Skip to main content

Pharmacological Effects and Mechanisms of Action of Agents Blocking B Cells

  • Chapter
  • First Online:
Drugs Targeting B-Cells in Autoimmune Diseases

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Spearheaded by the development of anti-CD20 monoclonal antibodies capable of effectively killing B cells, the FDA approval in 1999 of the anti-CD20 monoclonal antibody rituximab for the treatment of B cell malignancies and reassurance about the overall safety of B cell depletion, the field of anti-B cell therapies has expanded over the last decade to the treatment of multiple autoimmune diseases. Moreover, growing knowledge of the biology of B cells and their functional and phenotypic heterogeneity combined with advances in biotechnology have enabled investigators and pharmaceutical companies to develop new agents that target different types of B cells through multiple mechanisms of action. Together with improved understanding of the heterogeneous nature of autoimmune diseases and better approaches to their segmentation, these developments should provide in the near future multiple choices for the rationale design of clinical trials and eventually, multiple choices for safer and more effective modalities that allow clinicians to use different agents, either combined or sequentially, to induce and maintain disease remission. In this chapter, we shall discuss the rationale for B cell therapies, the different strategies that can be used to target B cells and the mechanisms of action of drugs currently used for the treatment of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulahad WH, Meijer JM, Kroese FGM, Meiners PM, Vissink A, Spijkervet FKL, Kallenberg CGM, Bootsma H (2011) B-cell reconstitution and T-helper-cell balance after rituximab treatment of active primary Sjögren’s syndrome. Arthritis Rheum 63(4):1116–1123

    PubMed  CAS  Google Scholar 

  • Albert D, Dunham J, Khan S, Stansberry J, Kolasinski S, Tsai D, Pullman-Mooar S, Barnack F, Striebich C, Looney RJ, Prak ETL, Kimberly R, Zhang Y, Eisenberg R (2008) Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus. Ann Rheum Dis 67:1724–1731

    PubMed  CAS  Google Scholar 

  • Allen CDC, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, Cyster JG (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5:943–952

    PubMed  CAS  Google Scholar 

  • Anolik J, Barnard J, Owen T, Zheng B, Kemshett S, Looney J, Sanz I (2007a) Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 56:3044–3056

    PubMed  CAS  Google Scholar 

  • Anolik JH, Aringer M (2005) New treatments for SLE: cell-depleting and anti-cytokine therapies. Best Pract Res Clin Rheumatol 19:859–878

    PubMed  CAS  Google Scholar 

  • Anolik JH, Barnard J, Cappione A, Pugh-Bernard AE, Felgar RE, Looney RJ, Sanz I (2004) Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 50:3580–3590

    PubMed  CAS  Google Scholar 

  • Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, Looney RJ, Sanz I (2007b) Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum 56:3044–3056

    PubMed  CAS  Google Scholar 

  • Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J, Looney RJ (2003) The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum 48:455–459

    PubMed  CAS  Google Scholar 

  • Anthony RM, Wermeling F, Karlsson MCI, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci 105:19571–19578

    PubMed  CAS  Google Scholar 

  • Audia S, Samson M, Guy J, Janikashvili N, Fraszczak J, Trad M, Ciudad M, Leguy V, Berthier S, Petrella T, Aho-Glélé S, Martin L, Maynadié M, Lorcerie B, Rat P, Cheynel N, Katsanis E, Larmonier N, Bonnotte B (2011) Immunological effects of rituximab on the human spleen in immune thrombocytopenia. Blood 118(16):4394–4400

    PubMed  CAS  Google Scholar 

  • Avery DT, Kalled SL, Ellyard JI, Ambrose C, Bixler SA, Thien M, Brink R, Mackay F, Hodgkin PD, Tangye SG (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112:286–297

    PubMed  CAS  Google Scholar 

  • Bahjat FR, Pine PR, Reitsma A, Cassafer G, Baluom M, Grillo S, Chang B, Zhao FF, Payan DG, Grossbard EB, Daikh DI (2008) An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum 58:1433–1444

    PubMed  CAS  Google Scholar 

  • Barber DF, Bartolome A, Hernandez C, Flores JM, Redondo C, Fernandez-Arias C, Camps M, Ruckle T, Schwarz MK, Rodriguez S, Martinez-A C, Balomenos D, Rommel C, Carrera AC (2005) PI3K[gamma] inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med 11:933–935

    PubMed  CAS  Google Scholar 

  • Barr PM, Wei C, Roger J, Schaefer-Cutillo J, Kelly JL, Rosenberg AF, Jung J, Sanz I, Friedberg JW (2012) Syk inhibition with fostamatinib leads to transitional B lymphocyte depletion. Clin Immunol 142:237–242

    PubMed  CAS  Google Scholar 

  • Barrat FJ, Coffman RL (2008) Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol Rev 223:271–283

    PubMed  CAS  Google Scholar 

  • Barrat FJ, Meeker T, chan JH, Guiducci C, Coffman RL (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37:3582–3586

    PubMed  CAS  Google Scholar 

  • Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G (2005) Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 174:4043–4050

    PubMed  Google Scholar 

  • Blair PA, Chavez-Rueda KA, Evans JG, Shlomchik MJ, Eddaoudi A, Isenberg DA, Ehrenstein MR, Mauri C (2009) Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J Immunol 182:3492–3502

    PubMed  CAS  Google Scholar 

  • Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C (2010) CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32:129–140

    PubMed  CAS  Google Scholar 

  • Bonavida B (2007) Rituximab-induced inhibition of antiapoptotic cell survival pathways: implications in chemo/immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 26:3629–3636

    PubMed  CAS  Google Scholar 

  • Bosma A, Abdel-Gadir A, Isenberg DA, Jury EC, Mauri C (2012) Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36:477–490

    PubMed  CAS  Google Scholar 

  • Braun D, Caramalho I, Demengeot J (2002) IFN-{alpha}/{beta} enhances BCR-dependent B cell responses. Int Immunol 14:411–419

    PubMed  CAS  Google Scholar 

  • Browning JL (2008) Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol Rev 223:202–220

    PubMed  CAS  Google Scholar 

  • Calero I, Nieto JA, Sanz I (2010) B cell therapies for rheumatoid arthritis: beyond B cell depletion. Rheum Dis Clin North Am 36:325–343

    PubMed  Google Scholar 

  • Cambridge G, Isenberg DA, Edwards JCW, Leandro MJ, Migone T-S, Teodorescu M, Stohl W (2007) B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann Rheum Dis 67(7):1011–1016 (ard.2007.079418)

    PubMed  Google Scholar 

  • Cambridge G, Leandro MJ, Teodorescu M, Manson J, Rahman A, Isenberg DA, Edwards JC (2006) B cell depletion therapy in systemic lupus erythematosus: effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheum 54:3612–3622

    PubMed  CAS  Google Scholar 

  • Cang S, Mukhi N, Wang K, Liu D (2012) Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol 5:64

    PubMed  CAS  Google Scholar 

  • Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–428

    PubMed  CAS  Google Scholar 

  • Cornall RJ, Cyster JG, Hibbs ML, Dunn AR, Otipoby KL, Clark EA, Goodnow CC (1998) Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway rRegulating BCR signaling and selection. Immunity 8:497–508

    PubMed  CAS  Google Scholar 

  • Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9:271–285

    PubMed  CAS  Google Scholar 

  • Daridon C, Blassfeld D, Reiter K, Mei H, Giesecke C, Goldenberg D, Hansen A, Hostmann A, Frolich D, Dorner T (2010) Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther 12:R204

    PubMed  Google Scholar 

  • Dass S, Rawstron AC, Vital EM, Henshaw K, McGonagle D, Emery P (2008) Highly sensitive B cell analysis predicts response to rituximab therapy in rheumatoid arthritis. Arthritis Rheum 58:2993–2999

    PubMed  CAS  Google Scholar 

  • Dhodapkar KM, Banerjee D, Connolly J, Kukreja A, Matayeva E, Veri MC, Ravetch JV, Steinman RM, Dhodapkar MV (2007) Selective blockade of the inhibitory Fc{gamma} receptor (Fc{gamma}RIIB) in human dendritic cells and monocytes induces a type I interferon response program. J Exp Med 204:1359–1369

    PubMed  CAS  Google Scholar 

  • Ding BB, Bi E, Chen H, Yu JJ, Ye BH (2013) IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol 190(4):1827–1836

    PubMed  CAS  Google Scholar 

  • Doody G, Justement L, Delibrias C, Matthews R, Lin J, Thomas M, Fearon D (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–244

    PubMed  CAS  Google Scholar 

  • Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont M-C, Ranchin B, Fabien N, Cochat P, Pouteil-Noble C, Trolliet P, Durieu I, Tebib J, Kassai B, Ansieau S, Puisieux A, Eliaou J-F, Bonnefoy-Berard N (2009) Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 10:778–785

    PubMed  CAS  Google Scholar 

  • Dörner T, Kinnman N, Tak PP (2010) Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol Ther 125:464–475

    PubMed  Google Scholar 

  • Dörner T, Shock A, Smith KGC (2012) CD22 and autoimmune disease. Int Rev Immunol 31:363–378

    PubMed  Google Scholar 

  • Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, Kim HJ, Bar-Or A (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178:6092–6099

    PubMed  CAS  Google Scholar 

  • Edwards JCW, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6:394–403

    PubMed  CAS  Google Scholar 

  • Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, Mauri C (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5:173ra23

    PubMed  CAS  Google Scholar 

  • François M, Galipeau J (2012) New insights on translational development of mesenchymal stromal cells for suppressor therapy. J Cell Physiol 227:3535–3538

    PubMed  Google Scholar 

  • Ghosh D, Tsokos GC (2010) Spleen tyrosine kinase: an Src family of non-receptor kinase has multiple functions and represents a valuable therapeutic target in the treatment of autoimmune and inflammatory diseases. Autoimmunity 43:48–55

    PubMed  CAS  Google Scholar 

  • Ginzler E, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E, Singer N (2012) Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther 14:R33

    PubMed  CAS  Google Scholar 

  • Giordani L, Sanchez M, Libri I, Quaranta MG, Mattioli B, Viora M (2009) IFN-{alpha} amplifies human naive B cell TLR-9-mediated activation and Ig production. J Leukoc Biol 86:261–271

    PubMed  CAS  Google Scholar 

  • Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis [see comment]. N Engl J Med 358:676–688

    PubMed  CAS  Google Scholar 

  • Hayden-Ledbetter MS, Cerveny CG, Espling E, Brady WA, Grosmaire LS, Tan P, Bader R, Slater S, Nilsson CA, Barone DS, Simon A, Bradley C, Thompson PA, Wahl AF, Ledbetter JA (2009) CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res 15:2739–2746

    PubMed  CAS  Google Scholar 

  • Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci 107:13075–13080

    PubMed  CAS  Google Scholar 

  • Hron JD, Peng SL (2004) Type I IFN protects against murine lupus. J Immunol 173:2134–2142

    PubMed  CAS  Google Scholar 

  • Hsu H-C, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL, Le T-VL, Lorenz RG, Xu H, Kolls JK, Carter RH, Chaplin DD, Williams RW, Mountz JD (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9:166–175

    PubMed  CAS  Google Scholar 

  • Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, Barnard J, Nevarez S, Goldman BI, Kirk CJ, Looney RJ, Anolik JH (2012) Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 64:493–503

    PubMed  CAS  Google Scholar 

  • Isgro J, Gupta S, Jacek E, Pavri T, Duculan R, Kim M, Kirou KA, Salmon JE, Pernis AB (2013) Enhanced ROCK activation in patients with systemic lupus erythematosus. Arthritis Rheum 65(6):1592–1602

    PubMed  CAS  Google Scholar 

  • Iwata S, Saito K, Tokunaga M, Yamaoka K, Nawata M, Yukawa S, Hanami K, Fukuyo S, Miyagawa I, Kubo S, Tanaka Y (2010) Phenotypic changes of lymphocytes in patients with systemic lupus erythematosus who are in longterm remission after B cell depletion therapy with rituximab. J Rheumatol 38(4):633–641

    PubMed  Google Scholar 

  • Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM, Bernstein SH, Magro CM, Williams AD, Hall RP, St Clair EW, Tedder TF (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117:530–541

    PubMed  CAS  Google Scholar 

  • Jacobi AM, Goldenberg DM, Hiepe F, Radbruch A, Burmester GR, Dörner T (2008) Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis 67:450–457

    PubMed  CAS  Google Scholar 

  • Jacobi AM, Huang W, Wang T, Freimuth W, Sanz I, Furie R, Mackay M, Aranow C, Diamond B, Davidson A (2010) Effect of long-term belimumab treatment on b cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum 62:201–210

    PubMed  CAS  Google Scholar 

  • Jin X, Ding C (2013) Belimumab—an anti-BLyS human monoclonal antibody for rheumatoid arthritis. Expert Opin Biol Ther 13:315–322

    PubMed  CAS  Google Scholar 

  • Katsnelson A (2012) Next-generation proteasome inhibitor approved in multiple myeloma. Nat Biotechnol 30:1011–1012

    PubMed  CAS  Google Scholar 

  • Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE, Ettinger R (2007) Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 179:5886–5896

    PubMed  CAS  Google Scholar 

  • Lampropoulou V, Hoehlig K, Roch T, Neves P, Gomez EC, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773

    PubMed  CAS  Google Scholar 

  • Heinlen LD, McClain MT, Merrill J, Akbarali YW, Edgerton CC, Harley JB, James JA (2007) Clinical criteria for systemic lupus erythematosus precede diagnosis, and associated autoantibodies are present before clinical symptoms. Arthritis Rheum 56:2344–2351

    PubMed  CAS  Google Scholar 

  • Lazarus MN, Turner-Stokes T, Chavele K-M, Isenberg DA, Ehrenstein MR (2012) B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels. Rheumatology 51(7):1208–1215

    PubMed  CAS  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors [see comment]. Nature 416:603–607

    PubMed  CAS  Google Scholar 

  • Leandro M, Cambridge G, Ehrenstein M, Edwards J (2006) Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 54:613–620

    PubMed  CAS  Google Scholar 

  • Leandro MJ, Cambridge G, Edwards JC, Ehrenstein MR, Isenberg DA (2005) B-cell depletion in the treatment of patients with systemic lupus erythematosus: a longitudinal analysis of 24 patients. Rheumatology 44:1542–1545

    PubMed  CAS  Google Scholar 

  • Lenert P, Brummel R, Field EH, Ashman RF (2005) TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol 25:29–40

    PubMed  CAS  Google Scholar 

  • Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu HB, Cyster JG (2004) Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20:441–453

    PubMed  CAS  Google Scholar 

  • Li J, Liu Y, Xie C, Zhu J, Kreska D, Morel L, Mohan C (2005) Deficiency of type I interferon contributes to SLE2-associated component lupus phenotypes. Arthritis Rheum 52:3063–3072

    PubMed  CAS  Google Scholar 

  • Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, Verma NK, Smyth MJ, Rigby RJ, Vinuesa CG (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 207:353–363

    PubMed  CAS  Google Scholar 

  • Liossis SN, Sfikakis PP (2004) Costimulation blockade in the treatment of rheumatic diseases. BioDrugs 18:95–102

    PubMed  CAS  Google Scholar 

  • Liu W, Szalai A, Zhao L, Liu D, Martin F, Kimberly RP, Zhou T, Carter RH (2004) Control of spontaneous B lymphocyte autoimmunity with adenovirus-encoded soluble TACI. Arthritis Rheum 50:1884–1896

    PubMed  CAS  Google Scholar 

  • Looney RJ, Anolik J, Sanz I (2010) A perspective on B-cell-targeting therapy for SLE. Mod Rheumatol 20:1–10

    PubMed  Google Scholar 

  • Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, Sloand JA, Rosenblatt J, Sanz I (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50:2580–2589

    PubMed  CAS  Google Scholar 

  • Lu T, Ng KP, Cambridge G, Leandro MJ, Edwards JCW, Ehrenstein M, Isenberg DA (2009) A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at university college london hospital: the first fifty patients. Arthritis Care Res 61:482–487

    Google Scholar 

  • Lu TYT, Jonsdottir T, van Vollenhoven RF, Isenberg DA (2008) Prolonged B-cell depletion following rituximab therapy in systemic lupus erythematosus: a report of two cases. Ann Rheum Dis 67:1493–1494

    PubMed  Google Scholar 

  • Lund FE (2008) Cytokine-producing B lymphocytes—key regulators of immunity. Curr Opin Immunol 20:332–338

    PubMed  CAS  Google Scholar 

  • Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, Ravetch JV, Diamond B (2006) Selective dysregulation of the Fc{gamma}IIB receptor on memory B cells in SLE. J Exp Med 203(9):2157–2164 (jem.20051503)

    PubMed  CAS  Google Scholar 

  • Maloney DG (2012) Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med 366:2008–2016

    PubMed  CAS  Google Scholar 

  • Manjarrez-Orduno N, Quach TD, Sanz I (2009) B cells and immunological tolerance. J Invest Dermatol 129:278–288

    PubMed  CAS  Google Scholar 

  • Martin F, Chan AC (2004) Pathogenic roles of B cells in human autoimmunity; insights from the clinic. Immunity 20:517–527

    PubMed  CAS  Google Scholar 

  • Martin F, Chan AC (2006) B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 24

    Google Scholar 

  • Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression [see comment]. J Clin Invest 118:3420–3430

    PubMed  CAS  Google Scholar 

  • McBride JM, Jiang J, Abbas AR, Morimoto A, Li J, Maciuca R, Townsend M, Wallace DJ, Kennedy WP, Drappa J (2012) Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum 64:3666–3676

    PubMed  CAS  Google Scholar 

  • Mei HE, Schmidt S, Dorner T (2012) Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 14(Suppl 5):S1

    PubMed  Google Scholar 

  • Miossec P, Kolls JK (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 11:763–776

    PubMed  CAS  Google Scholar 

  • Mitsdoerffer M, Lee Y, Jäger A, Kim H-J, Korn T, Kolls JK, Cantor H, Bettelli E, Kuchroo VK (2010) Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci 107:14292–14297

    PubMed  CAS  Google Scholar 

  • Moir S, Malaspina A, Pickeral OK, Donoghue ET, Vasquez J, Miller NJ, Krishnan SR, Planta MA, Turney JF, Justement JS, Kottilil S, Dybul M, Mican JM, Kovacs C, Chun T-W, Birse CE, Fauci AS (2004) Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J Exp Med 200:587–600

    CAS  Google Scholar 

  • Moisini I, Davidson A (2009) BAFF: a local and systemic target in autoimmune diseases. Clin Exp Immunol 158:155–163

    PubMed  CAS  Google Scholar 

  • Moser KL, Kelly JA, Lessard CJ, Harley JB (2009) Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 10:373–379

    PubMed  CAS  Google Scholar 

  • Mountz JD, Wang JH, Xie S, Hsu HC (2011) Cytokine regulation of B-cell migratory behavior favors formation of germinal centers in autoimmune disease. Discov Med 11:76–85

    PubMed  Google Scholar 

  • Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C, Sylvain C, Ring ER, Shields J, Jiang J, Shwonek P, Parlati F, Demo SD, Bennett MK, Kirk CJ, Groettrup M (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15:781–787

    PubMed  CAS  Google Scholar 

  • Muhammad K, Roll P, Seibold T, Kleinert S, Einsele H, Dörner T, Tony H-P (2011) Impact of IL-6 receptor inhibition on human memory B cells in vivo: impaired somatic hypermutation in preswitch memory B cells and modulation of mutational targeting in memory B cells. Ann Rheum Dis 70:1507–1510

    PubMed  CAS  Google Scholar 

  • Naka T, Nishimoto N, Kishimoto T (2002) The paradigm of IL-6: from basic science to medicine. Arthritis Res 4:S233–S242

    PubMed  Google Scholar 

  • Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE (2008a) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755

    PubMed  CAS  Google Scholar 

  • Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE (2008b) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755

    PubMed  CAS  Google Scholar 

  • Notley CA, Brown MA, Wright GP, Ehrenstein MR (2011) Natural IgM is required for suppression of inflammatory arthritis by apoptotic cells. J Immunol 186(8):4967–4972

    PubMed  CAS  Google Scholar 

  • Nurieva RI, Treuting P, Duong J, Flavell RA, Dong C (2003) Inducible costimulator is essential for collagen-induced arthritis. J Clin Invest 111:701–706

    PubMed  CAS  Google Scholar 

  • O’keefe TL, Williams GT, Batista FD, Neuberger MS (1999) Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med 189:1307–1313

    PubMed  Google Scholar 

  • Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    PubMed  CAS  Google Scholar 

  • Odegard JM, Marks BR, Diplacido LD, Poholek AC, Kono DH, Dong C, Flavell RA, Craft J (2008) ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med 205(12):2873–2886. doi:10.1084/jem.20080840

    PubMed  CAS  Google Scholar 

  • Oflazoglu E, Boursalian TE, Zeng W, Edwards AC, Duniho S, McEarchern JA, Law C-L, Gerber H-P, Grewal IS (2009) Blocking of CD27-CD70 pathway by anti-CD70 antibody ameliorates joint disease in murine collagen-induced arthritis. J Immunol 183:3770–3777

    PubMed  CAS  Google Scholar 

  • Oleksyn D, Pulvino M, Zhao J, Misra R, Vosoughi A, Jenks S, Tipton C, Lund F, Schwartz G, Goldman B, Mohan C, Mehta K, Mehta M, Leitgets M, Sanz I, Chen L (2013) Protein kinase Cβ is required for lupus development in Sle mice. Arthritis Rheum 65:1022–1031

    PubMed  CAS  Google Scholar 

  • Otipoby KL, Andersson KB, Draves KE, Klaus SJ, Farr AG, Kerner JD, Perlmutter RM, Law C-L, Clark EA (1996) CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384:634–637

    PubMed  CAS  Google Scholar 

  • Owczarczyk K, Lal P, Abbas AR, Wolslegel K, Holweg CTJ, Dummer W, Kelman A, Brunetta P, Lewin-Koh N, Sorani M, Leong D, Fielder P, Yocum D, Ho C, Ortmann W, Townsend MJ, Behrens TW (2011) A plasmablast biomarker for nonresponse to antibody therapy to CD20 in rheumatoid arthritis. Sci Transl Med 3:101ra92

    PubMed  Google Scholar 

  • Paz Z, Tsokos GC (2013) New therapeutics in systemic lupus erythematosus. Curr Opin Rheumatol 25:297–303. doi:10.1097/BOR.0b013e32835fd682

    PubMed  CAS  Google Scholar 

  • Petri M, Wallace DJ, Spindler A, Chindalore V, Kalunian K, Mysler E, Neuwelt CM, Robbie G, White WI, Higgs BW, Yao Y, Wang L, Ethgen D, Greth W (2013) Sifalimumab, a human anti–interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheuma 65:1011–1021

    CAS  Google Scholar 

  • Pezzutto A, Rabinovitch PS, Dörken B, Moldenhauer G, Clark EA (1988) Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J Immunol 140:1791–1795

    PubMed  CAS  Google Scholar 

  • Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E, Forner K, Boivin M-N, Doody K, Tremblay M, Annabi B, Galipeau J (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998

    PubMed  CAS  Google Scholar 

  • Rafei M, Hsieh J, Zehntner S, Li M, Forner K, Birman E, Boivin M-N, Young YK, Perreault C, Galipeau J (2009) A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 15:1038–1045

    PubMed  CAS  Google Scholar 

  • Rau FC, Dieter J, Luo Z, Priest SO, Baumgarth N (2009) B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion. J Immunol 183:7661–7671

    PubMed  CAS  Google Scholar 

  • Recher M, Berglund LJ, Avery DT, Cowan MJ, Gennery AR, Smart J, Peake J, Wong M, Pai S-Y, Baxi S, Walter JE, Palendira U, Tangye GA, Rice M, Brothers S, Al-Herz W, Oettgen H, Eibel H, Puck JM, Cattaneo F, Ziegler JB, Giliani S, Tangye SG, Notarangelo LD (2011) IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo. Blood 118:6824–6835

    PubMed  CAS  Google Scholar 

  • Rodríguez-Bayona B, Ramos-Amaya A, Bernal J, Campos-Caro A, Brieva JA (2012) Cutting edge: IL-21 derived from human follicular helper T cells acts as a survival factor for secondary lymphoid organ, but not for bone marrow, plasma cells. J Immunol 188:1578–1581

    PubMed  Google Scholar 

  • Roll P, Kneitz C, Dorner T, Tony H-P (2007) B-cell subsets as predictors of response in patients with RA treated with rituximab. Arthritis Rheum 56:S586

    Google Scholar 

  • Rommel C, Camps M, Ji H (2007) PI3K[delta] and PI3K[gamma]: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7:191–201

    PubMed  CAS  Google Scholar 

  • Rozanski CH, Arens R, Carlson LM, Nair J, Boise LH, Chanan-Khan AA, Schoenberger SP, Lee KP (2011) Sustained antibody responses depend on CD28 function in bone marrow-resident plasma cells. J Exp Med 208:1435–1446

    PubMed  CAS  Google Scholar 

  • Ruth JH, Rottman JB, Kingsbury GA, Coyle AJ, Haines GK III, Pope RM, Koch AE (2007) ICOS and B7 costimulatory molecule expression identifies activated cellular subsets in rheumatoid arthritis. Cytometry A 71(5):317–326

    PubMed  Google Scholar 

  • Sanz I (2009) Indications for rituximab in autoimmune diseases. Drug Discov Today Ther Strateg 6:13–19

    PubMed  CAS  Google Scholar 

  • Sanz I (2011) Connective tissue diseases: targeting B cells in SLE: good news at last! Nat Rev Rheumatol 7:255–256

    PubMed  CAS  Google Scholar 

  • Sanz I, Lee FE (2010) B cells as therapeutic targets in SLE. Nat Rev Rheumatol 6:326–337

    PubMed  CAS  Google Scholar 

  • Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang MLK, Tedder TF (1996) CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5:551–562

    PubMed  CAS  Google Scholar 

  • Sfikakis PP, Boletis JN, Lionaki S, Vigklis V, Fragiadaki V, Iniotaki A, Moutsopoulos HM (2005) Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum 52:501–513

    PubMed  CAS  Google Scholar 

  • Shin MS, Lee N, Kang I (2011) Effector T-cell subsets in systemic lupus erythematosus: update focusing on Th17 cells. Curr Opin Rheumatol 23(5):444–448

    PubMed  CAS  Google Scholar 

  • Shirota Y, Yarboro C, Fischer R, Pham T-H, Lipsky P, Illei GG (2013) Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann Rheum Dis 72:118–128

    PubMed  CAS  Google Scholar 

  • Sibbitt WL Jr, Bankhurst AD (1985) Natural killer cells in connective tissue disorders. Clin Rheum Dis 11:507–521

    PubMed  Google Scholar 

  • Siegel D, Wang L, Orlowski RZ, Kaufman JL, Stewart AK, Kukreti V, Alsina M, Jakubowiak AJ, Jagannath S, McDonagh KT, Belch A, Bahlis NJ, Shustik C, Le MH, Kunkel L, Bennett MK, Kauffman M (2009) PX-171-004, an ongoing open-label, phase II study of single-agent carfilzomib (CFZ) in patients with relapsed or refractory myeloma (MM); updated results from the bortezomib-treated cohort presentation 303. In: 51st annual meeting of the American Society for Hematology

    Google Scholar 

  • Sieger N, Fleischer SJ, Mei HE, Reiter K, Shock A, Burmester GR, Daridon C, Dörner T (2013) CD22 ligation inhibits downstream B cell receptor signaling and Ca2+ flux upon activation. Arthritis Rheum 65:770–779

    PubMed  CAS  Google Scholar 

  • Stasi R, Cooper N, Del Poeta G, Stipa E, Evangelista ML, Abruzzese E, Amadori S (2008) Analysis of regulatory T cell changes in patients with idiopathic thrombocytopenic purpura receiving B-cell depleting therapy with rituximab. Blood 112(4):1147–1150. doi:10.1182/blood-2007-12-129262

    PubMed  CAS  Google Scholar 

  • Stoehr AD, Schoen CT, Mertes MMM, Eiglmeier S, Holecska V, Lorenz AK, Schommartz T, Schoen A-L, Hess C, Winkler A, Wardemann H, Ehlers M (2011) TLR9 in peritoneal B-1b cells is essential for production of protective self-reactive IgM to control Th17 cells and severe autoimmunity. J Immunol 187:2953–2965

    PubMed  CAS  Google Scholar 

  • Stohl W, Hiepe F, Latinis KM, Thomas M, Scheinberg MA, Clarke A, Aranow C, Wellborne FR, Abud-Mendoza C, Hough DR, Pineda L, Migone T-S, Zhong ZJ, Freimuth WW, Chatham WW, On behalf of the B, Groups B-S (2012) Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 64:2328–2337

    PubMed  CAS  Google Scholar 

  • Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Specks U (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363:221–232

    PubMed  CAS  Google Scholar 

  • Sweet RA, Lee SK, Vinuesa CG (2012) Developing connections amongst key cytokines and dysregulated germinal centers in autoimmunity. Curr Opin Immunol 24:658–664

    PubMed  CAS  Google Scholar 

  • Tarasenko T, Dean JA, Bolland S (2007) FcγRIIB as a modulator of autoimmune disease susceptibility. Autoimmunity 40:409–417

    PubMed  CAS  Google Scholar 

  • Thibault D, Graham K, Lee L, Balboni I, Hertzog P, Utz P (2009) Type I IFN receptor controls B cell expression of nucleic acid sensing toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Res Ther 11:R112

    PubMed  Google Scholar 

  • Thurlings RM, Boumans M, Tekstra J, van Roon JA, Vos K, van Westing DM, van Baarsen LG, Bos C, Kirou KA, Gerlag DM, Crow MK, Bijlsma JW, Verweij CL, Tak PP (2010) Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum 62:3607–3614

    PubMed  CAS  Google Scholar 

  • Tony HP (2010) Cross-sectional analysis of the efficacy of rituximab in 384 patients with different autoimmune diseases: German Registry of Autoimmune Diseases (GRAID). Ann Rheum Dis 69:551

    Google Scholar 

  • Townsend MJ, Monroe JG, Chan AC (2010) B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev 237:264–283

    PubMed  CAS  Google Scholar 

  • van de Veerdonk FL, Lauwerys B, Marijnissen RJ, Timmermans K, Di Padova F, Koenders MI, Gutierrez-Roelens I, Durez P, Netea MG, van der Meer JWM, van den Berg WB, Joosten LAB (2011) The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum 63:1507–1516

    PubMed  Google Scholar 

  • van der Heijden JW, Oerlemans R, Lems WF, Scheper RJ, Dijkmans BA, Jansen G (2009) The proteasome inhibitor bortezomib inhibits the release of NFkappaB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol 27:92–98

    PubMed  Google Scholar 

  • van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, Zhong ZJ, Freimuth W (2012) Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis 71:1343–1349

    PubMed  Google Scholar 

  • Veri M-C, Gorlatov S, Li H, Burke S, Johnson S, Stavenhagen J, Stein KE, Bonvini E, Koenig S (2007) Monoclonal antibodies capable of discriminating the human inhibitory Fcγ-receptor IIB (CD32B) from the activating Fcγ-receptor IIA (CD32A): biochemical, biological and functional characterization. Immunology 121:392–404

    PubMed  CAS  Google Scholar 

  • Vigna-Perez M, Hernandez-Castro B, Paredes-Saharopulos O, Portales-Perez D, Baranda L, Abud-Mendoza C, Gonzalez-Amaro R (2006) Clinical and immunological effects of rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther 8:R83

    PubMed  Google Scholar 

  • Vital EM, Dass S, Buch MH, Henshaw K, Pease CT, Martin MF, Ponchel F, Rawstron AC, Emery P (2011a) B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum 63:3038–3047

    PubMed  CAS  Google Scholar 

  • Vital EM, Dass S, Buch MH, Henshaw K, Pease CT, Martin MF, Ponchel F, Rawstron AC, Emery P (2011b) Rituximab responses in systemic lupus erythematosus explained by B cell biomarkers. Arthritis Rheum 63(10):3038–3047

    PubMed  CAS  Google Scholar 

  • Vital EM, Dass S, Emery P (2012) Concomitant cyclophosphamide and oral immunosuppressants with rituximab for systemic lupus erythematosus. Rheumatology 51:1131–1132

    PubMed  CAS  Google Scholar 

  • Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, Houssiau F, Tak PP, Isenberg DA, Kelley L, Kilgallen B, Barry AN, Wegener WA, Goldenberg DM (2013a) Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford) 52(7):1313–1322

    CAS  Google Scholar 

  • Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, Kilgallen B, Bongardt S, Barry A, Kelley L, Gordon C (2013b) Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis

    Google Scholar 

  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377

    PubMed  CAS  Google Scholar 

  • Weber MS, Prod’homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C, Bernard CCA, Martin F, Zamvil SS (2010) B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 68(3):369–383

    PubMed  CAS  Google Scholar 

  • Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee E-H, Milner ECB, Sanz I (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178:6624–6633

    PubMed  CAS  Google Scholar 

  • Weiner GJ (2010) Rituximab: mechanism of action. Semin Hematol 47:115–123

    PubMed  CAS  Google Scholar 

  • Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A, Robak T, Furman RR, Hillmen P, Trneny M, Dyer MJS, Padmanabhan S, Piotrowska M, Kozak T, Chan G, Davis R, Losic N, Wilms J, Russell CA, Österborg A (2010) Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 28:1749–1755

    PubMed  CAS  Google Scholar 

  • Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, Walker EU, Manz RA, Tarlinton DM, Smith KGC (2007a) Fc[gamma]RIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 8:419–429

    PubMed  CAS  Google Scholar 

  • Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, Walker EU, Manz RA, Tarlinton DM, Smith KGC (2007b) Fc[gamma]RIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol 8(4):419–429 (advanced online publication)

    PubMed  CAS  Google Scholar 

  • Xie C, Patel R, Wu T, Zhu J, Henry T, Bhaskarabhatla M, Samudrala R, Tus K, Gong Y, Zhou H, Wakeland EK, Zhou XJ, Mohan C (2007) PI3K/AKT/mTOR hypersignaling in autoimmune lymphoproliferative disease engendered by the epistatic interplay of Sle1b and FASlpr. Int Immunol 19(4):509–522 (dxm017)

    PubMed  CAS  Google Scholar 

  • Yanaba K, Bouaziz J-D, Matsushita T, Magro CM, St Clair EW, Tedder TT (2008) B-lymphocyte contributions to human autoimmune disease. Immunol Rev 223:284–299

    PubMed  CAS  Google Scholar 

  • Yao Y, Richman L, Higgs BW, Morehouse CA, de los Reyes M, Brohawn P, Zhang J, White B, Coyle AJ, Kiener PA, Jallal B (2009) Neutralization of interferon-alpha/beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum 60:1785–1796

    PubMed  CAS  Google Scholar 

  • Yazawa N, Hamaguchi Y, Poe JC, Tedder TF (2005) Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci U S A 102:15178–15183

    PubMed  CAS  Google Scholar 

  • Yoshizaki A, Miyagaki T, Dilillo DJ, Matsushita T, Horikawa M, Kountikov EI, Spolski R, Poe JC, Leonard WJ, Tedder TF (2012) Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491(7423):264–268

    PubMed  CAS  Google Scholar 

  • Zand MS, Vo T, Huggins J, Felgar R, Liesveld J, Pellegrin T, Bozorgzadeh A, Sanz I, Briggs BJ (2005) Polyclonal rabbit antithymocyte globulin triggers B-cell and plasma cell apoptosis by multiple pathways. Transplantation 79:1507–1515

    PubMed  CAS  Google Scholar 

  • Zhou P, Comenzo RL, Olshen AB, Bonvini E, Koenig S, Maslak PG, Fleisher M, Hoffman J, Jhanwar S, Young JW, Nimer SD, Boruchov AM (2008) CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody–based therapy. Blood 111:3403–3406

    PubMed  CAS  Google Scholar 

  • Zotos D, Coquet JM, Zhang Y, Light A, D’costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner K-M, Smyth MJ, Nutt SL, Tarlinton DM (2010) IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 207:365–378

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grants U19 AI56390 (Autoimmunity Center of Excellence, P01 AI078907 and R37 AI049660 MERIT Award.

The authors gratefully acknowledges the generous support of the Mason Lowance Chair and the Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Sanz, I. (2014). Pharmacological Effects and Mechanisms of Action of Agents Blocking B Cells. In: Bosch, X., Ramos-Casals, M., Khamashta, M. (eds) Drugs Targeting B-Cells in Autoimmune Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0706-7_3

Download citation

Publish with us

Policies and ethics