Skip to main content

Multimodal Navigation Integrated with Imaging

  • Chapter
  • First Online:
Intraoperative Imaging

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 109))

Abstract

Intraoperative high-field MRI in combination and close integration with microscope-based navigation serving as a common interface for the presentation of multimodal data in the surgical field seems to be one of the most promising surgical setups allowing avoiding unwanted tumor remnants while preserving neurological function. Multimodal navigation integrates standard anatomical, structural, functional, and metabolic data. Navigation achieves visualizing the initial extent of a lesion with the concomitant identification of neighboring eloquent brain structures, as well as, providing a tool for a direct correlation of histology and multimodal data. With the help of intraoperative imaging navigation data can be updated, so that brain shift can be compensated for and initially missed tumor remnants can be localized reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Black PM, Moriarty T, Alexander E III, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41:831–845

    Article  PubMed  CAS  Google Scholar 

  2. Hall WA, Kowalik K, Liu H, Truwit CL, Kucharezyk J (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir Suppl 85:137–142

    Article  PubMed  CAS  Google Scholar 

  3. Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46:632–642

    Article  PubMed  CAS  Google Scholar 

  4. Nimsky C, Ganslandt O, Fahlbusch R (2005) Comparing 0.2 tesla with 1.5 tesla intraoperative magnetic resonance imaging analysis of setup, workflow, and efficiency. Acad Radiol 12:1065–1079

    Article  PubMed  Google Scholar 

  5. Nimsky C, Ganslandt O, Von Keller B, Romstock J, Fahlbusch R (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233:67–78

    Article  PubMed  Google Scholar 

  6. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91:804–813

    Article  PubMed  CAS  Google Scholar 

  7. Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48:1082–1091

    Article  PubMed  CAS  Google Scholar 

  8. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43:739–748

    Article  PubMed  CAS  Google Scholar 

  9. Ganslandt O, Buchfelder M, Hastreiter P, Grummich P, Fahlbusch R, Nimsky C (2004) Magnetic source imaging supports clinical decision making in glioma patients. Clin Neurol Neurosurg 107:20–26

    Article  PubMed  CAS  Google Scholar 

  10. Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Möller M, Steinmeier R, Romstöck J, Vieth J (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91:73–79

    Article  PubMed  CAS  Google Scholar 

  11. Ganslandt O, Steinmeier R, Kober H, Vieth J, Kassubek J, Romstock J, Strauss C, Fahlbusch R (1997) Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery 41:621–628

    PubMed  CAS  Google Scholar 

  12. Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1256

    PubMed  Google Scholar 

  13. Nimsky C, Ganslandt O, Fahlbusch R (2005) 1.5 T: intraoperative imaging beyond standard anatomic imaging. Neurosurg Clin N Am 16:185–200, vii

    Article  PubMed  Google Scholar 

  14. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58:292–304

    Article  Google Scholar 

  15. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56:130–138

    PubMed  Google Scholar 

  16. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30:1219–1229

    Article  PubMed  Google Scholar 

  17. Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Moser E, Nimsky C (2005) Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56:291–298

    Article  PubMed  Google Scholar 

  18. Stadlbauer A, Ganslandt O, Buslei R, Hammen T, Gruber S, Moser E, Buchfelder M, Salomonowitz E, Nimsky C (2006) Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 240:803–810

    Article  PubMed  Google Scholar 

  19. Stadlbauer A, Moser E, Gruber S, Nimsky C, Fahlbusch R, Ganslandt O (2004) Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg 101:287–294

    Article  PubMed  Google Scholar 

  20. Stadlbauer A, Nimsky C, Buslei R, Pinker K, Gruber S, Hammen T, Buchfelder M, Ganslandt O (2007) Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration–initial results. Invest Radiol 42:218–223

    Article  PubMed  Google Scholar 

  21. Stadlbauer A, Nimsky C, Buslei R, Salomonowitz E, Hammen T, Buchfelder M, Moser E, Ernst-Stecken A, Ganslandt O (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34:949–956

    Article  PubMed  Google Scholar 

  22. Stadlbauer A, Prante O, Nimsky C, Salomonowitz E, Buchfelder M, Kuwert T, Linke R, Ganslandt O (2008) Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 49:721–729

    Article  PubMed  CAS  Google Scholar 

  23. Black PM, Alexander E III, Martin C, Moriarty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45:423–433

    Article  PubMed  CAS  Google Scholar 

  24. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–798

    PubMed  CAS  Google Scholar 

  25. Hall WA, Liu H, Truwit CL (2000) Navigus trajectory guide. Neurosurgery 46:502–504

    Article  PubMed  CAS  Google Scholar 

  26. Truwit CL, Hall WA (2006) Intraoperative magnetic resonance imaging-guided neurosurgery at 3-T. Neurosurgery 58:ONS338–ONS345, discussion ONS345–ONS346

    Article  Google Scholar 

  27. Truwit CL, Liu H (2001) Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 13:452–457

    Article  PubMed  CAS  Google Scholar 

  28. Rachinger J, von Keller B, Ganslandt O, Fahlbusch R, Nimsky C (2006) Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg 84:109–117

    Article  PubMed  Google Scholar 

  29. Nimsky C, Ganslandt O, Fahlbusch R (2004) Functional neuronavigation and intraoperative MRI. Adv Tech Stand Neurosurg 29:229–263

    Article  PubMed  CAS  Google Scholar 

  30. Hentschel SJ, Sawaya R (2003) Optimizing outcomes with maximal surgical resection of malignant gliomas. Cancer Control 10:109–114

    PubMed  Google Scholar 

  31. Hund M, Rezai AR, Kronberg E, Cappell J, Zonenshayn M, Ribary U, Kelly PJ, Llinas R (1997) Magnetoencephalographic mapping: basic of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery 40:936–943

    Article  PubMed  CAS  Google Scholar 

  32. Ammirati M, Galicich JH, Arbit E, Liao Y (1987) Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery 21:607–614

    Article  PubMed  CAS  Google Scholar 

  33. Black PM (1999) Surgery for cerebral gliomas: past, present and future. In: Howard MA III, Elliott JP, Haglund MM, McKhann GM II (eds) Clinical neurosurgery, vol 47. Lippincott Williams & Wilkins, Boston, pp 21–45

    Google Scholar 

  34. Cabantog AM, Bernstein M (1994) Complications of first craniotomy for intra-axial brain tumour. Can J Neurol Sci 21:213–218

    PubMed  CAS  Google Scholar 

  35. Ciric I, Ammirati M, Vick N, Mikhael M (1987) Supratentorial gliomas: surgical considerations and immediate postoperative results. Gross total resection versus partial resection. Neurosurgery 21:21–26

    Article  PubMed  CAS  Google Scholar 

  36. Fadul C, Wood J, Thaler H, Galicich J, Patterson RH Jr, Posner JB (1988) Morbidity and mortality of craniotomy for excision of supratentorial gliomas. Neurology 38:1374–1379

    Article  PubMed  CAS  Google Scholar 

  37. Grummich P, Nimsky C, Pauli E, Buchfelder M, Ganslandt O (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32:1793–1803

    Article  PubMed  Google Scholar 

  38. Kober H, Moller M, Nimsky C, Vieth J, Fahlbusch R, Ganslandt O (2001) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14:236–250

    Article  PubMed  CAS  Google Scholar 

  39. Clark CA, Barrick TR, Murphy MM, Bell BA (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage 20:1601–1608

    Article  PubMed  Google Scholar 

  40. Hendler T, Pianka P, Sigal M, Kafri M, Ben-Bashat D, Constantini S, Graif M, Fried I, Assaf Y (2003) Delineating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. J Neurosurg 99:1018–1027

    Article  PubMed  Google Scholar 

  41. Coenen VA, Krings T, Mayfrank L, Polin RS, Reinges MH, Thron A, Gilsbach JM (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49:86–93

    PubMed  CAS  Google Scholar 

  42. Nimsky C, Grummich P, Sorensen AG, Fahlbusch R, Ganslandt O (2005) Visualization of the pyramidal tract in glioma surgery by integrating diffusion tensor imaging in functional neuronavigation. Zentralbl Neurochir 66:133–141

    Article  PubMed  CAS  Google Scholar 

  43. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen A, Fahlbusch R (2005) Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology 234:218–225

    Article  PubMed  Google Scholar 

  44. Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C (2005) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26:685–693

    Article  PubMed  Google Scholar 

  45. Stadlbauer A, Moser E, Gruber S, Buslei R, Nimsky C, Fahlbusch R, Ganslandt O (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. Neuroimage 23:454–461

    Article  PubMed  Google Scholar 

  46. Hastreiter P, Rezk-Salama C, Nimsky C, Lürig C, Greiner G, Ertl T (2000) Registration techniques for the analysis of the brain shift in neurosurgery. Comput Graph24:385–389

    Article  Google Scholar 

  47. Hastreiter P, Rezk-Salama C, Soza G, Bauer M, Greiner G, Fahlbusch R, Ganslandt O, Nimsky C (2004) Strategies for brain shift evaluation. Med Image Anal 8:447–464

    Article  PubMed  Google Scholar 

  48. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56:357–365

    Article  PubMed  CAS  Google Scholar 

  49. Wirtz CR, Bonsanto MM, Knauth M, Tronnier VM, Albert FK, Staubert A, Kunze S (1997) Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 2:172–179

    PubMed  CAS  Google Scholar 

  50. Nimsky C, Ganslandt O, Tomandl B, Buchfelder M, Fahlbusch R (2002) Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur Radiol 12:2690–2703

    PubMed  Google Scholar 

  51. Veyrat A (2005) Automatic fusion of pre-and intraoperative patienta data. A statistical evaluation of accuracy. Diploma thesis, Technical University Munich

    Google Scholar 

  52. Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK (2007) Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35:609–624

    Article  PubMed  Google Scholar 

  53. Wolf M, Vogel T, Weierich P, Niemann H, Nimsky C (2001) Automatic transfer of preoperative fMRI markers into intraoperative MR-images for updating functional neuronavigation. IEICE Trans Inf Syst E84-D:1698–1704

    Google Scholar 

  54. Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27:787–800

    Article  PubMed  CAS  Google Scholar 

  55. Letteboer MM, Willems PW, Viergever MA, Niessen WJ (2005) Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng 52:268–276

    Article  PubMed  Google Scholar 

  56. Tirakotai W, Miller D, Heinze S, Benes L, Bertalanffy H, Sure U (2006) A novel platform for image-guided ultrasound. Neurosurgery 58:710–718

    Article  PubMed  Google Scholar 

  57. Arbel T, Morandi X, Comeau RM, Collins DL (2004) Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg 9:123–136

    PubMed  Google Scholar 

  58. Coenen VA, Krings T, Weidemann J, Hans FJ, Reinacher P, Gilsbach JM, Rohde V (2005) Sequential visualization of brain and fiber tract deformation during intracranial surgery with three-dimensional ultrasound: an approach to evaluate the effect of brain shift. Neurosurgery 56:133–141

    Article  PubMed  Google Scholar 

  59. Lunn KE, Paulsen KD, Lynch DR, Roberts DW, Kennedy FE, Hartov A (2005) Assimilating intraoperative data with brain shift modeling using the adjoint equations. Med Image Anal 9:281–293

    Article  PubMed  Google Scholar 

  60. Rasmussen IA Jr, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Haberg A, Unsgaard G (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 149:365–378

    Article  Google Scholar 

  61. Roberts DW, Miga MI, Hartov A, Eisner S, Lemery JM, Kennedy FE, Paulsen KD (1999) Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery 45:1199–1207

    Article  PubMed  CAS  Google Scholar 

  62. Cao A, Thompson RC, Dumpuri P, Dawant BM, Galloway RL, Ding S, Miga MI (2008) Laser range scanning for image-guided neurosurgery: investigation of image-to-physical space registrations. Med Phys 35:1593–1605

    Article  PubMed  Google Scholar 

  63. Ding S, Miga MI, Thompson RC, Dumpuri P, Cao A, Dawant BM (2007) Estimation of intra-operative brain shift using a tracked laser range scanner. Conf Proc IEEE Eng Med Biol Soc 2007:848–851

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Nimsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nimsky, C., Kuhnt, D., Ganslandt, O., Buchfelder, M. (2011). Multimodal Navigation Integrated with Imaging. In: Pamir, M., Seifert, V., Kiris, T. (eds) Intraoperative Imaging. Acta Neurochirurgica Supplementum, vol 109. Springer, Vienna. https://doi.org/10.1007/978-3-211-99651-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99651-5_32

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99650-8

  • Online ISBN: 978-3-211-99651-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics