Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 94))

Abstract

High-density lipoprotein (HDL) and its main protein component apolipoprotein (apo)A-I, play an important role in cholesterol homeostasis. It has been demonstrated that HDLs comprise of a very heterogeneous group of particles, not only regarding size but also composition. HDL’s best described function is its role in the reverse cholesterol transport, where lipid-free apoA-I or small HDLs can accept and take up cholesterol from peripheral cells and subsequently transport this to the liver for excretion. However, several other functions have also been described, like anti-oxidant, anti-inflammatory and anti-thrombotic effects. In this article, the general features, synthesis and metabolism of apoA-I and HDLs will be discussed. Additionally, an overview of HDL functions will be given, especially in the context of some major pathologies like cardiovascular disease, cancer and diabetes mellitus. Finally, the therapeutic potential of raising HDL will be discussed, focussing on the difficulties of the past and the promises of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi A, Corpeleijn E, Gansevoort RT, Gans RO, Hillege HL, Stolk RP, Navis G, Bakker SJ, Dullaart RP (2013) Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. J Clin Endocrinol Metab 98(8):E1352–E1359. https://doi.org/10.1210/jc.2013-1680

    Article  CAS  PubMed  Google Scholar 

  • Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48(11):2453–2462. https://doi.org/10.1194/jlr.M700274-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Ahmed HM, Miller M, Nasir K, McEvoy JW, Herrington D, Blumenthal RS, Blaha MJ (2016) Primary low level of high-density lipoprotein cholesterol and risks of coronary heart disease, cardiovascular disease, and death: results from the multi-ethnic study of atherosclerosis. Am J Epidemiol 183(10):875–883. https://doi.org/10.1093/aje/kwv305

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn J, Lim U, Weinstein SJ, Schatzkin A, Hayes RB, Virtamo J, Albanes D (2009) Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored by the Am Soc Prev Oncol 18(11):2814–2821. https://doi.org/10.1158/1055-9965.EPI-08-1248

    Article  CAS  Google Scholar 

  • Asztalos BF, Schaefer EJ (2003) High-density lipoprotein subpopulations in pathologic conditions. Am J Cardiol 91(7A):12E–17E

    Article  CAS  Google Scholar 

  • Badimon JJ, Badimon L, Fuster V (1990) Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Investig 85(4):1234–1241. https://doi.org/10.1172/JCI114558

    Article  CAS  PubMed  Google Scholar 

  • Barr DP, Russ EM, Eder HA (1951) Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med 11(4):480–493

    Google Scholar 

  • Barrans A, Jaspard B, Barbaras R, Chap H, Perret B, Collet X (1996) Pre-beta HDL: structure and metabolism. Biochem Biophys Acta 1300(2):73–85

    Article  Google Scholar 

  • Barter PJ (2002) Hugh sinclair lecture: the regulation and remodelling of HDL by plasma factors. Atheroscler Suppl 3(4):39–47

    Article  CAS  Google Scholar 

  • Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B, Investigators I (2007) Effects of torcetrapib in patients at high risk for coronary events. New Engl J Med 357(21):2109–2122. https://doi.org/10.1056/NEJMoa0706628

    Article  CAS  PubMed  Google Scholar 

  • Blanche PJ, Gong EL, Forte TM, Nichols AV (1981) Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochem Biophys Acta 665(3):408–419

    Article  CAS  Google Scholar 

  • Bursill CA, Castro ML, Beattie DT, Nakhla S, van der Vorst E, Heather AK, Barter PJ, Rye KA (2010) High-density lipoproteins suppress chemokines and chemokine receptors in vitro and in vivo. Arterioscler Thromb Vasc Biol 30(9):1773–1778. https://doi.org/10.1161/ATVBAHA.110.211342

    Article  CAS  PubMed  Google Scholar 

  • Camont L, Chapman MJ, Kontush A (2011) Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 17(10):594–603. https://doi.org/10.1016/j.molmed.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  • Carlson LA (2005) Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Intern Med 258(2):94–114. https://doi.org/10.1111/j.1365-2796.2005.01528.x

  • Chawda JG, Jain SS, Patel HR, Chaduvula N, Patel K (2011) The relationship between serum lipid levels and the risk of oral cancer. Indian J Med Paediatr Oncol: Off J Indian Soc Med Paediatr Oncol 32(1):34–37. https://doi.org/10.4103/0971-5851.81888

    Article  Google Scholar 

  • Chen WJ, Zhang M, Zhao GJ, Fu Y, Zhang DW, Zhu HB, Tang CK (2013) MicroRNA-33 in atherosclerosis etiology and pathophysiology. Atherosclerosis 227(2):201–208. https://doi.org/10.1016/j.atherosclerosis.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  • Cheung MC, Albers JJ (1982) Distribution of high density lipoprotein particles with different apoprotein composition: particles with A-I and A-II and particles with A-I but no A-II. J Lipid Res 23(5):747–753

    CAS  PubMed  Google Scholar 

  • Cheung MC, Albers JJ (1984) Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J Biol Chem 259(19):12201–12209

    Google Scholar 

  • Christison JK, Rye KA, Stocker R (1995) Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein. J Lipid Res 36(9):2017–2026

    CAS  PubMed  Google Scholar 

  • Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ (1995) High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 15(11):1987–1994

    Article  CAS  Google Scholar 

  • Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE (2016) Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 310(1):E1–E14. https://doi.org/10.1152/ajpendo.00429.2015

    Article  PubMed  Google Scholar 

  • Cordero A, Moreno-Arribas J, Bertomeu-Gonzalez V, Agudo P, Miralles B, Masia MD, Lopez-Palop R, Bertomeu-Martinez V (2012) Low levels of high-density lipoproteins cholesterol are independently associated with acute coronary heart disease in patients hospitalized for chest pain. Rev Esp Cardiol 65(4):319–325. https://doi.org/10.1016/j.recesp.2011.07.022

    Article  PubMed  Google Scholar 

  • Danilo C, Gutierrez-Pajares JL, Mainieri MA, Mercier I, Lisanti MP, Frank PG (2013) Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Res: BCR 15(5):R87. https://doi.org/10.1186/bcr3483

    Article  CAS  PubMed  Google Scholar 

  • de Souza JA, Vindis C, Negre-Salvayre A, Rye KA, Couturier M, Therond P, Chantepie S, Salvayre R, Chapman MJ, Kontush A (2010) Small, dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I. J Cell Mol Med 14(3):608–620. https://doi.org/10.1111/j.1582-4934.2009.00713.x

    Article  CAS  PubMed  Google Scholar 

  • Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, de Courten B, Forbes JM, Yap FY, Kaye DM, van Hall G, Febbraio MA, Kemp BE, Sviridov D, Steinberg GR, Kingwell BA (2009) High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119(15):2103–2111. https://doi.org/10.1161/CIRCULATIONAHA.108.843219

    Article  CAS  PubMed  Google Scholar 

  • Drew BG, Fidge NH, Gallon-Beaumier G, Kemp BE, Kingwell BA (2004) High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc Natl Acad Sci USA 101(18):6999–7004. https://doi.org/10.1073/pnas.0306266101

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseno L, Carreon-Torres E, Izquierdo-Vega JA, Sharma A, Cancino-Diaz JC, Perez-Mendez O, Belefant-Miller H, Betanzos-Cabrera G (2018) Current therapies focused on high-density lipoproteins associated with cardiovascular disease. Molecules 23(11). https://doi.org/10.3390/molecules23112730

  • Fan J, Qi Y, Zhao D (2014) A meta-analysis on the association between high-density lipoprotein particle subfractions and cardiovascular disease events. Zhonghua xin xue guan bing za zhi 42(1):57–61

    CAS  PubMed  Google Scholar 

  • Favari E, Calabresi L, Adorni MP, Jessup W, Simonelli S, Franceschini G, Bernini F (2009) Small discoidal pre-beta1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1. Biochemistry 48(46):11067–11074. https://doi.org/10.1021/bi901564g

    Article  CAS  PubMed  Google Scholar 

  • Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, Rye KA (2010) Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol 30(8):1642–1648. https://doi.org/10.1161/ATVBAHA.110.207373

    Article  CAS  PubMed  Google Scholar 

  • Ganjali S, Ricciuti B, Pirro M, Butler AE, Atkin SL, Banach M, Sahebkar A (2019) High-density lipoprotein components and functionality in cancer: state-of-the-art. Trends Endocrinol Metab: TEM 30(1):12–24. https://doi.org/10.1016/j.tem.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  • Gofman JW (1956) Serum lipoproteins and the evaluation of atherosclerosis. Ann NY Acad Sci 64(4):590–595

    Article  CAS  Google Scholar 

  • Gordon SM, Hofmann S, Askew DS, Davidson WS (2011) High density lipoprotein: it’s not just about lipid transport anymore. Trends Endocrinol Metab: TEM 22(1):9–15. https://doi.org/10.1016/j.tem.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  • Group HTC (2013) HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J 34(17):1279–1291. https://doi.org/10.1093/eurheartj/eht055

    Article  CAS  Google Scholar 

  • Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O’Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A (2016) Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Investig 126(2):796. https://doi.org/10.1172/JCI86401

    Article  PubMed  Google Scholar 

  • Han R, Lai R, Ding Q, Wang Z, Luo X, Zhang Y, Cui G, He J, Liu W, Chen Y (2007) Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia 50(9):1960–1968. https://doi.org/10.1007/s00125-007-0752-7

    Article  CAS  PubMed  Google Scholar 

  • Hashemi M, Pooladi M, Razi Abad SK (2014) The investigation of changes in proteins expression (Apolipoprotein A1 and albumin) in malignant astrocytoma brain tumor. J Cancer Res Ther 10(1):107–111. https://doi.org/10.4103/0973-1482.131413

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, Horiguchi M, Nakamura T, Chonabayashi K, Hishizawa M, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K (2012) MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc 1(6):e003376. https://doi.org/10.1161/JAHA.112.003376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, von Eckardstein A, Wu S, Maeda N, Assmann G (1994) A plasma lipoprotein containing only apolipoprotein E and with gamma mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci USA 91(5):1834–1838

    Article  CAS  Google Scholar 

  • Jafri H, Alsheikh-Ali AA, Karas RH (2010) Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol 55(25):2846–2854. https://doi.org/10.1016/j.jacc.2009.12.069

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney JB, Tall AR (1997) Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 272(34):20982–20985

    Article  CAS  Google Scholar 

  • Kamanna VS, Ganji SH, Kashyap ML (2013) Recent advances in niacin and lipid metabolism. Curr Opin Lipidol 24(3):239–245. https://doi.org/10.1097/MOL.0b013e3283613a68

    Article  CAS  PubMed  Google Scholar 

  • Kannel WB, Dawber TR, Friedman GD, Glennon WE, McNamara PM (1964) Risk factors in coronary heart disease. an evaluation of several serum lipids as predictors of coronary heart disease; the Framingham study. Ann Intern Med 61:888–899

    Article  CAS  Google Scholar 

  • Karavia EA, Zvintzou E, Petropoulou PI, Xepapadaki E, Constantinou C, Kypreos KE (2014) HDL quality and functionality: what can proteins and genes predict? Expert Rev Cardiovasc Ther 12(4):521–532. https://doi.org/10.1586/14779072.2014.896741

    Article  CAS  PubMed  Google Scholar 

  • Keene D, Price C, Shun-Shin MJ, Francis DP (2014) Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ 349:g4379. https://doi.org/10.1136/bmj.g4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingwell BA, Chapman MJ, Kontush A, Miller NE (2014) HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 13(6):445–464. https://doi.org/10.1038/nrd4279

    Article  CAS  PubMed  Google Scholar 

  • Kontush A (2014) HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 103(3):341–349. https://doi.org/10.1093/cvr/cvu147

    Article  CAS  PubMed  Google Scholar 

  • Kontush A, Chantepie S, Chapman MJ (2003) Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 23(10):1881–1888. https://doi.org/10.1161/01.ATV.0000091338.93223.E8

    Article  CAS  PubMed  Google Scholar 

  • Liao XL, Lou B, Ma J, Wu MP (2005) Neutrophils activation can be diminished by apolipoprotein A-I. Life Sci 77(3):325–335. https://doi.org/10.1016/j.lfs.2004.10.066

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Lin SJ, Chen YY, Liu LN, Bao LB, Tang LQ, Ou JS, Liu ZG, Chen XZ, Xu Y, Ma J, Chan AT, Chen M, Xia YF, Liu WL, Zeng YX, Mai HQ, Zeng MS, Pan JJ, Zhang X (2016) High-density lipoprotein cholesterol as a predictor of poor survival in patients with nasopharyngeal carcinoma. Oncotarget 7(28):42978–42987. https://doi.org/10.18632/oncotarget.7160

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackness MI, Durrington PN, Mackness B (2004) The role of paraoxonase 1 activity in cardiovascular disease: potential for therapeutic intervention. Am J Cardiovasc Drugs: Drugs, Devices, Other Interv 4(4):211–217. https://doi.org/10.2165/00129784-200404040-00002

    Article  CAS  Google Scholar 

  • Masson D, Jiang XC, Lagrost L, Tall AR (2009) The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J Lipid Res 50(Suppl):S201–S206. https://doi.org/10.1194/jlr.R800061-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mineo C, Deguchi H, Griffin JH, Shaul PW (2006) Endothelial and antithrombotic actions of HDL. Circ Res 98(11):1352–1364. https://doi.org/10.1161/01.RES.0000225982.01988.93

    Article  CAS  PubMed  Google Scholar 

  • Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV, Perevozchikov AP (2010) PPARgamma activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells. Biochem Biophys Res Commun 402(3):477–482. https://doi.org/10.1016/j.bbrc.2010.10.053

    Article  CAS  PubMed  Google Scholar 

  • Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG (2016) Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging. Front Pharmacol 7:466. https://doi.org/10.3389/fphar.2016.00466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin EE, Li XA, Schwendeman A (2018) HDL in Endocrine Carcinomas: Biomarker, Drug Carrier, and Potential Therapeutic. Front Endocrinol 9:715. https://doi.org/10.3389/fendo.2018.00715

    Article  Google Scholar 

  • Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, Barter PJ (2005a) Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 25(11):2416–2421. https://doi.org/10.1161/01.ATV.0000184760.95957.d6

    Article  CAS  PubMed  Google Scholar 

  • Nicholls SJ, Dusting GJ, Cutri B, Bao S, Drummond GR, Rye KA, Barter PJ (2005b) Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111(12):1543–1550. https://doi.org/10.1161/01.CIR.0000159351.95399.50

    Article  CAS  PubMed  Google Scholar 

  • Nofer JR, Brodde MF, Kehrel BE (2010) High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol 37(7):726–735. https://doi.org/10.1111/j.1440-1681.2010.05377.x

    Article  CAS  PubMed  Google Scholar 

  • Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Investig 113(4):569–581. https://doi.org/10.1172/JCI18004

    Article  CAS  PubMed  Google Scholar 

  • Pagler TA, Wang M, Mondal M, Murphy AJ, Westerterp M, Moore KJ, Maxfield FR, Tall AR (2011) Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling. Circ Res 108(2):194–200. https://doi.org/10.1161/CIRCRESAHA.110.228619

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Ma Y, Ren H, He Y, Wang Y, Lv X, Liu D, Ji L, Yu B, Wang Y, Chen YE, Pennathur S, Smith JD, Liu G, Zheng L (2012) Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression. PLoS ONE 7(11):e48530. https://doi.org/10.1371/journal.pone.0048530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papachristou NI, Blair HC, Kypreos KE, Papachristou DJ (2017) High-density lipoprotein (HDL) metabolism and bone mass. J Endocrinol 233(2):R95–R107. https://doi.org/10.1530/JOE-16-0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petremand J, Puyal J, Chatton JY, Duprez J, Allagnat F, Frias M, James RW, Waeber G, Jonas JC, Widmann C (2012) HDLs protect pancreatic beta-cells against ER stress by restoring protein folding and trafficking. Diabetes 61(5):1100–1111. https://doi.org/10.2337/db11-1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirillo A, Norata GD, Catapano AL (2013) High-density lipoprotein subfractions—what the clinicians need to know. Cardiology 124(2):116–125. https://doi.org/10.1159/000346463

    Article  CAS  PubMed  Google Scholar 

  • Poorey VK, Thakur P (2016) Alteration of Lipid Profile in Patients with Head and Neck Malignancy. Indian J Otolaryngol Head Neck Surg: Off Publ Assoc Otolaryngol India 68(2):135–140. https://doi.org/10.1007/s12070-015-0829-4

    Article  Google Scholar 

  • Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Suppl):S189–S194. https://doi.org/10.1194/jlr.R800088-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, Moore KJ (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Investig 121(7):2921–2931. https://doi.org/10.1172/JCI57275

    Article  CAS  PubMed  Google Scholar 

  • Rothblat GH, Phillips MC (2010) High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol 21(3):229–238

    Article  CAS  Google Scholar 

  • Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM (1991) Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353(6341):265–267. https://doi.org/10.1038/353265a0

    Article  CAS  PubMed  Google Scholar 

  • Ruscica M, Botta M, Ferri N, Giorgio E, Macchi C, Franceschini G, Magni P, Calabresi L, Gomaraschi M (2018) High density lipoproteins inhibit oxidative stress-induced prostate cancer cell proliferation. Sci Rep 8(1):2236. https://doi.org/10.1038/s41598-018-19568-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, Meier DT, Niclauss N, Berney T, Donath MY, von Eckardstein A (2009) Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150(10):4521–4530. https://doi.org/10.1210/en.2009-0252

    Article  CAS  PubMed  Google Scholar 

  • Rye KA, Barter PJ (2004) Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24(3):421–428. https://doi.org/10.1161/01.ATV.0000104029.74961.f5

    Article  CAS  PubMed  Google Scholar 

  • Rye KA, Clay MA, Barter PJ (1999) Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 145(2):227–238

    Article  CAS  Google Scholar 

  • Settasatian N, Duong M, Curtiss LK, Ehnholm C, Jauhiainen M, Huuskonen J, Rye KA (2001) The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J Biol Chem 276(29):26898–26905. https://doi.org/10.1074/jbc.M010708200

    Article  CAS  PubMed  Google Scholar 

  • Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98(19):2088–2093

    Article  CAS  Google Scholar 

  • Stenkula KG, Lindahl M, Petrlova J, Dalla-Riva J, Goransson O, Cushman SW, Krupinska E, Jones HA, Lagerstedt JO (2014) Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia 57(4):797–800. https://doi.org/10.1007/s00125-014-3162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, Ng C, Wagner A, Hough G, Farias-Eisner G, Anantharamaiah GM, Van Lenten BJ, Navab M, Fogelman AM, Reddy ST, Farias-Eisner R (2010) Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci USA 107(46):19997–20002. https://doi.org/10.1073/pnas.1009010107

    Article  PubMed  Google Scholar 

  • Tabet F, Remaley AT, Segaliny AI, Millet J, Yan L, Nakhla S, Barter PJ, Rye KA, Lambert G (2010) The 5A apolipoprotein A-I mimetic peptide displays antiinflammatory and antioxidant properties in vivo and in vitro. Arterioscler Thromb Vasc Biol 30(2):246–252. https://doi.org/10.1161/ATVBAHA.109.200196

    Article  CAS  PubMed  Google Scholar 

  • Tardif JC, Gregoire J, L’Allier PL, Ibrahim R, Lesperance J, Heinonen TM, Kouz S, Berry C, Basser R, Lavoie MA, Guertin MC, Rodes-Cabau J, Effect of r HDLoA-S, Efficacy I (2007) Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. Jama 297(15):1675–1682. https://doi.org/10.1001/jama.297.15.jpc70004

  • Terasaka N, Yu S, Yvan-Charvet L, Wang N, Mzhavia N, Langlois R, Pagler T, Li R, Welch CL, Goldberg IJ, Tall AR (2008) ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J Clin Investig 118(11):3701–3713. https://doi.org/10.1172/JCI35470

    Article  CAS  PubMed  Google Scholar 

  • Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ (2006) High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol 26(5):1144–1149. https://doi.org/10.1161/01.ATV.0000216600.37436.cf

    Article  CAS  PubMed  Google Scholar 

  • van der Hoorn JW, de Haan W, Berbee JF, Havekes LM, Jukema JW, Rensen PC, Princen HM (2008) Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden. CETP mice. Arterioscler Thromb Vasc Biol 28(11):2016–2022. https://doi.org/10.1161/atvbaha.108.171363

  • van der Vorst EP, Vanags LZ, Dunn LL, Prosser HC, Rye KA, Bursill CA (2013) High-density lipoproteins suppress chemokine expression and proliferation in human vascular smooth muscle cells. FASEB J: Off Publ Federation Am Soc Exp Biol 27(4):1413–1425. https://doi.org/10.1096/fj.12-212753

    Article  CAS  Google Scholar 

  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433. https://doi.org/10.1038/ncb2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Holm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K, Pirruccello JP, Saleheen D, Chen L, Stewart A, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett MS, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki ML, Perola M, Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker PI, Klungel OH, Maitland-van der Zee AH, Peters BJ, de Boer A, Grobbee DE, Kamphuisen PW, Deneer VH, Elbers CC, Onland-Moret NC, Hofker MH, Wijmenga C, Verschuren WM, Boer JM, van der Schouw YT, Rasheed A, Frossard P, Demissie S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M, Mohlke KL, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Peden J, Erdmann J, Diemert P, Willenborg C, Konig IR, Fischer M, Hengstenberg C, Ziegler A, Buysschaert I, Lambrechts D, Van de Werf F, Fox KA, El Mokhtari NE, Rubin D, Schrezenmeir J, Schreiber S, Schafer A, Danesh J, Blankenberg S, Roberts R, McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg-Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, Siscovick D, Elosua R, Stefansson K, O’Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Altshuler D, Kathiresan S (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380(9841):572–580. https://doi.org/10.1016/S0140-6736(12)60312-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Eckardstein A, Nofer JR, Assmann G (2001) High density lipoproteins and arteriosclerosis. role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21(1):13–27

    Google Scholar 

  • Weber C, Badimon L, Mach F, van der Vorst EPC (2017) Therapeutic strategies for atherosclerosis and atherothrombosis: past, present and future. Thromb Haemost 117(7):1258–1264. https://doi.org/10.1160/TH16-10-0814

    Article  PubMed  Google Scholar 

  • Wong NKP, Nicholls SJ, Tan JTM, Bursill CA (2018) The role of high-density lipoproteins in diabetes and its vascular complications. Int J Mol Sci 19(6). https://doi.org/10.3390/ijms19061680

  • Wool GD, Cabana VG, Lukens J, Shaw PX, Binder CJ, Witztum JL, Reardon CA, Getz GS (2011) 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. FASEB J: Off publ Federation Am Soc Exp Biol 25(1):290–300. https://doi.org/10.1096/fj.10-165670

    Article  CAS  Google Scholar 

  • Yokoyama S (2006) ABCA1 and biogenesis of HDL. J Atheroscler Thromb 13(1):1–15

    Article  CAS  Google Scholar 

  • Yu BL, Wang SH, Peng DQ, Zhao SP (2010) HDL and immunomodulation: an emerging role of HDL against atherosclerosis. Immunol Cell Biol 88(3):285–290. https://doi.org/10.1038/icb.2009.112

    Article  CAS  PubMed  Google Scholar 

  • Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010a) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328(5986):1689–1693. https://doi.org/10.1126/science.1189731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yvan-Charvet L, Wang N, Tall AR (2010b) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30(2):139–143. https://doi.org/10.1161/ATVBAHA.108.179283

    Article  CAS  PubMed  Google Scholar 

  • Zerrad-Saadi A, Therond P, Chantepie S, Couturier M, Rye KA, Chapman MJ, Kontush A (2009) HDL3-mediated inactivation of LDL-associated phospholipid hydroperoxides is determined by the redox status of apolipoprotein A-I and HDL particle surface lipid rigidity: relevance to inflammation and atherogenesis. Arterioscler Thromb Vasc Biol 29(12):2169–2175. https://doi.org/10.1161/ATVBAHA.109.194555

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Van Berkel TJ, Van Eck M (2010) Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 21(5):441–453. https://doi.org/10.1097/MOL.0b013e32833dedaa

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to Linsey Peters for preparing the graphics of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiel P. C. van der Vorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Vorst, E.P.C. (2020). High-Density Lipoproteins and Apolipoprotein A1. In: Hoeger, U., Harris, J. (eds) Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Biochemistry, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-030-41769-7_16

Download citation

Publish with us

Policies and ethics