Skip to main content

Navigation, Robotics, and Intraoperative Imaging in Spinal Surgery

  • Chapter
  • First Online:
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 41))

Abstract

Spinal navigation is a technique gaining increasing popularity. Different approaches as CT-based or intraoperative imaging-based navigation are available, requiring different methods of patient registration, bearing certain advantages and disadvantages. So far, a large number of studies assessed the accuracy of pedicle screw implantation in the cervical, thoracic, and lumbar spine, elucidating the advantages of image guidance. However, a clear proof of patient benefit is missing, so far. Spinal navigation is closely related to intraoperative 3D imaging providing an imaging dataset for navigational use and the opportunity for immediate intraoperative assessment of final screw position giving the option of immediate screw revision if necessary. Thus, postoperative imaging and a potential revision surgery for screw correction become dispensable.

Different concept of spinal robotics as the DaVinci system and SpineAssist are under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah KG, Bishop FS, Lubelski D, Steinmetz MP, Benzel EC, Mroz TE (2012) Radiation exposure to the spine surgeon in lumbar and thoracolumbar fusions with the use of an intraoperative computed tomography 3-dimensional imaging system. Spine (Phila Pa 1976). doi:10.1097/BRS.0b013e31825786d8

    Google Scholar 

  2. Acosta FL Jr, Quinones-Hinojosa A, Gadkary CA, Schmidt MH, Chin CT, Ames CP, Rosenberg WS, Weinstein P (2005) Frameless stereotactic image-guided C1-C2 transarticular screw fixation for atlantoaxial instability: review of 20 patients. J Spinal Disord Tech 18:385–391 doi:00024720-200510000-00001 [pii]

    Article  PubMed  Google Scholar 

  3. Assaker R, Cinquin P, Cotten A, Lejeune JP (2001) Image-guided endoscopic spine surgery: Part I. A feasibility study. Spine (Phila Pa 1976) 26:1705–1710

    Article  CAS  Google Scholar 

  4. Assaker R, Reyns N, Pertruzon B, Lejeune JP (2001) Image-guided endoscopic spine surgery: Part II. clinical applications. Spine (Phila Pa 1976) 26:1711–1718

    Article  CAS  Google Scholar 

  5. Barzilay Y, Liebergall M, Fridlander A, Knoller N (2006) Miniature robotic guidance for spine surgery–introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot 2:146–153. doi:10.1002/rcs.90

    PubMed  CAS  Google Scholar 

  6. Birkenmaier C, Suess O, Pfeiffer M, Burger R, Schmieder K, Wegener B (2010) The European multicenter trial on the safety and efficacy of guided oblique lumbar interbody fusion (GO-LIF). BMC Musculoskelet Disord 11:199 1471-2474-11-199 [pii]. doi:10.1186/1471-2474-11-199

    Article  PubMed  Google Scholar 

  7. Chappell ET, Pare L, Dolich MO, Lekawa ME, Salepour M (2005) Frameless stereotaxy to facilitate anterolateral thoracolumbar surgery: technique. Neurosurgery 56:110–116; discussion 110–116

    Article  PubMed  Google Scholar 

  8. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, Hardenbrook M, Kiriyanthan G, Barzilay Y, Bruskin A, Sackerer D, Alexandrovsky V, Stuer C, Burger R, Maeurer J, Donald GD, Schoenmayr R, Friedlander A, Knoller N, Schmieder K, Pechlivanis I, Kim IS, Meyer B, Shoham M (2010) Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 35:2109–2115 doi:10.1097/BRS.0b013e3181d323ab. 00007632-201011150-00003 [pii]

    Article  Google Scholar 

  9. Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine (Phila Pa 1976) 26:347–351

    Article  CAS  Google Scholar 

  10. Gebhard FT, Kraus MD, Schneider E, Liener UC, Kinzl L, Arand M (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine (Phila Pa 1976) 31:2024–2027; discussion 2028 doi:10.1097/01.brs.0000229250.69369.ac. 00007632-200608010-00022 [pii]

    Article  Google Scholar 

  11. Gempt J, Lehmberg J, Grams AE, Berends L, Meyer B, Stoffel M (2011) Endoscopic transnasal resection of the odontoid: case series and clinical course. Eur Spine J 20:661–666. doi:10.1007/s00586-010-1629-x

    Article  PubMed  Google Scholar 

  12. Grob D, Humke T, Dvorak J (1996) Direct pediculo-body fixation in cases of spondylolisthesis with advanced intervertebral disc degeneration. Eur Spine J 5:281–285

    Article  PubMed  CAS  Google Scholar 

  13. Han W, Gao ZL, Wang JC, Li YP, Peng X, Rui J, Jun W (2010) Pedicle screw placement in the thoracic spine: a comparison study of computer-assisted navigation and conventional techniques. Orthopedics 33 doi:10.3928/01477447-20100625-14

  14. Holly LT, Bloch O, Johnson JP (2006) Evaluation of registration techniques for spinal image guidance. J Neurosurg Spine 4:323–328. doi:10.3171/spi.2006.4.4.323

    Article  PubMed  Google Scholar 

  15. Hsu W, Kosztowski TA, Zaidi HA, Gokaslan ZL, Wolinsky JP (2010) Image-guided, endoscopic, transcervical resection of cervical chordoma. J Neurosurg Spine 12:431–435. doi:10.3171/2009.10.SPINE09393

    Article  PubMed  Google Scholar 

  16. Ishikawa Y, Kanemura T, Yoshida G, Ito Z, Muramoto A, Ohno S (2010) Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement. J Neurosurg Spine 13:606–611. doi:10.3171/2010.5.SPINE09993

    Article  PubMed  Google Scholar 

  17. Ito Y, Sugimoto Y, Tomioka M, Hasegawa Y, Nakago K, Yagata Y (2008) Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 9:450–453. doi:10.3171/SPI.2008.9.11.450

    Article  PubMed  Google Scholar 

  18. Johnson JP, Stokes JK, Oskouian RJ, Choi WW, King WA (2005) Image-guided thoracoscopic spinal surgery: a merging of 2 technologies. Spine (Phila Pa 1976) 30:E572–E578 doi:00007632-200510010-00025 [pii]

    Article  Google Scholar 

  19. Kafchitsas K, Rauschmann M (2009) Navigation of artificial disc replacement: evaluation in a cadaver study. Comput Aided Surg 14:28–36. doi:10.3109/10929080903016177

    Article  PubMed  Google Scholar 

  20. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:860–868. doi:10.1007/s00586-011-1729-2

    Article  PubMed  Google Scholar 

  21. Kelleher MO, McEvoy L, Nagaria J, Kamel M, Bolger C (2006) Image-guided transarticular atlanto-axial screw fixation. Int J Med Robot 2:154–160. doi:10.1002/rcs.92

    PubMed  CAS  Google Scholar 

  22. Kim CW, Lee YP, Taylor W, Oygar A, Kim WK (2008) Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 8:584–590 S1529-9430(07)00003-4 [pii]. doi:10.1016/j.spinee.2006.12.012

    Article  PubMed  Google Scholar 

  23. Kim KD, Babbitz JD, Mimbs J (2000) Imaging-guided costotransversectomy for thoracic disc herniation. Neurosurg Focus 9:e7 doi:090407 [pii]

    PubMed  CAS  Google Scholar 

  24. Kim MJ, Ha Y, Yang MS, Yoon do H, Kim KN, Kim H, Yang JW, Lee JY, Yi S, Jung WJ, Rha KH (2010) Robot-assisted anterior lumbar interbody fusion (ALIF) using retroperitoneal approach. Acta Neurochir (Wien) 152:675–679. doi:10.1007/s00701-009-0568-y

    Article  Google Scholar 

  25. Kim S, Chung J, Yi BJ, Kim YS (2010) An assistive image-guided surgical robot system using O-arm fluoroscopy for pedicle screw insertion: preliminary and cadaveric study. Neurosurgery 67:1757–1767; discussion 1767 doi:10.1227/NEU.0b013e3181fa7e42. 00006123-201012000-00042 [pii]

    Article  PubMed  Google Scholar 

  26. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976) 32:E111–E120 doi:10.1097/01.brs.0000254048.79024.8b. 00007632-200702010-00022 [pii]

    Article  Google Scholar 

  27. Kostrzewski S, Duff JM, Baur C, Olszewski M (2011) Robotic system for cervical spine surgery. Int J Med Robot. doi:10.1002/rcs.446

    PubMed  Google Scholar 

  28. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D (2000) Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 9:235–240

    Article  PubMed  CAS  Google Scholar 

  29. Lee JY, Lega B, Bhowmick D, Newman JG, O’Malley BW Jr, Weinstein GS, Grady MS, Welch WC (2010) Da Vinci Robot-assisted transoral odontoidectomy for basilar invagination. ORL J Otorhinolaryngol Relat Spec 72:91–95 000278256 [pii]. doi:10.1159/000278256

    Article  PubMed  Google Scholar 

  30. Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N, Benzel EC (2006) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I–technical development and a test case result. Neurosurgery 59:641–650; discussion 641–650 doi:10.1227/01.NEU.0000229055.00829.5B. 00006123-200609000-00017 [pii]

    Article  PubMed  Google Scholar 

  31. Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ (2000) Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine (Phila Pa 1976) 25:1655–1667

    Article  CAS  Google Scholar 

  32. Moskowitz RM, Young JL, Box GN, Pare LS, Clayman RV (2009) Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS 13:64–68

    PubMed  Google Scholar 

  33. Nolte LP, Visarius H, Arm E, Langlotz F, Schwarzenbach O, Zamorano L (1995) Computer-aided fixation of spinal implants. J Image Guid Surg 1:88–93. doi:10.1002/(SICI)1522-712X(1995)1:2<88::AID-IGS3>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  34. Nolte LP, Zamorano L, Visarius H, Berlemann U, Langlotz F, Arm E, Schwarzenbach O (1995) Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech (Bristol, Avon) 10:293–303 doi:0268003395000045 [pii]

    Article  Google Scholar 

  35. Oertel MF, Hobart J, Stein M, Schreiber V, Scharbrodt W (2011) Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine 14:532–536. doi:10.3171/2010.10.SPINE091032

    Article  PubMed  Google Scholar 

  36. Ohmori K, Kawaguchi Y, Kanamori M, Ishihara H, Takagi H, Kimura T (2001) Image-guided anterior thoracolumbar corpectomy: a report of three cases. Spine (Phila Pa 1976) 26:1197–1201

    Article  CAS  Google Scholar 

  37. Ortmaier T, Weiss H, Dobele S, Schreiber U (2006) Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. Int J Med Robot 2:350–363. doi:10.1002/rcs.114

    PubMed  CAS  Google Scholar 

  38. Papadopoulos EC, Girardi FP, Sama A, Sandhu HS, Cammisa FP Jr (2005) Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J 5:263–267; discussion 268 S1529-9430(04)00926-X [pii]. doi:10.1016/j.spinee.2004.10.048

    Article  PubMed  Google Scholar 

  39. Paramore CG, Dickman CA, Sonntag VK (1996) The anatomical suitability of the C1-2 complex for transarticular screw fixation. J Neurosurg 85:221–224. doi:10.3171/jns.1996.85.2.0221

    Article  PubMed  CAS  Google Scholar 

  40. Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, Schmieder K (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) 34:392–398 doi:10.1097/BRS.0b013e318191ed32. 00007632-200902150-00015 [pii]

    Article  Google Scholar 

  41. Ponnusamy K, Chewning S, Mohr C (2009) Robotic approaches to the posterior spine. Spine (Phila Pa 1976) 34:2104–2109 doi:10.1097/BRS.0b013e3181b20212. 00007632-200909010-00023 [pii]

    Article  Google Scholar 

  42. Raftopoulos C, Waterkeyn F, Fomekong E, Duprez T (2012) Percutaneous pedicle screw implantation for refractory low back pain: from manual 2D to fully robotic intraoperative 2D/3D fluoroscopy. Adv Tech Stand Neurosurg 38:75–93. doi:10.1007/978-3-7091-0676-1_4

    PubMed  CAS  Google Scholar 

  43. Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP (2007) Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976) 32:E56–E64 doi:10.1097/01.brs.0000252094.64857.ab. 00007632-200701150-00030 [pii]

    Article  CAS  Google Scholar 

  44. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976) 25:2637–2645

    Article  CAS  Google Scholar 

  45. Rauschmann MA, Thalgott J, Fogarty M, Nichlos M, Kleinszig G, Knap M, Kafchitsas K (2009) Insertion of the artificial disc replacement: a cadaver study comparing the conventional surgical technique and the use of a navigation system. Spine (Phila Pa 1976) 34:1110–1115 doi:10.1097/BRS.0b013e31819e2235. 00007632-200905010-00017 [pii]

    Article  Google Scholar 

  46. Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine (Phila Pa 1976) 30:2280–2287 doi:00007632-200510150-00008 [pii]

    Article  Google Scholar 

  47. Ringel F, Reinke A, Stuer C, Meyer B, Stoffel M (2012) Posterior C1-2 fusion with C1 lateral mass and C2 isthmic screws: accuracy of screw position, alignment and patient outcome. Acta Neurochir (Wien) 154:305–312. doi:10.1007/s00701-011-1224-x

    Article  Google Scholar 

  48. Ringel F, Stuer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 37:E496–E501. doi:10.1097/BRS.0b013e31824b7767

    Article  Google Scholar 

  49. Ruurda JP, Hanlo PW, Hennipman A, Broeders IA (2003) Robot-assisted thoracoscopic resection of a benign mediastinal neurogenic tumor: technical note. Neurosurgery 52:462–464; discussion 464

    Article  PubMed  Google Scholar 

  50. Santos ER, Ledonio CG, Castro CA, Truong WH, Sembrano JN (2012) The accuracy of intraoperative O-arm images for the assessment of pedicle screw postion. Spine (Phila Pa 1976) 37:E119–E125. doi:10.1097/BRS.0b013e3182257cae

    Article  Google Scholar 

  51. Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, Part I: cervicothoracic spine. Neurosurgery 69:782–795; discussion 795 doi:10.1227/NEU.0b013e318222ae16

    Article  PubMed  Google Scholar 

  52. Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery 69:1307–1316. doi:10.1227/NEU.0b013e31822ba190

    Article  PubMed  Google Scholar 

  53. Seichi A, Takeshita K, Kawaguchi H, Kawamura N, Higashikawa A, Nakamura K (2005) Image-guided surgery for thoracic ossification of the posterior longitudinal ligament. Technical note. J Neurosurg Spine 3:165–168. doi:10.3171/spi.2005.3.2.0165

    Article  PubMed  Google Scholar 

  54. Slomczykowski M, Roberto M, Schneeberger P, Ozdoba C, Vock P (1999) Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine (Phila Pa 1976) 24:975–982; discussion 983

    Article  CAS  Google Scholar 

  55. Smith HE, Vaccaro AR, Yuan PS, Papadopoulos S, Sasso R (2006) The use of computerized image guidance in lumbar disk arthroplasty. J Spinal Disord Tech 19:22–27 doi:10.1097/01.bsd.0000187977.76926.85. 00024720-200602000-00004 [pii]

    Article  PubMed  Google Scholar 

  56. Smith HE, Welsch MD, Sasso RC, Vaccaro AR (2008) Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 31:532–537

    PubMed  Google Scholar 

  57. Sukovich W, Brink-Danan S, Hardenbrook M (2006) Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot 2:114–122. doi:10.1002/rcs.86

    PubMed  CAS  Google Scholar 

  58. Tian NF, Xu HZ (2009) Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop 33:895–903. doi:10.1007/s00264-009-0792-3

    Article  PubMed  Google Scholar 

  59. Togawa D, Kayanja MM, Reinhardt MK, Shoham M, Balter A, Friedlander A, Knoller N, Benzel EC, Lieberman IH (2007) Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part 2–evaluation of system accuracy. Neurosurgery 60:ONS129–ONS139; discussion ONS139 doi:10.1227/01.NEU.0000249257.16912.AA. 00006123-200702001-00017 [pii]

    Article  PubMed  Google Scholar 

  60. Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn JM (2012) Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine (Phila Pa 1976) 37:E473–E478. doi:10.1097/BRS.0b013e318238bbd9

    Article  Google Scholar 

  61. Uhl E, Zausinger S, Morhard D, Heigl T, Scheder B, Rachinger W, Schichor C, Tonn JC (2009) Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite. Neurosurgery 64:231–239; discussion 239–240 doi:10.1227/01.NEU.0000340785.51492.B5. 00006123-200905001-00003 [pii]

    Article  PubMed  Google Scholar 

  62. Vaccaro AR, Yuan PS, Smith HE, Hott J, Sasso R, Papadopoulos S (2005) An evaluation of image-guided technologies in the placement of anterior thoracic vertebral body screws in spinal trauma: a cadaver study. J Spinal Cord Med 28:308–313

    PubMed  Google Scholar 

  63. Veres R, Bago A, Fedorcsak I (2001) Early experiences with image-guided transoral surgery for the pathologies of the upper cervical spine. Spine (Phila Pa 1976) 26:1385–1388

    Article  CAS  Google Scholar 

  64. Verma R, Krishan S, Haendlmayer K, Mohsen A (2010) Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 19:370–375. doi:10.1007/s00586-009-1258-4

    Article  PubMed  Google Scholar 

  65. Wolf A, Shoham M, Michael S, Moshe R (2004) Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments. Spine (Phila Pa 1976) 29:220–228. doi:10.1097/01.BRS.0000107222.84732.DD

    Article  Google Scholar 

  66. Wright NM, Lauryssen C (1998) Vertebral artery injury in C1-2 transarticular screw fixation: results of a survey of the AANS/CNS section on disorders of the spine and peripheral nerves. American Association of Neurological Surgeons/Congress of Neurological Surgeons. J Neurosurg 88:634–640. doi:10.3171/jns.1998.88.4.0634

    Article  PubMed  CAS  Google Scholar 

  67. Yang MS, Kim KN, Yoon do H, Pennant W, Ha Y (2011) Robot-assisted resection of paraspinal Schwannoma. J Korean Med Sci 26:150–153. doi:10.3346/jkms.2011.26.1.150

    Article  PubMed  Google Scholar 

  68. Yang MS, Yoon do H, Kim KN, Kim H, Yang JW, Yi S, Lee JY, Jung WJ, Rha KH, Ha Y (2011) Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976) 36:E139–E143. doi:10.1097/BRS.0b013e3181d40ba3

    Article  Google Scholar 

  69. Yang MS, Yoon TH, Yoon do H, Kim KN, Pennant W, Ha Y (2011) Robot-assisted transoral odontoidectomy: experiment in new minimally invasive technology, a cadaveric study. J Korean Neurosurg Soc 49:248–251. doi:10.3340/jkns.2011.49.4.248

    Article  PubMed  Google Scholar 

  70. Yang YL, Zhou DS, He JL (2011) Comparison of isocentric C-arm 3-dimensional navigation and conventional fluoroscopy for C1 lateral mass and C2 pedicle screw placement for atlantoaxial instability. J Spinal Disord Tech. doi:10.1097/BSD.0b013e31823d36b6

    Google Scholar 

  71. Zausinger S, Scheder B, Uhl E, Heigl T, Morhard D, Tonn JC (2009) Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine (Phila Pa 1976) 34:2919–2926 doi:10.1097/BRS.0b013e3181b77b19. 00007632-200912150-00015 [pii]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Ringel MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ringel, F., Villard, J., Ryang, YM., Meyer, B. (2014). Navigation, Robotics, and Intraoperative Imaging in Spinal Surgery. In: Schramm, J. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-01830-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01830-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01829-4

  • Online ISBN: 978-3-319-01830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics