Skip to main content

Automatic Grading of Knee Osteoarthritis from Plain Radiographs Using Densely Connected Convolutional Networks

  • Conference paper
  • First Online:
Recent Trends in Analysis of Images, Social Networks and Texts (AIST 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1357))

Abstract

In this paper, we consider densely connected convolutional networks and their applicability to the problem of assessment of knee osteoarthritis (OA) severity in the five-point Kellgren-Lawrence scale. First, we use trained from scratch Single Shot Detector (SSD) to localize knee joint areas in radiographs. Then, we apply DenseNets to quantify OA stages in the images of detected knee joints. We consider networks of different depths, trained both from scratch and pre-trained on the ImageNet dataset and fine-tuned in the images from Osteoarthritis Initiative dataset (OAI). Also, different loss functions are examined to understand which one gives the best training results. In the knee joint localization task, we obtain an accuracy of 94.03% under the Jaccard index threshold of 0.75. Also, our classifier outperforms the current state-of-the-art with accuracy of 71% in the classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kellgren, J., Lawrence, J.: Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957)

    Article  Google Scholar 

  2. Schiphof, D., Boers, M., Bierma-Zeinstra, S.: Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann. Rheum. Dis. 67, 1034–1036 (2008)

    Article  Google Scholar 

  3. Altman, R., Gold, G.: Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr. Cartil. 15(Suppl A), A1–A56 (2007)

    Google Scholar 

  4. Altman, R., Asch, E., Bloch, D., Bole, G., Borenstein, D., Brandt, K., et al.: Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 29, 1039–1049 (1986)

    Article  Google Scholar 

  5. Culvenor, A., Engen, C., Engebretsen, L., Risberg, M.: Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria. Osteoarthr. Cartil. (22), 265 (2014)

    Google Scholar 

  6. Sheehy, L.: Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the multicenter osteoarthritis study (MOST). Osteoarthr. Cartil. 23, 1491–1498 (2015)

    Article  Google Scholar 

  7. Chan, S., Dittakan, K.: Osteoarthritis stages classification to human joint imagery using texture analysis: a comparative study on ten texture descriptors. In: Santosh, K.C., Hegadi, R.S. (eds.) RTIP2R 2018. CCIS, vol. 1036, pp. 209–225. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9184-2_19

    Chapter  Google Scholar 

  8. Minciullo, L., Cootes, T.: Fully automated shape analysis for detection of Osteoarthritis from lateral knee radiographs. In: 23rd International Conference on Pattern Recognition (ICPR), pp. 3787–3791 (2016)

    Google Scholar 

  9. Antony, J., McGuinness, K., Moran, K., O’Connor, N.: Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. arXiv:1703.09856 [cs.CV], 29 March 2017

  10. Antony, J., McGuinness, K., Moran, K., O’Connor, N.: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. arXiv:1609.02469 [cs.CV], 8 September 2016

  11. Pingjun, C., Linlin, G., Xiaoshuang, S., Kyle, A., Lin, Y.: Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput. Med. Imaging Graph. 75, 84–92 (2019). https://doi.org/10.1016/j.compmedimag.2019.06.002

    Article  Google Scholar 

  12. Tiulpin, A., Thevenot, J., Rahtu, E., Saarakkala, S.: A novel method for automatic localization of joint area on knee plain radiographs. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10270, pp. 290–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59129-2_25

    Chapter  Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Tiulpin, A., Saarakkala, S.: Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. arXiv:1907.08020, Image and Video Processing (2019)

  15. Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. arXiv:1710.10589 [cs.CV], 29 October 2017

  16. Norman, B.D., Pedoia, V., Noworolski, A., Link, T.M., Majumdar, S.: Automatic knee Kellgren Lawrence grading with artificial intelligence. Osteoarthr. Cartil. 26, S436–S437 (2018)

    Article  Google Scholar 

  17. Anifah, L., Purnama, I.K., Hariadi, M., Purnomo, M.H.: Osteoarthritis classification using self organizing map based on Gabor kernel and contrast-limited adaptive histogram equalization. Open Biomed. Eng. J. 7, 18–28 (2013). https://doi.org/10.2174/1874120701307010018

    Article  Google Scholar 

  18. Wahyuningrum, R.T., Anifah, L., Purnama, I.K., Purnomo, M.H.: A new approach to classify knee osteoarthritis severity from radiographic images based on CNN-LSTM method. In: 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), pp. 1–6 (2019). https://doi.org/10.1109/ICAwST.2019.8923284

  19. Norman, B., Pedoia, V., Noworolski, A., et al.: Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J. Digit. Imaging 32, 471–477 (2019). https://doi.org/10.1007/s10278-018-0098-3

    Article  Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  21. Liu, B., Luo, J., Huang, H.: Toward automatic quantification of knee osteoarthritis severity using improved Faster R-CNN. Int. J. Comput. Assist. Radiol. Surg. 15, 457–466 (2020). https://doi.org/10.1007/s11548-019-02096-9

    Article  Google Scholar 

  22. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., et al.: Going deeper with convolutions. arXiv:1409.4842 [cs.CV], 17 September 2014

  24. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, Computer Vision and Pattern Recognition (2017)

  25. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. arXiv:1608.06993 [cs.CV], 28 January 2018

  26. Cheng, J., Aurélien, B., Mark, L.: The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat. 45, 2800–2818 (2018). https://doi.org/10.1080/02664763.2018.1441383

    Article  MathSciNet  Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs.LG] (2014)

  28. Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Mikhaylichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mikhaylichenko, A., Demyanenko, Y. (2021). Automatic Grading of Knee Osteoarthritis from Plain Radiographs Using Densely Connected Convolutional Networks. In: van der Aalst, W.M.P., et al. Recent Trends in Analysis of Images, Social Networks and Texts. AIST 2020. Communications in Computer and Information Science, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-71214-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71214-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71213-6

  • Online ISBN: 978-3-030-71214-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics