, Bielawska A, Cho W, Chalfant CE (2005) Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A2 alpha and enhances the interaction of the enzyme with phosphatidylcholine. J Biol Chem 280:17601–17607. https://doi.org/10.1074/jbc.M414173200

    Article  CAS  PubMed  Google Scholar 

  151. Sugano E et al (2018) Overexpression of acid-ceramidase (ASAH1) protects retinal cells (ARPE19) from oxidative stress. J Lipid Res. https://doi.org/10.1194/jlr.M082198

    Article  Google Scholar 

  152. Suzuki K (2003) Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol 18:595–603. https://doi.org/10.1177/08830738030180090201

    Article  PubMed  Google Scholar 

  153. Takabe K, Paugh SW, Milstien S, Spiegel S (2008) “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60:181–195. https://doi.org/10.1124/pr.107.07113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Takeshita H et al (2012) Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-kappaB ligand (RANKL) expression in rheumatoid arthritis. Biochem Biophys Res Commun 419:154–159. https://doi.org/10.1016/j.bbrc.2012.01.103

    Article  CAS  PubMed  Google Scholar 

  155. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  156. Tan LX, Toops KA, Lakkaraju A (2016) Protective responses to sublytic complement in the retinal pigment epithelium. Proc Natl Acad Sci USA 113:8789–8794. https://doi.org/10.1073/pnas.1523061113

    Article  CAS  PubMed  Google Scholar 

  157. Tanaka K, Nakayama T, Mori R, Sato N, Kawamura A, Yuzawa M (2014) Associations of complement factor B and complement component 2 genotypes with subtypes of polypoidal choroidal vasculopathy. BMC Ophthalmol 14:83. https://doi.org/10.1186/1471-2415-14-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tikhonenko M et al (2010) Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 59:219–227. https://doi.org/10.2337/db09-0728

    Article  CAS  PubMed  Google Scholar 

  159. Toops KA, Tan LX, Jiang Z, Radu RA, Lakkaraju A (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26:1–14. https://doi.org/10.1091/mbc.E14-05-1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Trip SA et al (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58:383–391. https://doi.org/10.1002/ana.20575

    Article  PubMed  Google Scholar 

  161. van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211. https://doi.org/10.1042/BJ20021528

    Article  PubMed  PubMed Central  Google Scholar 

  162. Vandanmagsar B et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188. https://doi.org/10.1038/nm.2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. von Moltke J et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:107–111. https://doi.org/10.1038/nature11351

    Article  CAS  Google Scholar 

  164. Walton DS, Robb RM, Crocker AC (1978) Ocular manifestations of group A Niemann-Pick disease. Am J Ophthalmol 85:174–180

    Article  CAS  Google Scholar 

  165. Wang HY, Wang Y, Zhang Y, Wang J, Xiong SY, Sun Q (2018) Crosslink between lipids and acute uveitis: a lipidomic analysis. Int J Ophthalmol 11:736–746. https://doi.org/10.18240/ijo.2018.05.05

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wijesinghe DS et al (2009) Chain length specificity for activation of cPLA2alpha by C1P: use of the dodecane delivery system to determine lipid-specific effects. J Lipid Res 50:1986–1995. https://doi.org/10.1194/jlr.M800367-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu YP, McMahon EJ, Matsuda J, Suzuki K, Matsushima GK, Suzuki K (2001) Expression of immune-related molecules is downregulated in twitcher mice following bone marrow transplantation. J Neuropathol Exp Neurol 60:1062–1074

    Article  CAS  Google Scholar 

  168. Wu YP, Mizugishi K, Bektas M, Sandhoff R, Proia RL (2008) Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum Mol Genet 17:2257–2264. https://doi.org/10.1093/hmg/ddn126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xiao Y, Zhong Y, Su H, Zhou Z, Chiao P, Zhong G (2005) NF-kappa B activation is not required for Chlamydia trachomatis inhibition of host epithelial cell apoptosis. J Immunol 174:1701–1708

    Article  CAS  Google Scholar 

  170. Xie B, Shen J, Dong A, Rashid A, Stoller G, Campochiaro PA (2009) Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J Cell Physiol 218:192–198. https://doi.org/10.1002/jcp.21588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yu RK, Tsai YT, Ariga T, Yanagisawa M (2011) Structures, biosynthesis, and functions of gangliosides–an overview. J Oleo Sci 60:537–544

    Article  CAS  Google Scholar 

  172. Zarbin MA, Green WR, Moser HW, Morton SJ (1985) Farber’s disease. Light and electron microscopic study of the eye. Arch Ophthalmol 103:73–80

    Article  CAS  Google Scholar 

  173. Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17:463–471

    Article  CAS  Google Scholar 

  174. Zhu D, Sreekumar PG, Hinton DR, Kannan R (2010) Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration. Vis Res 50:643–651. https://doi.org/10.1016/j.visres.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  175. Zhu H et al (2011) An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway. Biochem Biophys Res Commun 404:790–795. https://doi.org/10.1016/j.bbrc.2010.12.061

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Eye Institute grants [EY022071, EY025256, EY021725], and grants from Foundation Fighting Blindness Inc., USA and Research to Prevent Blindness Inc., USA. The authors gratefully acknowledge the editorial help received from Dr. Dianna A. Johnson, Emeritus Professor, UTHSC and Richard C. Grambergs, UTHSC, Memphis, TN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawajes Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, K., Mandal, N. (2019). Role of Bioactive Sphingolipids in Inflammation and Eye Diseases. In: Honn, K., Zeldin, D. (eds) The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases. Advances in Experimental Medicine and Biology, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-21735-8_14

Download citation

Publish with us

Policies and ethics