Skip to main content

CAR T Cell Therapy Progress and Challenges for Solid Tumors

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 180))

Abstract

The past two decades have marked the beginning of an unprecedented success story for cancer therapy through redirecting antitumor immunity [1]. While the mechanisms that control the initial and ongoing immune responses against tumors remain a strong research focus, the clinical development of technologies that engage the immune system to target and kill cancer cells has become a translational research priority. Early attempts documented in the late 1800s aimed at sparking immunity with cancer vaccines were difficult to interpret but demonstrated an opportunity that more than 100 years later has blossomed into the current field of cancer immunotherapy. Perhaps the most recent and greatest illustration of this is the widespread appreciation that tumors actively shut down antitumor immunity, which has led to the emergence of checkpoint pathway inhibitors that re-invigorate the body’s own immune system to target cancer [2, 3]. This class of drugs, with first FDA approvals in 2011, has demonstrated impressive durable clinical responses in several cancer types, including melanoma, lung cancer, Hodgkin’s lymphoma, and renal cell carcinoma, with the ongoing investigation in others. The biology and ultimate therapeutic successes of these drugs led to the 2018 Nobel Prize in Physiology or Medicine, awarded to Dr. James Allison and Dr. Tasuku Honjo for their contributions to cancer therapy [4]. In parallel to the emerging science that aided in unleashing the body’s own antitumor immunity with checkpoint pathway inhibitors, researchers were also identifying ways to re-engineer antitumor immunity through adoptive cellular immunotherapy approaches. Chimeric antigen receptor (CAR)-based T cell therapy has achieved an early head start in the field, with two recent FDA approvals in 2017 for the treatment of B-cell malignancies [5]. There is an explosion of preclinical and clinical efforts to expand the therapeutic indications for CAR T cell therapies, with a specific focus on improving their clinical utility, particularly for the treatment of solid tumors. In this chapter, we will highlight the recent progress, challenges, and future perspectives surrounding the development of CAR T cell therapies for solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433

    Article  CAS  PubMed  Google Scholar 

  2. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086

    Article  PubMed  Google Scholar 

  3. Darvin P et al (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):165

    Article  CAS  PubMed Central  Google Scholar 

  4. Wolchok J (2018) Putting the immunologic brakes on cancer. Cell 175(6):1452–1454

    Article  CAS  PubMed  Google Scholar 

  5. Boyiadzis MM et al (2018) Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 6(1):137

    Article  PubMed  PubMed Central  Google Scholar 

  6. Priceman SJ, Forman SJ, Brown CE (2015) Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 27(6):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoiber S et al (2019) Limitations in the design of chimeric antigen receptors for cancer therapy. Cells 8(5)

    Google Scholar 

  8. Curran KJ, Pegram HJ, Brentjens RJ (2012) Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 14(6):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salter AI, Pont MJ, Riddell SR (2018) Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 131(24):2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang T, Lemoi BA, Sentman CL (2005) Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 106(5):1544–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang T, Wu MR, Sentman CL (2012) An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J Immunol 189(5):2290–2299

    Article  CAS  PubMed  Google Scholar 

  12. Siegler E et al (2017) Designed ankyrin repeat proteins as Her2 targeting domains in chimeric antigen receptor-engineered T cells. Hum Gene Ther 28(9):726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han X et al (2017) Adnectin-based design of chimeric antigen receptor for T cell engineering. Mol Ther 25(11):2466–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y et al (2017) New chimeric antigen receptor design for solid tumors. Front Immunol 8:1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X et al (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75(17):3596–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chmielewski M et al (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol 173(12):7647–7653

    Article  CAS  PubMed  Google Scholar 

  17. Drent E et al (2019) Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor-engineered T cells. Clin Cancer Res 25(13):4014–4025

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hudecek M et al (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 19(12):3153–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hudecek M et al (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3(2):125–135

    Article  CAS  PubMed  Google Scholar 

  20. Chang ZL et al (2018) Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol 14(3):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guest RD et al (2005) The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 28(3):203–211

    Article  CAS  PubMed  Google Scholar 

  22. Wilkie S et al (2008) Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180(7):4901–4909

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe N et al (2016) Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5(12):e1253656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jonnalagadda M et al (2015) Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther 23(4):757–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guedan S et al (2018) Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3(1)

    Google Scholar 

  26. Bridgeman JS et al (2010) The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol 184(12):6938–6949

    Article  CAS  PubMed  Google Scholar 

  27. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong MC et al (1999) Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1(2):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Till BG et al (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112(6):2261–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pule MA et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11):1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kershaw MH et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hege KM et al (2017) Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lamers CH et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4):904–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brentjens RJ et al (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9(3):279–286

    Article  CAS  PubMed  Google Scholar 

  35. Maher J et al (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 20(1):70–75

    Article  CAS  PubMed  Google Scholar 

  36. Imai C et al (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18(4):676–684

    Article  CAS  PubMed  Google Scholar 

  37. Finney HM, Akbar AN, Lawson AD (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172(1):104–113

    Article  CAS  PubMed  Google Scholar 

  38. Song DG et al (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119(3):696–706

    Article  CAS  PubMed  Google Scholar 

  39. Porter DL et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Locke FL et al (2017) Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther 25(1):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brudno JN et al (2018) T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 36(22):2267–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown CE et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375(26):2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Rourke DM et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9(399)

    Google Scholar 

  45. Ahmed N et al (2017) HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3(8):1094–1101

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ahmed N et al (2015) Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33(15):1688–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Katz SC et al (2015) Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 21(14):3149–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haas AR et al (2019) Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther

    Google Scholar 

  49. Johnson LA, June CH (2017) Driving gene-engineered T cell immunotherapy of cancer. Cell Res 27(1):38–58

    Article  CAS  PubMed  Google Scholar 

  50. Pule MA et al (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 12(5):933–941

    Article  CAS  PubMed  Google Scholar 

  51. van der Stegen SJ, Hamieh M, Sadelain M (2015) The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 14(7):499–509

    Article  CAS  PubMed  Google Scholar 

  52. Zhong XS et al (2010) Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther 18(2):413–420

    Article  CAS  PubMed  Google Scholar 

  53. Abate-Daga D et al (2014) A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther 25(12):1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Milone MC et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17(8):1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hombach AA, Abken H (2011) Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. Int J Cancer 129(12):2935–2944

    Article  CAS  PubMed  Google Scholar 

  56. Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vormittag P et al (2018) A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 53:164–181

    Article  CAS  PubMed  Google Scholar 

  58. Park JR et al (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833

    Article  CAS  PubMed  Google Scholar 

  59. Brown CE et al (2015) Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21(18):4062–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang X et al (2011) Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 117(6):1888–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Berger C et al (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118(1):294–305

    Article  CAS  PubMed  Google Scholar 

  63. Wang X et al (2016) Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127(24):2980–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sommermeyer D et al (2016) Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30(2):492–500

    Article  CAS  PubMed  Google Scholar 

  65. Turtle CJ et al (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 126(6):2123–2138

    Article  PubMed  PubMed Central  Google Scholar 

  66. Turtle CJ et al (2015) Immunotherapy with CD19-specific chimeric antigen receptor (CAR)-modified T cells of defined subset composition. J Clin Oncol 33(15_suppl):3006

    Google Scholar 

  67. Gardner R et al (2016) CD19CAR T cell products of defined CD4:CD8 composition and transgene expression show prolonged persistence and durable MRD-negative remission in pediatric and young adult B-cell All. Blood 128(22):219

    Article  Google Scholar 

  68. Popplewell L et al (2018) CD19-CAR therapy using naive/memory or central memory T cells integrated into the autologous stem cell transplant regimen for patients with B-NHL. Blood 132(Suppl 1):610

    Article  Google Scholar 

  69. Khaled SK et al (2018) Adult patients with ALL treated with CD62L+ T Naïve/memory-enriched T cells expressing a CD19-CAR mediate potent antitumor activity with a low toxicity profile. Blood 132(Suppl 1):4016

    Article  Google Scholar 

  70. Fraietta JA et al (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24(5):563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Egelston CA et al (2018) Human breast tumor-infiltrating CD8(+) T cells retain polyfunctionality despite PD-1 expression. Nat Commun 9(1):4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klebanoff CA et al (2011) Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 17(16):5343–5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gattinoni L et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Graham C et al (2018) Allogeneic CAR-T cells: more than ease of access? Cells 7(10)

    Google Scholar 

  75. Torikai H, Cooper LJ (2016) Translational implications for off-the-shelf immune cells expressing chimeric antigen receptors. Mol Ther 24(7):1178–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu H et al (2018) Concise review: human pluripotent stem cells to produce cell-based cancer immunotherapy. Stem Cells 36(2):134–145

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jensen MC et al (2000) Human T lymphocyte genetic modification with naked DNA. Mol Ther 1(1):49–55

    Article  CAS  PubMed  Google Scholar 

  78. Barrett DM et al (2014) Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy 16(5):619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu Y et al (2014) Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123(24):3750–3759

    Google Scholar 

  80. Alizadeh D et al (2019) IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res 7(5):759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gattinoni L et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202(7):907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heylmann D et al (2013) Human CD4+ CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS ONE 8(12):e83384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Medina-Echeverz J et al (2011) Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J Immunol 186(2):807–815

    Article  CAS  PubMed  Google Scholar 

  84. Turtle CJ et al (2016) Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8(355):355ra116

    Google Scholar 

  85. Thistlethwaite FC et al (2017) The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 66(11):1425–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang X et al (2018) Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin Cancer Res 24(1):106–119

    Article  CAS  PubMed  Google Scholar 

  87. Li S et al (2019) Decitabine enhances cytotoxic effect of T cells with an anti-CD19 chimeric antigen receptor in treatment of lymphoma. Onco Targets Ther 12:5627–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suryadevara CM et al (2018) Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. Oncoimmunology 7(6):e1434464

    Article  PubMed  PubMed Central  Google Scholar 

  89. Newick K, Moon E, Albelda SM (2016) Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 3:16006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schmidts A, Maus MV (2018) Making CAR T cells a solid option for solid tumors. Front Immunol 9:2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koneru M et al (2015) IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4(3):e994446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murad JP et al (2018) Effective targeting of TAG72(+) peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol 9:2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Katz SC et al (2016) Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther 23(5):142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maus MV et al (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beatty GL et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120

    Article  CAS  PubMed  Google Scholar 

  96. Adusumilli PS et al (2014) Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6(261):261ra151

    Google Scholar 

  97. Burga RA et al (2015) Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64(7):817–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Priceman SJ et al (2018) Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2(+) breast cancer metastasis to the brain. Clin Cancer Res 24(1):95–105

    Article  CAS  PubMed  Google Scholar 

  99. Brown CE et al (2018) Optimization of IL13Ralpha2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol Ther 26(1):31–44

    Article  CAS  PubMed  Google Scholar 

  100. Du H et al (2019) Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell 35(2):221–237e8

    Google Scholar 

  101. Majzner RG et al (2019) CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 25(8):2560–2574

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nehama D et al (2019) B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine

    Google Scholar 

  103. Leuci V et al (2018) CD44v6 as innovative sarcoma target for CAR-redirected CIK cells. Oncoimmunology 7(5):e1423167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Todaro M et al (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14(3):342–356

    Article  CAS  PubMed  Google Scholar 

  105. Feng K et al (2016) Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci 59(5):468–479

    Article  CAS  PubMed  Google Scholar 

  106. Deng Z et al (2015) Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16(1)

    Google Scholar 

  107. Kandalaft LE, Powell DJ Jr, Coukos G (2012) A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med 10:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wing A et al (2018) Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol Res 6(5):605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Louis CU et al (2011) Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mount CW et al (2018) Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med 24(5):572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yvon E et al (2009) Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res 15(18):5852–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gao H et al (2014) Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20(24):6418–6428

    Article  CAS  PubMed  Google Scholar 

  113. Li K et al (2016) Adoptive immunotherapy using T lymphocytes redirected to glypican-3 for the treatment of lung squamous cell carcinoma. Oncotarget 7(3):2496–2507

    PubMed  Google Scholar 

  114. Feng K et al (2017) Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 9(10):838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ahmed N et al (2007) Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Can Res 67(12):5957–5964

    Article  CAS  Google Scholar 

  116. Sun M et al (2014) Construction and evaluation of a novel humanized HER2-specific chimeric receptor. Breast Cancer Res 16(3)

    Google Scholar 

  117. Bamdad CC et al (2018) Anti-MUC1* CAR T for solid tumors. Can Res 78(13 Supplement):2544

    Google Scholar 

  118. Priceman SJ et al (2018) Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncoimmunology 7(2)

    Google Scholar 

  119. Junghans RP et al (2016) Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76(14):1257–1270

    Article  CAS  PubMed  Google Scholar 

  120. Posey AD Jr et al (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44(6):1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Parkhurst MR et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626

    Article  CAS  PubMed  Google Scholar 

  122. Jones BS et al (2014) Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 5:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fan L et al (1999) Improved artificial death switches based on caspases and FADD. Hum Gene Ther 10(14):2273–2285

    Article  CAS  PubMed  Google Scholar 

  124. Clackson T et al (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A 95(18):10437–10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Straathof KC et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Di Stasi A et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tasian SK et al (2017) Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood 129(17):2395–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Philip B et al (2014) A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124(8):1277–1287

    Article  CAS  PubMed  Google Scholar 

  129. Sommer C et al (2019) Preclinical evaluation of allogeneic CAR T cells targeting BCMA for the treatment of multiple myeloma. Mol Ther 27(6):1126–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Valton J et al (2018) A versatile safeguard for chimeric antigen receptor T-cell immunotherapies. Sci Rep 8(1):8972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang X et al (2011) A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118(5):1255–1263

    Article  CAS  PubMed  Google Scholar 

  132. Weber EW et al (2019) Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv 3(5):711–717

    Article  CAS  PubMed  Google Scholar 

  133. Mestermann K et al (2019) The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med 11(499)

    Google Scholar 

  134. Steentoft C et al (2018) Glycan-directed CAR-T cells. Glycobiology 28(9):656–669

    Article  CAS  PubMed  Google Scholar 

  135. De Pascalis R et al (2003) In vitro affinity maturation of a specificity-determining region-grafted humanized anticarcinoma antibody: isolation and characterization of minimally immunogenic high-affinity variants. Clin Cancer Res 9(15):5521–5531

    PubMed  Google Scholar 

  136. Posey AD Jr, Clausen H, June CH (2016) Distinguishing truncated and normal MUC1 glycoform targeting from Tn-MUC1-specific CAR T cells: specificity is the key to safety. Immunity 45(5):947–948

    Google Scholar 

  137. Mahanta S et al (2008) A minimal fragment of MUC1 mediates growth of cancer cells. PLoS ONE 3(4):e2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chekmasova AA et al (2010) Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res 16(14):3594–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Koneru M et al (2015) A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med 13:102

    Article  CAS  PubMed  Google Scholar 

  140. Kloss CC et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71–75

    Article  CAS  PubMed  Google Scholar 

  141. Foster AE et al (2017) Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther 25(9):2176–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mata M et al (2017) Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov 7(11):1306–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Parekh HD et al (2019) Disease characteristics and treatment outcomes of young colorectal cancer patients. J Clin Oncol 37(4_suppl): 691–691

    Google Scholar 

  144. Maude SL et al (2015) CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125(26):4017–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Majzner RG, Mackall CL (2018) Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8(10):1219–1226

    Article  CAS  PubMed  Google Scholar 

  146. Hamieh M et al (2019) CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568(7750):112–116

    Article  CAS  PubMed  Google Scholar 

  147. Gardner R et al (2018) Early clinical experience of CD19 × CD22 dual specific CAR T cells for enhanced anti-leukemic targeting of acute lymphoblastic leukemia. Blood 132(Suppl 1):278

    Article  Google Scholar 

  148. Zah E et al (2016) T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4(6):498–508

    Article  CAS  PubMed  Google Scholar 

  149. Shah NN et al (2019) Results of a phase I study of bispecific anti-CD19, anti-CD20 chimeric antigen receptor (CAR) modified T cells for relapsed, refractory, non-Hodgkin lymphoma. J Clin Oncol 37(15_suppl):2510

    Google Scholar 

  150. Ruella M et al (2016) Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 126(10):3814–3826

    Article  PubMed  Google Scholar 

  151. Shah NN et al (2019) Multi targeted CAR-T cell therapies for B-cell malignancies. Front Oncol 9:146

    Article  PubMed  Google Scholar 

  152. Lee L et al (2018) An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood 131(7):746–758

    Article  CAS  PubMed  Google Scholar 

  153. Wilkie S et al (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070

    Article  CAS  PubMed  Google Scholar 

  154. Hegde M et al (2016) Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest 126(8):3036–3052

    Article  PubMed  PubMed Central  Google Scholar 

  155. Choi BD et al (2019) CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 37(9):1049–1058

    Article  CAS  PubMed  Google Scholar 

  156. Roybal KT et al (2016) Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167(2):419–432

    Google Scholar 

  157. Srivastava S et al (2019) Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35(3):489–503

    Google Scholar 

  158. Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5(215):215ra172

    Google Scholar 

  159. Tamada K et al (2012) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res 18(23):6436–6445

    Article  CAS  PubMed  Google Scholar 

  160. Ma JS et al (2016) Versatile strategy for controlling the specificity and activity of engineered T cells. Proc Natl Acad Sci U S A 113(4):E450–E458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lohmueller JJ et al (2017) mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology 7(1):e1368604

    Article  PubMed  PubMed Central  Google Scholar 

  162. Rodgers DT et al (2016) Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci U S A 113(4):E459–E468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Raj D et al (2019) Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut 68(6):1052–1064

    Article  CAS  PubMed  Google Scholar 

  164. Cho JH, Collins JJ, Wong WW (2018) Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173(6):1426–1438

    Google Scholar 

  165. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  166. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Binnewies M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mardiana S et al (2019) Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci Transl Med 11(495)

    Google Scholar 

  169. Maus MV, June CH (2016) Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 22(8):1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yin Y et al (2018) Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol Ther Oncolytics 11:20–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Serganova I et al (2017) Enhancement of PSMA-directed CAR adoptive immunotherapy by PD-1/PD-L1 blockade. Mol Ther Oncolytics 4:41–54

    Article  CAS  PubMed  Google Scholar 

  172. Wang H et al (2019) Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol 12(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cao Y et al (2019) Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell non-hodgkin lymphoma. Front Oncol 9:767

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chong EA et al (2017) PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129(8):1039–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Prosser ME et al (2012) Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol Immunol 51(3–4):263–272

    Article  CAS  PubMed  Google Scholar 

  176. Liu X et al (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76(6):1578–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cherkassky L et al (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126(8):3130–3144

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rafiq S et al (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36(9):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li S et al (2017) Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res 23(22):6982–6992

    Article  CAS  PubMed  Google Scholar 

  180. Guo X et al (2018) Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol 9:1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rupp LJ et al (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Baylis F, McLeod M (2017) First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr Gene Ther 17(4):309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Mariathasan S et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Golumba-Nagy V et al (2018) CD28-ζ CAR T cells resist TGF-β repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop. Mol Ther 26(9):2218–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kloss CC et al (2018) Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther 26(7):1855–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sukumaran S et al (2018) Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov 8(8):972–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Boyerinas B et al (2017) A novel TGF-β2/interleukin receptor signal conversion platform that protects CAR/TCR T cells from TGF-β2-mediated immune suppression and induces T cell supportive signaling networks. Blood 130(Suppl 1):1911

    Google Scholar 

  188. Hou AJ et al (2018) TGF-beta-responsive CAR-T cells promote anti-tumor immune function. Bioeng Transl Med 3(2):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pegram HJ et al (2012) Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119(18):4133–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yeku OO et al (2017) Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 7(1):10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hurton LV et al (2016) Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A 113(48):E7788–E7797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Krenciute G et al (2017) Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5(7):571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tang L et al (2018) Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol 36(8):707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mohammed S et al (2017) Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 25(1):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang Y et al (2019) An IL-4/21 inverted cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Front Immunol 10:1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Atherton MJ, Lichty BD (2013) Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy 5(11):1191–1206

    Article  CAS  PubMed  Google Scholar 

  197. Kaufman HL, Bines SD (2010) OPTIM trial: a phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncology 6(6):941–949

    Article  CAS  PubMed  Google Scholar 

  198. Watanabe K et al (2018) Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI insight 3(7):e99573

    Article  PubMed Central  Google Scholar 

  199. Shaw AR et al (2017) Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther 25(11):2440–2451

    Article  CAS  Google Scholar 

  200. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218

    Article  CAS  PubMed  Google Scholar 

  201. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  202. Blank CU et al (2016) Cancer immunology. The “cancer immunogram”. Science 352(6286):658–660

    Google Scholar 

  203. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pauken KE et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Scheper W et al (2019) Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med 25(1):89–94

    Article  CAS  PubMed  Google Scholar 

  206. Yost KE et al (2019) Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 25(8):1251–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sampson JH et al (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 20(4):972–984

    Article  CAS  PubMed  Google Scholar 

  208. Pituch KC et al (2018) Adoptive transfer of IL13Rα2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblastoma. Mol Ther 26(4):986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Adachi K et al (2018) IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol 36(4):346–351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul J. Priceman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stern, L.A., Jonsson, V.D., Priceman, S.J. (2020). CAR T Cell Therapy Progress and Challenges for Solid Tumors. In: Lee, P., Marincola, F. (eds) Tumor Microenvironment. Cancer Treatment and Research, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-38862-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38862-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38861-4

  • Online ISBN: 978-3-030-38862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics