Skip to main content

Developmental Pathways Hijacked by Osteosarcoma

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Abstract

Cancer of any type often can be described by an arrest, alteration or disruption in the normal development of a tissue or organ, and understanding of the normal counterpart’s development can aid in understanding the malignant state. This is certainly true for osteosarcoma and the normal developmental pathways that guide osteoblast development that are changed in the genesis of osteogenic sarcoma. A carefully regulated crescendo–decrescendo expression of RUNX2 accompanies the transition from mesenchymal stem cell to immature osteoblast to mature osteoblast. This pivotal role is controlled by several pathways, including bone morphogenic protein (BMP), Wnt/β-catenin, fibroblast growth factor (FGF), and protein kinase C (PKC). The HIPPO pathway and its downstream target YAP help to regulate proliferation of immature osteoblasts and their maturation into non-proliferating mature osteoblasts. This pathway also helps regulate expression of the mature osteoblast protein osteocalcin. YAP also regulates expression of MT1-MMP, a membrane-bound matrix metalloprotease responsible for remodeling the extracellular matrix surrounding the osteoblasts. YAP, in turn, can be regulated by the ERBB family protein Her-4. Osteosarcoma may be thought of as a cell held at the immature osteoblast stage, retaining some of the characteristics of that developmental stage. Disruptions of several of these pathways have been described in osteosarcoma, including BMP, Wnt/b-catenin, RUNX2, HIPPO/YAP, and Her-4. Further, PKC can be activated by several receptor tyrosine kinases implicated in osteosarcoma, including the ERBB family (EGFR, Her-2 and Her-4 in osteosarcoma), IGF1R, FGF, and others. Understanding these functions may aid in the understanding the mechanisms underpinning clinical observations in osteosarcoma, including both the lytic and blastic phenotypes of tumors, the invasiveness of the disease, and the tendency for treated tumors to ossify rather than shrink. Through a better understanding of the relationship between normal osteoblast development and osteosarcoma, we may gain insights into novel therapeutic avenues and improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang N, Song W-X, Luo J, Luo X, Chen J, Sharff K, Bi Y, He B-C, Huang J-Y, Zhu G-H, Su Y-X, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo G-W, Shen J, Pan X, Reid R, Luu H, Haydon R, He T-C (2009) BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13(8B):2448–2464. doi:10.1111/j.1582-4934.2008.00569.x

    PubMed  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. doi:10.1126/science.284.5411.143

    PubMed  CAS  Google Scholar 

  3. Harding WG, Courville CB (1934) Bone formation in metastases of osteogenic sarcoma: report of case with metastases to the brain. Am J Cancer 21(4):787–794. doi:10.1158/ajc.1934.787

    Google Scholar 

  4. Phillips C (1935) Osteogenic sarcoma: its pathologic characteristics. Radiology 24(6):728–734. doi:10.1148/24.6.728

    Google Scholar 

  5. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, Fonhoue BD, Caron A, Bronson R, Bouxsein ML, Mukherjee S, Lees JA (2008) Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci 105(33):11851–11856. doi:10.1073/pnas.0805462105

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Komori T, Kishimoto T (1998) Cbfa1 in bone development. Curr Opin Genet Dev 8(4):494–499

    PubMed  CAS  Google Scholar 

  7. Blyth K, Cameron E, Neil J (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5(5):376–387

    PubMed  CAS  Google Scholar 

  8. Kundu M, Javed A, Jeon J, Horner A, Shum L, Eckhaus M, Muenke M, Lian J, Yang Y, Nuckolls G, Stein G, Liu P (2002) Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat Genet 32(4):639–644

    PubMed  CAS  Google Scholar 

  9. McLarren KW, Theriault FM, Stifani S (2001) Association with the nuclear matrix and interaction with Groucho and RUNX proteins regulate the transcription repression activity of the basic helix loop helix factor Hes1. J Biol Chem 276(2):1578–1584. doi:10.1074/jbc.M007629200

    PubMed  CAS  Google Scholar 

  10. Lian J, Stein J, Stein G, van Wijnen A, Montecino M, Javed A, Gutierrez S, Shen J, Zaidi S, Drissi H (2003) Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions. Connect Tissue Res 44(Suppl 1):141–148

    PubMed  CAS  Google Scholar 

  11. Otto F, Lubbert M, Stock M (2003) Upstream and downstream targets of RUNX proteins. J Cell Biochem 89(1):9–18

    PubMed  CAS  Google Scholar 

  12. Thiede M, Smock S, Petersen D, Grasser W, Thompson D, Nishimoto S (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135(3):929–937. doi:10.1210/en.135.3.929

    PubMed  CAS  Google Scholar 

  13. Morrison N, Shine J, Fragonas J, Verkest V, McMenemy M, Eisman J (1989) 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science 246(4934):1158–1161. doi:10.1126/science.2588000

    PubMed  CAS  Google Scholar 

  14. Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung U, Kawaguchi H (2006) Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum 54(8):2462–2470

    PubMed  CAS  Google Scholar 

  15. Bergwitz C, Prochnau A, Mayr B, Kramer F, Rittierodt M, Berten H, Hausamen J, Brabant G (2001) Identification of novel CBFA1/RUNX2 mutations causing cleidocranial dysplasia. J Inherit Metab Dis 24(6):648–656

    PubMed  CAS  Google Scholar 

  16. Galindo M, Pratap J, Young DW, Hovhannisyan H, Im H-J, Choi J-Y, Lian JB, Stein JL, Stein GS, van Wijnen AJ (2005) The bone-specific expression of Runx2 OSCILLATES DURING THE CELL CYCLE TO SUPPORT a G1-related antiproliferative function in osteoblasts. J Biol Chem 280(21):20274–20285. doi:10.1074/jbc.M413665200

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, Waring P, McArthur GA, Walkley CR, Holloway AJ, Diyagama D, Grim JE, Clurman BE, Bowtell DDL, Lee J-S, Gutierrez GM, Piscopo DM, Carty SA, Hinds PW (2004) Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 167(5):925–934. doi:10.1083/jcb.200409187

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Lee J, Thomas D, Gutierrez G, Carty S, Yanagawa S, Hinds P (2006) HES1 cooperates with pRb to activate RUNX2-dependent transcription. J Bone Miner Res 21(6):921–933

    PubMed  CAS  Google Scholar 

  19. Monroe D, Hawse J, Subramaniam M, Spelsberg T (2010) Retinoblastoma binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation. BMC Musculoskelet Disord 11:104

    PubMed  PubMed Central  Google Scholar 

  20. Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A (2013) Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 4:e610. doi:10.1038/cddis.2013.127

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Park HR, Won Jung W, Bertoni F et al (2004) Molecular analysis of p53, MDM2 and H-ras genes in low-grade central osteosarcoma. Pathology Research and Practice 200(6):439–445

    Google Scholar 

  22. Martin J, Zielenska M, Stein G, van Wijnen A, Squire J (2011) The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011:282745

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Watanabe T, Oyama T, Asada M, Harada D, Ito Y, Inagawa M, Suzuki Y, Sugano S, K-i K, Karsenty G, Komori T, Kitagawa M, Asahara H (2013) MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development. PLoS Genet 9(1):e1003132. doi:10.1371/journal.pgen.1003132

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Wang CY, Yang SF, Wang Z, Tan JM, Xing SM, Chen DC, Xu SM, Yuan W (2013) PCAF acetylates Runx2 and promotes osteoblast differentiation. J Bone Miner Metab 31(4):381–389. doi:10.1007/s00774-013-0428-y

    PubMed  CAS  Google Scholar 

  25. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS (2000) Inhibition of osteoblast differentiation by tumor necrosis factor-{alpha}. Endocrinology 141(11):3956–3964. doi:10.1210/en.141.11.3956

    PubMed  CAS  Google Scholar 

  26. Li Y, Li A, Strait K, Zhang H, Nanes M, Weitzmann M (2007) Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J Bone Miner Res 22(5):646–655

    PubMed  CAS  Google Scholar 

  27. Olfa G, Christophe C, Philippe L, Romain S, Khaled H, Pierre H, Odile B, Jean-Christophe D (2010) RUNX2 regulates the effects of TNFalpha on proliferation and apoptosis in SaOs-2 cells. Bone 46(4):901–910

    PubMed  CAS  Google Scholar 

  28. Li X, McGee-Lawrence M, Decker M, Westendorf J (2010) The Ewing’s sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation. J Cell Biochem 111(4):933–943

    PubMed  CAS  Google Scholar 

  29. Zhu J, Shimizu E, Zhang X, Partridge N, Qin L (2011) EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix. J Cell Biochem 112(7):1749–1760. doi:10.1002/jcb.23094

    PubMed  CAS  PubMed Central  Google Scholar 

  30. van der Deen M, Akech J, Lapointe D, Gupta S, Young D, Montecino M, Galindo M, Lian J, Stein J, Stein G, van Wijnen A (2012) Genomic promoter occupancy of runt-related transcription factor RUNX2 in osteosarcoma cells identifies genes involved in cell adhesion and motility. J Biol Chem 287(7):4503–4517. doi:10.1074/jbc.M111.287771

    PubMed  PubMed Central  Google Scholar 

  31. Rao T, Kühl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106(12):1798–1806. doi:10.1161/CIRCRESAHA.110.219840

    PubMed  CAS  Google Scholar 

  32. Rodda S, McMahon A (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133(16):3231–3244. doi:10.1242/dev.02480

    PubMed  CAS  Google Scholar 

  33. Maeda K, Takahashi N, Kobayashi Y (2013) Roles of Wnt signals in bone resorption during physiological and pathological states. J Mol Med (Berlin, Germany) 91(1):15–23. doi:10.1007/s00109-012-0974-0

    CAS  Google Scholar 

  34. Wan Y, Lu C, Cao J, Zhou R, Yao Y, Yu J, Zhang L, Zhao H, Li H, Zhao J, Zhu X, He L, Liu Y, Yao Z, Yang X, Guo X (2013) Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone 55(1):258–267. doi:10.1016/j.bone.2012.12.052

    PubMed  CAS  Google Scholar 

  35. Sonomoto K, Yamaoka K, Oshita K, Fukuyo S, Zhang X, Nakano K, Okada Y, Tanaka Y (2012) Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum 64(10):3355–3363. doi:10.1002/art.34555

    PubMed  CAS  Google Scholar 

  36. Włodarski K, Galus R, Brodzikowska A, Włodarski P (2013) Sclerostin, an osteocytes-derived bone-forming inhibitor. Pol Orthop Traumatol 78:151–154

    PubMed  Google Scholar 

  37. Yu L, van der Valk M, Cao J, Han C-YE, Juan T, Bass M, Deshpande C, Damore M, Stanton R, Babij P (2011) Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 49(6):1131–1140. doi:10.1016/j.bone.2011.08.016

    PubMed  CAS  Google Scholar 

  38. Hart M, Concordet J, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P (1999) The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9(4):207–210. doi:10.1016/S0960-9822(99)80091-8

    PubMed  CAS  Google Scholar 

  39. Lin C, Guo Y, Ghaffar S, McQueen P, Pourmorady J, Christ A, Rooney K, Ji T, Eskander R, Zi X, Hoang B (2013) Dkk-3, a secreted wnt antagonist, suppresses tumorigenic potential and pulmonary metastasis in osteosarcoma. Sarcoma 2013:147541. doi:10.1155/2013/147541

    PubMed  PubMed Central  Google Scholar 

  40. Loeser R (2013) Osteoarthritis year in review 2013: biology. Osteoarthritis Cartilage. doi:10.1016/j.joca.2013.05.020

    PubMed Central  Google Scholar 

  41. Ruan J, Trotter T, Nan L, Luo R, Javed A, Sanderson R, Suva L, Yang Y (2013) Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone. doi:10.1016/j.bone.2013.07.024

    Google Scholar 

  42. Steensma M, Tyler W, Shaber A, Goldring S, Ross F, Williams B, Healey J, Purdue P (2013) Targeting the giant cell tumor stromal cell: functional characterization and a novel therapeutic strategy. PLoS One 8(7):e69101. doi:10.1371/journal.pone.0069101

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Ornitz D, Marie P (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16(12):1446–1465. doi:10.1101/gad.990702

    PubMed  CAS  Google Scholar 

  44. Hanneken A (2001) Structural characterization of the circulating soluble FGF receptors reveals multiple isoforms generated by secretion and ectodomain shedding. FEBS Lett 489(2–3):176–181. doi:10.1016/S0014-5793(00)02409-1

    PubMed  CAS  Google Scholar 

  45. Jang J-H (2002) Identification and characterization of soluble isoform of fibroblast growth factor receptor 3 in human SaOS-2 osteosarcoma cells. Biochem Biophys Res Commun 292(2):378–382. doi:10.1006/bbrc.2002.6668

    PubMed  CAS  Google Scholar 

  46. Ezzat S, Zheng L, Yu S, Asa S (2001) A soluble dominant negative fibroblast growth factor receptor 4 isoform in human MCF-7 breast cancer cells. Biochem Biophys Res Commun 287(1):60–65. doi:10.1006/bbrc.2001.5546

    PubMed  CAS  Google Scholar 

  47. Celli G, LaRochelle W, Mackem S, Sharp R, Merlino G (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 17(6):1642–1655. doi:10.1093/emboj/17.6.1642

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 13(14):3296–3301

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Valta M, Hentunen T, Qu Q, Valve E, Harjula A, Seppänen J, Väänänen H, Härkönen P (2006) Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology 147(5):2171–2182. doi:10.1210/en.2005-1502

    PubMed  CAS  Google Scholar 

  50. Biver E, Soubrier A-S, Thouverey C, Cortet B, Broux O, Caverzasio J, Hardouin P (2012) Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells. Biochem Biophys Res Commun 427(4):737–742. doi:10.1016/j.bbrc.2012.09.129

    PubMed  CAS  Google Scholar 

  51. Choi K-Y, Kim H-J, Lee M-H, Kwon T-G, Nah H-D, Furuichi T, Komori T, Nam S-H, Kim Y-J, Kim H-J, Ryoo H-M (2005) Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn 233(1):115–121. doi:10.1002/dvdy.20323

    PubMed  CAS  Google Scholar 

  52. Bodo M, Lilli C, Bellucci C, Carinci P, Calvitti M, Pezzetti F, Stabellini G, Bellocchio S, Balducci C, Carinci F, Baroni T (2002) Basic fibroblast growth factor autocrine loop controls human osteosarcoma phenotyping and differentiation. Mol Med 8(7):393–404

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Birkedal-Hansen H, Moore W, Bodden M, Windsor L, Birkedal-Hansen B, DeCarlo A, Engler J (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4(2):197–250. doi:10.1177/10454411930040020401

    PubMed  CAS  Google Scholar 

  54. Bjørnland K, Flatmark K, Pettersen S, Aaasen A, Fodstad O, Maelandsmo G (2005) Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res 127(2):151–156. doi:10.1016/j.jss.2004.12.016

    PubMed  Google Scholar 

  55. Liao C-L, Lai K-C, Huang A-C, Yang J-S, Lin J-J, Wu S-H, Gibson Wood W, Lin J-G, Chung J-G (2012) Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol 50(5):1734–1740. doi:10.1016/j.fct.2012.02.033

    PubMed  CAS  Google Scholar 

  56. Lu K-H, Yang H-W, Su C-W, Lue K-H, Yang S-F, Hsieh Y-S (2013) Phyllanthus urinaria suppresses human osteosarcoma cell invasion and migration by transcriptionally inhibiting u-PA via ERK and Akt signaling pathways. Food Chem Toxicol 52:193–199. doi:10.1016/j.fct.2012.11.019

    PubMed  CAS  Google Scholar 

  57. Himelstein B, Asada N, Carlton M, Collins M (1998) Matrix metalloproteinase-9 (MMP-9) expression in childhood osseous osteosarcoma. Med Pediatr Oncol 31(6):471–474. doi:10.1002/(SICI)1096-911X(199812)31:6<471::AID-MPO2>3.0.CO;2-M

    PubMed  CAS  Google Scholar 

  58. Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M (1995) Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 72(3):311–322

    PubMed  CAS  Google Scholar 

  59. Kim S-M, Lee H, Park Y-S, Lee Y, Seo S (2012) ERK5 regulates invasiveness of osteosarcoma by inducing MMP-9. J Orthop Res 30(7):1040–1044. doi:10.1002/jor.22025

    PubMed  CAS  Google Scholar 

  60. Chan K, Wong H, Jin G, Liu B, Cao R, Cao Y, Lehti K, Tryggvason K, Zhou Z (2012) MT1-MMP inactivates ADAM9 to regulate FGFR2 signaling and calvarial osteogenesis. Dev Cell 22(6):1176–1190. doi:10.1016/j.devcel.2012.04.014

    PubMed  CAS  Google Scholar 

  61. Tang Y, Rowe R, Botvinick E, Kurup A, Putnam A, Seiki M, Weaver V, Keller E, Goldstein S, Dai J, Begun D, Saunders T, Weiss S (2013) MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev Cell 25(4):402–416. doi:10.1016/j.devcel.2013.04.011

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Husmann K, Arlt M, Muff R, Langsam B, Bertz J, Born W, Fuchs B (2013) Matrix Metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochim Biophys Acta 1832(2):347–354. doi:10.1016/j.bbadis.2012.11.006

    PubMed  CAS  Google Scholar 

  63. Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, Deng L (2012) Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 30(4):297–302. doi:10.1002/cbf.2801

    PubMed  CAS  Google Scholar 

  64. Taniguchi C, Emanuelli B, Kahn C (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96. doi:10.1038/nrm1837

    PubMed  CAS  Google Scholar 

  65. Wang Y-H, Han X-D, Qiu Y, Xiong J, Yu Y, Wang B, Zhu Z-Z, Qian B-P, Chen Y-X, Wang S-F, Shi H-F, Sun X (2012) Increased expression of insulin-like growth factor-1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma. J Surg Oncol 105(3):235–243. doi:10.1002/jso.22077

    PubMed  CAS  Google Scholar 

  66. Luk F, Yu Y, Walsh W, Yang J-L (2011) IGF1R-targeted therapy and its enhancement of doxorubicin chemosensitivity in human osteosarcoma cell lines. Cancer Invest 29(8):521–532. doi:10.3109/07357907.2011.606252

    PubMed  CAS  Google Scholar 

  67. Kurmasheva R, Dudkin L, Billups C, Debelenko L, Morton C, Houghton P (2009) The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69(19):7662–7671. doi:10.1158/0008-5472.CAN-09-1693

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16(3):251–263. doi:10.1016/j.cytogfr.2005.01.009

    PubMed  CAS  Google Scholar 

  69. Noël D, Gazit D, Bouquet C, Apparailly F, Bony C, Plence P, Millet V, Turgeman G, Perricaudet M, Sany J, Jorgensen C (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22(1):74–85. doi:10.1634/stemcells.22-1-74

    PubMed  Google Scholar 

  70. Gu K, Zhang L, Jin T, Rutherford R (2004) Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7. Cells Tissues Organs 176(1–3):28–40. doi:10.1159/000075025

    PubMed  CAS  Google Scholar 

  71. Fakhry A, Ratisoontorn C, Vedhachalam C, Salhab I, Koyama E, Leboy P, Pacifici M, Kirschner R, Nah H-D (2005) Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone 36(2):254–266. doi:10.1016/j.bone.2004.10.003

    PubMed  CAS  Google Scholar 

  72. Hughes-Fulford M, Li C-F (2011) The role of FGF-2 and BMP-2 in regulation of gene induction, cell proliferation and mineralization. J Orthop Surg Res 6:8. doi:10.1186/1749-799X-6-8

    PubMed  PubMed Central  Google Scholar 

  73. Zhang R, Oyajobi B, Harris S, Chen D, Tsao C, Deng H-W, Zhao M (2013) Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52(1):145–156. doi:10.1016/j.bone.2012.09.029

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Lind M, Eriksen E, Bünger C (1996) Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and -6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts, and U2-OS cells. Bone 18(1):53–57

    PubMed  CAS  Google Scholar 

  75. Nakashima K, de Crombrugghe B (2003) Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 19(8):458–466. doi:10.1016/S0168-9525(03)00176-8

    PubMed  CAS  Google Scholar 

  76. Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, Jia S-F, Kleinerman E (2005) Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res 65(4):1124–1128. doi:10.1158/0008-5472.CAN-04-2128

    PubMed  CAS  Google Scholar 

  77. Salinas-Souza C, De Oliveira R, Alves M, Garcia Filho R, Petrilli A, Toledo S (2013) The metastatic behavior of osteosarcoma by gene expression and cytogenetic analyses. Hum Pathol. doi:10.1016/j.humpath.2013.04.013

    PubMed  Google Scholar 

  78. Horvai A, Roy R, Borys D, O’Donnell R (2012) Regulators of skeletal development: a cluster analysis of 206 bone tumors reveals diagnostically useful markers. Mod Pathol 25(11):1452–1461. doi:10.1038/modpathol.2012.110

    PubMed  CAS  Google Scholar 

  79. Bourgeois P, Stoetzel C, Bolcato-Bellemin A, Mattei M, Perrin-Schmitt F (1996) The human H-twist gene is located at 7p21 and encodes a B-HLH protein that is 96 % similar to its murine M-twist counterpart. Mamm Genome 7(12):915–917. doi:10.1007/s003359900269

    PubMed  CAS  Google Scholar 

  80. Martin T, Goyal A, Watkins G, Jiang W (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496. doi:10.1245/ASO.2005.04.010

    PubMed  Google Scholar 

  81. Puisieux A, Valsesia-Wittmann S, Ansieau S (2006) A twist for survival and cancer progression. Br J Cancer 94(1):13–17. doi:10.1038/sj.bjc.6602876

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Wu K-J, Yang M-H (2011) Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. Biosci Rep 31(6):449–455. doi:10.1042/BSR20100114

    PubMed  Google Scholar 

  83. Isenmann S, Arthur A, Zannettino A, Turner J, Shi S, Glackin C, Gronthos S (2009) TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells (Dayton, Ohio) 27(10):2457–2468. doi:10.1002/stem.181

    CAS  Google Scholar 

  84. Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, Tamai K, Kaneda Y (2007) Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J Cell Sci 120(Pt 8):1350–1357. doi:10.1242/jcs.000067

    PubMed  CAS  Google Scholar 

  85. Yousfi M, Lasmoles F, Marie P (2002) TWIST inactivation reduces CBFA1/RUNX2 expression and DNA binding to the osteocalcin promoter in osteoblasts. Biochem Biophys Res Commun 297(3):641–644. doi:10.1016/S0006-291X(02)02260-X

    PubMed  CAS  Google Scholar 

  86. Wu J, Liao Q, He H, Zhong D, Yin K (2012) TWIST interacts with β-catenin signaling on osteosarcoma cell survival against cisplatin. Mol Carcinog. doi:10.1002/mc.21991

    Google Scholar 

  87. Lee M, Lowe G, Strong D, Wergedal J, Glackin C (1999) TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. J Cell Biochem 75(4):566–577. doi:10.1002/(SICI)1097-4644(19991215)75:4<566::AID-JCB3>3.0.CO;2-0

    PubMed  CAS  Google Scholar 

  88. Miraoui H, Severe N, Vaudin P, Pagès J-C, Marie P (2010) Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: implication of FGFR2 signaling. J Cell Biochem 110(5):1147–1154. doi:10.1002/jcb.22628

    PubMed  CAS  Google Scholar 

  89. Danciu T, Li Y, Koh A, Xiao G, McCauley L, Franceschi R (2012) The basic helix loop helix transcription factor Twist1 is a novel regulator of ATF4 in osteoblasts. J Cell Biochem 113(1):70–79. doi:10.1002/jcb.23329

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Entz-Werle N, Lavaux T, Metzger N, Stoetzel C, Lasthaus C, Marec P, Kalifa C, Brugieres L, Pacquement H, Schmitt C, Tabone M-D, Gentet J-C, Lutz P, Babin A, Oudet P, Gaub M, Perrin-Schmitt F (2007) Involvement of MET/TWIST/APC combination or the potential role of ossification factors in pediatric high-grade osteosarcoma oncogenesis. Neoplasia (New York, NY) 9(8):678–688

    CAS  Google Scholar 

  91. Yang D-C, Yang M-H, Tsai C-C, Huang T-F, Chen Y-H, Hung S-C (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 6(9):e23965. doi:10.1371/journal.pone.0023965

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505. doi:10.1016/j.devcel.2010.09.011

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Stanger BZ (2008) Organ size determination and the limits of regulation. Cell Cycle 7(3):318–324

    PubMed  CAS  Google Scholar 

  94. Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138(1):9–22. doi:10.1242/dev.045500

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL (2010) The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24(11):1106–1118. doi:10.1101/gad.1903310

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Grusche FA, Degoutin JL, Richardson HE, Harvey KF (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350(2):255–266. doi:10.1016/j.ydbio.2010.11.020

    PubMed  CAS  Google Scholar 

  97. Cao X, Pfaff SL, Gage FH (2008) YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22(23):3320–3334. doi:10.1101/gad.1726608

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Wu S, Huang J, Dong J, Pan D (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114(4):445–456

    PubMed  CAS  Google Scholar 

  99. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5(10):914–920. doi:10.1038/ncb1050

    PubMed  CAS  Google Scholar 

  100. Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114(4):457–467

    PubMed  CAS  Google Scholar 

  101. Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5(10):921–927. doi:10.1038/ncb1051

    PubMed  CAS  Google Scholar 

  102. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D, Hariharan IK (2002) salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110(4):467–478

    PubMed  CAS  Google Scholar 

  103. Praskova M, Xia F, Avruch J (2008) MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18(5):311–321. doi:10.1016/j.cub.2008.02.006

    PubMed  CAS  Google Scholar 

  104. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24(12):2076–2086. doi:10.1038/sj.onc.1208445

    PubMed  CAS  Google Scholar 

  105. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434. doi:10.1016/j.cell.2005.06.007

    PubMed  CAS  Google Scholar 

  106. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761. doi:10.1101/gad.1602907

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13(8):877–883. doi:10.1038/ncb2303

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600. doi:10.1126/science.1072530

    PubMed  CAS  Google Scholar 

  109. Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI (2003) NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17(9):1090–1100. doi:10.1101/gad.1054603

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Okada T, Lopez-Lago M, Giancotti FG (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171(2):361–371. doi:10.1083/jcb.200503165

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371. doi:10.1101/gad.210773.112

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14(3):377–387. doi:10.1016/j.devcel.2008.01.006

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, Mauviel A (2002) Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 21(32):4879–4884. doi:10.1038/sj.onc.1205623

    PubMed  CAS  Google Scholar 

  114. Ge L, Smail M, Meng W, Shyr Y, Ye F, Fan KH, Li X, Zhou HM, Bhowmick NA (2011) Yes-associated protein expression in head and neck squamous cell carcinoma nodal metastasis. PLoS One 6(11):e27529. doi:10.1371/journal.pone.0027529

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278(35):33334–33341

    PubMed  CAS  Google Scholar 

  116. Stein GS, Lian JB, Stein JL, van Wijnen AJ, Choi JY, Pratap J, Zaidi SK (2003) Temporal and spatial parameters of skeletal gene expression: targeting RUNX factors and their coregulatory proteins to subnuclear domains. Connect Tissue Res 44(Suppl 1):149–153

    PubMed  CAS  Google Scholar 

  117. Geryk-Hall M, Yang Y, Hughes DPM (2010) Driven to death: inhibition of farnesylation increases Ras activity in osteosarcoma and promotes growth arrest and cell death. Mol Cancer Ther 9(5):1111–1119. doi:10.1158/1535-7163.mct-09-0833

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Zhao B, Lei QY, Guan KL (2008) The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol 20(6):638–646. doi:10.1016/j.ceb.2008.10.001

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Song H, Kim H, Lee K, Lee DH, Kim TS, Song JY, Lee D, Choi D, Ko CY, Kim HS, Shin HI, Choi J, Park H, Park C, Jeong D, Lim DS (2012) Ablation of Rassf2 induces bone defects and subsequent haematopoietic anomalies in mice. EMBO J 31(5):1147–1159. doi:10.1038/emboj.2011.480

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Nissen-Meyer LS, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D, Pierroz DD, Stadelmann VA, Reppe S, Reinholt FP, Del Fattore A, Rucci N, Teti A, Ferrari S, Gautvik KM (2007) Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci 120(Pt 16):2785–2795. doi:10.1242/jcs.003855

    PubMed  CAS  Google Scholar 

  121. Bhattaram P, Penzo-Mendez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A, Depamphilis ML, Wegner M, Lefebvre V (2010) Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 1:9. doi:10.1038/ncomms1008

    PubMed  Google Scholar 

  122. Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27(11):1223–1232. doi:10.1101/gad.219402.113

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S, Lim DS (2013) cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J 32(11):1543–1555. doi:10.1038/emboj.2013.102

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Wang W, Huang J, Chen J (2011) Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem 286(6):4364–4370. doi:10.1074/jbc.C110.205401

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410. doi:10.1016/j.devcel.2009.02.003

    PubMed  CAS  Google Scholar 

  126. Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251. doi:10.1038/ncomms3251

    PubMed  PubMed Central  Google Scholar 

  127. Tschop K, Conery AR, Litovchick L, Decaprio JA, Settleman J, Harlow E, Dyson N (2011) A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev 25(8):814–830. doi:10.1101/gad.2000211

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H, Oren M (2006) A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20(19):2687–2700. doi:10.1101/gad.1447006

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 103(33):12405–12410. doi:10.1073/pnas.0605579103

    PubMed  CAS  PubMed Central  Google Scholar 

  130. McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, Jacks T (1998) Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12(8):1121–1133

    PubMed  CAS  PubMed Central  Google Scholar 

  131. St John MA, Tao W, Fei X, Fukumoto R, Carcangiu ML, Brownstein DG, Parlow AF, McGrath J, Xu T (1999) Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21(2):182–186. doi:10.1038/5965

    PubMed  CAS  Google Scholar 

  132. Bothos J, Tuttle RL, Ottey M, Luca FC, Halazonetis TD (2005) Human LATS1 is a mitotic exit network kinase. Cancer Res 65(15):6568–6575. doi:10.1158/0008-5472.CAN-05-0862

    PubMed  CAS  Google Scholar 

  133. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N (2010) Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18(2):300–308. doi:10.1016/j.devcel.2009.12.011

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Gharanei S, Brini AT, Vaiyapuri S, Alholle A, Dallol A, Arrigoni E, Kishida T, Hiruma T, Avigad S, Grimer R, Maher ER, Latif F (2013) RASSF2 methylation is a strong prognostic marker in younger age patients with Ewing sarcoma. Epigenetics 8(9)

    Google Scholar 

  135. Richter AM, Walesch SK, Wurl P, Taubert H, Dammann RH (2012) The tumor suppressor RASSF10 is upregulated upon contact inhibition and frequently epigenetically silenced in cancer. Oncogenesis 1:e18. doi:10.1038/oncsis.2012.18

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Hsu JH, Lawlor ER (2011) BMI-1 suppresses contact inhibition and stabilizes YAP in Ewing sarcoma. Oncogene 30(17):2077–2085. doi:10.1038/onc.2010.571

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Wu Z, Min L, Chen D, Hao D, Duan Y, Qiu G, Wang Y (2011) Overexpression of BMI-1 promotes cell growth and resistance to cisplatin treatment in osteosarcoma. PLoS One 6(2):e14648

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54–68. doi:10.1101/gad.173435.111

    PubMed  PubMed Central  Google Scholar 

  139. Keely PJ (2013) Proteolytic remodeling of the ECM and the geometric control of stem cell fate. Dev Cell 25(4):325–326. doi:10.1016/j.devcel.2013.05.012

    PubMed  CAS  Google Scholar 

  140. Kim JE, Finlay GJ, Baguley BC (2013) The role of the hippo pathway in melanocytes and melanoma. Front Oncol 3:123. doi:10.3389/fonc.2013.00123

    PubMed  PubMed Central  Google Scholar 

  141. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. doi:10.1038/nrc3447

    PubMed  Google Scholar 

  142. Wang Y, Shang Y (2013) Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 319(2):160–169. doi:10.1016/j.yexcr.2012.07.019

    PubMed  CAS  Google Scholar 

  143. Yang N, Morrison CD, Liu P, Miecznikowski J, Bshara W, Han S, Zhu Q, Omilian AR, Li X, Zhang J (2012) TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle 11(15):2922–2930. doi:10.4161/cc.21386

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Hergovich A (2012) YAP-Hippo signalling downstream of leukemia inhibitory factor receptor: implications for breast cancer. Breast Cancer Res 14(6):326. doi:10.1186/bcr3349

    PubMed  PubMed Central  Google Scholar 

  145. Irvine KD (2012) Integration of intercellular signaling through the Hippo pathway. Semin Cell Dev Biol 23(7):812–817. doi:10.1016/j.semcdb.2012.04.006

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5). doi:10.1101/cshperspect.a008052

  147. Louvi A, Artavanis-Tsakonas S (2012) Notch and disease: a growing field. Semin Cell Dev Biol 23(4):473–480. doi:10.1016/j.semcdb.2012.02.005

    PubMed  CAS  Google Scholar 

  148. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL (2012) YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14(12):1322–1329. doi:10.1038/ncb2615

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G, Yochum GS (2012) Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 287(15):11730–11739. doi:10.1074/jbc.M111.327767

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Fujii M (2012) Exploration of a new drug that targets YAP. J Biochem 152(3):209–211. doi:10.1093/jb/mvs072

    PubMed  CAS  Google Scholar 

  151. Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H, Hata Y (2011) A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem 150(2):199–208. doi:10.1093/jb/mvr063

    PubMed  CAS  Google Scholar 

  152. Casalini P, Iorio MV, Galmozzi E, Menard S (2004) Role of HER receptors family in development and differentiation. J Cell Physiol 200(3):343–350. doi:10.1002/jcp.20007

    PubMed  CAS  Google Scholar 

  153. Muraoka-Cook RS, Sandahl M, Husted C, Hunter D, Miraglia L, Feng SM, Elenius K, Earp HS 3rd (2006) The intracellular domain of ErbB4 induces differentiation of mammary epithelial cells. Mol Biol Cell 17(9):4118–4129. doi:10.1091/mbc.E06-02-0101

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM (2005) WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 65(15):6764–6772. doi:10.1158/0008-5472.CAN-05-1150

    PubMed  CAS  Google Scholar 

  155. Junttila T, Sundvall M, Maatta J, Elenius K (2000) Erbb4 and its isoforms: selective regulation of growth factor responses by naturally occurring receptor variants. Trends Cardiovasc Med 10(7):304–310

    PubMed  CAS  Google Scholar 

  156. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K (2011) Function of ERBB4 is determined by alternative splicing. Cell Cycle 10(16):2647–2657

    PubMed  CAS  Google Scholar 

  157. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7(7):505–516. doi:10.1038/nrm1962

    PubMed  CAS  Google Scholar 

  158. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G (2006) Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127(1):185–197. doi:10.1016/j.cell.2006.07.037

    PubMed  CAS  Google Scholar 

  159. Muraoka-Cook RS, Sandahl MA, Strunk KE, Miraglia LC, Husted C, Hunter DM, Elenius K, Chodosh LA, Earp HS 3rd (2009) ErbB4 splice variants Cyt1 and Cyt2 differ by 16 amino acids and exert opposing effects on the mammary epithelium in vivo. Mol Cell Biol 29(18):4935–4948. doi:10.1128/MCB.01705-08

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Huang Z, Wang Y, Nayak PS, Dammann CE, Sanchez-Esteban J (2012) Stretch-induced fetal type II cell differentiation is mediated via ErbB1-ErbB4 interactions. J Biol Chem 287(22):18091–18102. doi:10.1074/jbc.M111.313163

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Vaskovsky A, Lupowitz Z, Erlich S, Pinkas-Kramarski R (2000) ErbB-4 activation promotes neurite outgrowth in PC12 cells. J Neurochem 74(3):979–987

    PubMed  CAS  Google Scholar 

  162. Schneider MR, Sibilia M, Erben RG (2009) The EGFR network in bone biology and pathology. Trends Endocrinol Metabol 20(10):517–524, http://dx.doi.org/10.1016/j.tem.2009.06.008

    CAS  Google Scholar 

  163. Hong W, Guan KL (2012) The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol 23(7):785–793. doi:10.1016/j.semcdb.2012.05.004

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Hollmen M, Elenius K (2010) Potential of ErbB4 antibodies for cancer therapy. Future Oncol 6(1):37–53. doi:10.2217/fon.09.144

    PubMed  CAS  Google Scholar 

  165. Rokavec M, Justenhoven C, Schroth W, Istrate MA, Haas S, Fischer HP, Vollmert C, Illig T, Hamann U, Ko YD, Glavac D, Brauch H (2007) A novel polymorphism in the promoter region of ERBB4 is associated with breast and colorectal cancer risk. Clin Cancer Res 13(24):7506–7514. doi:10.1158/1078-0432.CCR-07-0457

    PubMed  CAS  Google Scholar 

  166. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, Harkonen P, Joensuu H, Isola J, Elenius K (2005) Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res 65(4):1384–1393

    PubMed  CAS  Google Scholar 

  167. Xu S, Kitayama J, Yamashita H, Souma D, Nagawa H (2008) Nuclear translocation of HER4/c-erbB-4 is significantly correlated with prognosis of esophageal squamous cell carcinoma. J Surg Oncol 97(1):44–50

    PubMed  CAS  Google Scholar 

  168. Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh KT (2004) Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 64(6):2047–2053

    PubMed  CAS  Google Scholar 

  169. Hughes DPM, Thomas DG, Giordano TJ, McDonagh KT, Baker LH (2006) Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 inhibition. Pediatr Blood Cancer 46(5):614–623

    PubMed  Google Scholar 

  170. Hua Y, Gorshkov K, Yang Y, Wang W, Zhang N, Hughes D (2012) Slow down to stay alive: HER4 protects against cellular stress and confers chemoresistance in neuroblastoma. Cancer 118(20):5140–5154

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA, Ng T, Reynolds CP, Triche TJ, Sorensen PH (2007) E-cadherin cell-cell adhesion in ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 67(7):3094–3105. doi:10.1158/0008-5472.CAN-06-3259

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Merimsky O, Kollender Y, Issakov J, Inbar M, Flusser G, Benayahu D, Meller I, Bickels J (2003) Induction chemotherapy for bone sarcoma in adults: correlation of results with erbB-4 expression. Oncol Rep 10(5):1593–1599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis P. M. Hughes M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mortus, J.R., Zhang, Y., Hughes, D.P.M. (2014). Developmental Pathways Hijacked by Osteosarcoma. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_5

Download citation

Publish with us

Policies and ethics