Skip to main content

Overview of Sickle Cell Anemia Pathophysiology

  • Chapter
  • First Online:
Sickle Cell Anemia

Abstract

Sickle cell disease, caused by a mutation in the β-hemoglobin gene, is a Mendelian disorder with a very diverse phenotype. The primary cause of disease pathophysiology is the deoxygenation-induced polymerization of the mutant sickle hemoglobin. This ultimately leads to vasoocclusion by damaged sickle erythrocytes that interact with the endothelium and other blood cells, and the hemolysis of sickle cells within and outside of the vasculature. Treatment can target these separate but interconnected pathophysiologic pathways of sickle vasoocclusion and hemolytic anemia but targeting effectively a single limb or aspect of pathophysiology might have unintended consequences and increase the chance of complications closely associated with the other pathophysiologic pathway. The prime approach to treatment would be to effectively increase the level of the antisickling fetal hemoglobin in most sickle erythrocytes thereby thwarting all downstream effects of this primary pathophysiologic event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekile AD (2011) Limitations of Hb F as a phenotypic modifier in sickle cell disease: study of Kuwaiti Arab patients. Hemoglobin 35(5–6):607–617

    Article  CAS  PubMed  Google Scholar 

  • Akinsheye I, Alsultan A, Solovieff N et al (2011) Fetal hemoglobin in sickle cell anemia. Blood 118(1):19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan D, Limbrick AR, Thomas P, Westerman MP (1981) Microvesicles from sickle erythrocytes and their relation to irreversible sickling. Br J Haematol 47(3):383–390

    Article  CAS  PubMed  Google Scholar 

  • Allan D, Limbrick AR, Thomas P, Westerman MP (1982) Release of spectrin-free spicules on reoxygenation of sickled erythrocytes. Nature 295(5850):612–613

    Article  CAS  PubMed  Google Scholar 

  • Alsultan A, Alabdulaali MK, Griffin PJ et al (2014) Sickle cell disease in Saudi Arabia: the phenotype in adults with the Arab-Indian haplotype is not benign. Br J Haematol 164(4):597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ataga KI, Smith WR, De Castro LM et al (2008) Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood 111(8):3991–3997

    Article  CAS  PubMed  Google Scholar 

  • Ataga KI, Reid M, Ballas SK et al (2011) Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol 153(1):92–104

    Article  CAS  PubMed  Google Scholar 

  • Bencsath FA, Shartava A, Monteiro CA, Goodman SR (1996) Identification of the disulfide-linked peptide in irreversibly sickled cell á-actin. Biochemistry 35:4403–4408

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin F, Verlhac S, Chevret S et al (2008) G6PD deficiency, absence of alpha-thalassemia and hemolytic rate at baseline are significant independent risk factors for abnormally high cerebral velocities in patients with sickle cell anemia. Blood 112:4314–4317

    Article  CAS  PubMed  Google Scholar 

  • Bertles JF, Milner PFA (1968) Irreversibly sickled erythrocytes: a consequence of heterogeneous distribution of hemoglobin types in sickle cell anemia. J Clin Invest 47:1731–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brittenham GM, Schechter AN, Noguchi CT (1985) Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood 65:183–189

    CAS  PubMed  Google Scholar 

  • Browne P, Shalev O, Hebbel RP (1998) The molecular pathobiology of cell membrane iron: the sickle red cell as a model. Free Radic Biol Med 24(6):1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Brugnara C (1993) Membrane transport of Na and K and cell dehydration in sickle erythrocytes. Experientia 49:100–109

    Article  CAS  PubMed  Google Scholar 

  • Brugnara C (1997) Erythrocyte membrane transport physiology. Curr Opin Hematol 4(2):122–127

    Article  CAS  PubMed  Google Scholar 

  • Brugnara C (2001) Red cell membrane in sickle cell disease. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL (eds) Disorders of hemoglobin: genetics, pathophysiology, and clinical management, vol 1. Cambridge University Press, Cambridge, pp 550–576

    Google Scholar 

  • Bunn HF (1987) Subunit assembly of hemoglobin: an important determinant of hematologic phenotype. [Review]. Blood 69:1–6

    CAS  PubMed  Google Scholar 

  • Bunn HF (1997) Pathogenesis and treatment of sickle cell disease. N Engl J Med 337(11): 762–769

    Article  CAS  PubMed  Google Scholar 

  • Bunn HF, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Burnett AL (2003) Pathophysiology of priapism: dysregulatory erection physiology thesis. J Urol 170(1):26–34

    Article  PubMed  Google Scholar 

  • Burnett AL, Bivalacqua TJ, Champion HC, Musicki B (2006) Long-term oral phosphodiesterase 5 inhibitor therapy alleviates recurrent priapism. Urology 67(5):1043–1048

    Article  PubMed  Google Scholar 

  • Burns ER, Wilkinson WH, Nagel RL (1985) Adherence properties of sickle erythrocytes in dynamic flow systems. J Lab Clin Med 105(6):673–678

    CAS  PubMed  Google Scholar 

  • Cannon RO III, Schechter AN, Panza JA et al (2001) Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J Clin Invest 108(2):279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion HC, Bivalacqua TJ, Takimoto E, Kass DA, Burnett AL (2005) Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl Acad Sci U S A 102(5):1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Patton JT, Sarkar A et al (2010) GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood 116(10):1779–1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Conley CL, Weatherall DJ, Richardson SN, Shepard MK, Charache S (1963) Hereditary persistence of fetal hemoglobin: a study of 79 affected persons in 15 Negro families in Baltimore. Blood 21:261–281

    CAS  PubMed  Google Scholar 

  • Costa FF, Arruda VR, Gon‡alves MG et al (1994) á S -gene-cluster haplotypes in sickle cell anemia patients from two regions of Brazil. Am J Hematol 45:96–97

    Google Scholar 

  • Cretegny I, Edelstein SJ (1993) Double strand packing in hemoglobin S fibers. J Mol Biol 230(3):733–738

    Article  CAS  PubMed  Google Scholar 

  • De Franceschi L, Bachir D, Galacteros F et al (1997) Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease. J Clin Invest 100(7):1847–1852

    Article  PubMed  PubMed Central  Google Scholar 

  • De Franceschi L, Bachir D, Galacteros F et al (2000) Oral magnesium pidolate: effects of long-term administration in patients with sickle cell disease. Br J Haematol 108(2):284–289

    Article  PubMed  Google Scholar 

  • de Jong K, Larkin SK, Styles LA, Bookchin RM, Kuypers FA (2001) Characterization of the phosphatidylserine-exposing subpopulation of sickle cells. Blood 98(3):860–867

    Google Scholar 

  • Dean J, Schechter AN (1978a) Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (third of three parts). N Engl J Med 299:863–870

    Article  CAS  PubMed  Google Scholar 

  • Dean J, Schechter AN (1978b) Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med 299:752–763

    Article  CAS  PubMed  Google Scholar 

  • Dean J, Schechter AN (1978c) Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (second of three parts). N Engl J Med 299:804–811

    Article  CAS  PubMed  Google Scholar 

  • Dejam A, Hunter CJ, Schechter AN, Gladwin MT (2004) Emerging role of nitrite in human biology. Blood Cells Mol Dis 32(3):423–429

    Article  CAS  PubMed  Google Scholar 

  • Deonikar P, Kavdia M (2012) Low micromolar intravascular cell-free hemoglobin concentration affects vascular NO bioavailability in sickle cell disease: a computational analysis. J Appl Physiol 112(8):1383–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykes G, Crepeau RH, Edelstein SJ (1978) Three-dimensional reconstruction of the fibres of sickle cell haemoglobin. Nature 272(5653):506–510

    Article  CAS  PubMed  Google Scholar 

  • Eaton WA, Hofrichter J (1987) Hemoglobin S gelation and sickle cell disease. Blood 70(5): 1245–1266

    CAS  PubMed  Google Scholar 

  • Embury SH, Hebbel RP, Mohandas N, Steinberg MH (1994) Sickle cell disease: basic principles and clinical practice, vol 1. Raven Press, New York

    Google Scholar 

  • Evans E, Mohandas N, Leung A (1984) Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. J Clin Invest 73(2):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabry ME, Nagel RL (1982) The effect of deoxygenation on red cell density: significance for the pathophysiology of sickle cell anemia. Blood 60(6):1370–1377

    CAS  PubMed  Google Scholar 

  • Fabry ME, Mears JG, Patel P et al (1984) Dense cells in sickle cell anemia: the effects of gene interaction. Blood 64:1042–1046

    CAS  PubMed  Google Scholar 

  • Fabry ME, Romero JR, Buchanan ID et al (1991) Rapid increase in red blood cell density driven by K: Cl cotransport in a subset of sickle cell anemia reticulocytes and discocytes. Blood 78: 217–225

    CAS  PubMed  Google Scholar 

  • Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183:611–631

    Article  CAS  PubMed  Google Scholar 

  • Field JJ, Lin G, Okam MM et al (2013) Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood 121(17): 3329–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franck PF, Bevers EM, Lubin BH et al (1985) Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells. J Clin Invest 75(1):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco RS, Palascak M, Thompson H, Rucknagel DL, Joiner CH (1996) Dehydration of transferrin receptor-positive sickle reticulocytes during continuous or cyclic deoxygenation: role of KCl cotransport and extracellular calcium. Blood 88:4359–4365

    CAS  PubMed  Google Scholar 

  • Franco RS, Yasin Z, Palascak MB et al (2006) The effect of fetal hemoglobin on the survival characteristics of sickle cells. Blood 108(3):1073–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenette PS, Atweh GF (2007) Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest 117(4):850–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher PG (2013) Disorders of red cell volume regulation. Curr Opin Hematol 20(3):201–207

    Article  CAS  PubMed  Google Scholar 

  • Gladwin MT, Schechter AN (2001) Nitric oxide therapy in sickle cell disease. Semin Hematol 38(4):333–342

    Article  CAS  PubMed  Google Scholar 

  • Gladwin MT, Sachdev V, Jison ML et al (2004) Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med 350(9):886–895

    Article  CAS  PubMed  Google Scholar 

  • Gladwin MT, Kato GJ, Weiner D et al (2011) Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA 305(9):893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman SR (2004) The irreversibly sickled cell: a perspective. Cell Mol Biol 50(1):53–58

    CAS  PubMed  Google Scholar 

  • Gordeuk VR, Campbell A, Rana S et al (2009) Relationship of erythropoietin, fetal hemoglobin, and hydroxyurea treatment to tricuspid regurgitation velocity in children with sickle cell disease. Blood 114(21):4639–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guasch A, Zayas CF, Eckman JR et al (1999) Evidence that microdeletions in the alpha globin gene protect against the development of sickle cell glomerulopathy in humans [In Process Citation]. J Am Soc Nephrol 10(5):1014–1019

    CAS  PubMed  Google Scholar 

  • Hamideh D, Raj V, Harrington T et al (2014) Albuminuria correlates with hemolysis and NAG and KIM-1 in patients with sickle cell anemia. Pediatr Nephrol 29(10):1997–2003

    Article  PubMed  Google Scholar 

  • Hankins JS, Wynn LW, Brugnara C et al (2008) Phase I study of magnesium pidolate in combination with hydroxycarbamide for children with sickle cell anaemia. Br J Haematol 140(1):80–85

    CAS  PubMed  Google Scholar 

  • Hebbel RP (1984) Erythrocyte autoxidation and the membrane abnormalities of sickle red cells. Prog Clin Biol Res 159:219–225

    CAS  PubMed  Google Scholar 

  • Hebbel RP (1985) Auto-oxidation and a membrane-associated ‘Fenton reagent’: a possible explanation for development of membrane lesions in sickle erythrocytes. Clin Haematol 14:129–140

    CAS  PubMed  Google Scholar 

  • Hebbel RP (1991) Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood 77:214–237

    CAS  PubMed  Google Scholar 

  • Hebbel RP (1997) Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest 99:2561–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbel RP, Boogaerts MA, Koresawa S et al (1980) Erytrocyte adherence to endothelium as a determinant of vasocclusive severity in sickle cell disease. Trans Assoc Am Physicians 93:94–99

    CAS  PubMed  Google Scholar 

  • Hebbel RP, Eaton JW, Balasingam M, Steinberg MH (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbel RP, Morgan WT, Eaton JW, Hedlund BE (1988) Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci U S A 85(1):237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbel RP, Osarogiagbon UR, Kaul D (2004) The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation 11:129–152

    Article  CAS  PubMed  Google Scholar 

  • Herrick JB (1910) Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med 6:517–521

    Article  Google Scholar 

  • Hofrichter J, Ross PD, Eaton WA (1974) Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A 71(12): 4864–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoover R, Rubin R, Wise G, Warren R (1979) Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood 54(4):872–876

    CAS  PubMed  Google Scholar 

  • Horiuchi K, Ballas SK, Asakura T (1988) The effect of deoxygenation rate on the formation of irreversibly sickled cells. Blood 71(1):46–51

    CAS  PubMed  Google Scholar 

  • Hsu LL, Champion HC, Campbell-Lee SA et al (2007) Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood 109(7):3088–3098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Jin R, Zhang J et al (2010) The critical roles of platelet activation and reduced NO bioavailability in fatal pulmonary arterial hypertension in a murine hemolysis model. Blood 116(9):1613–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram VM (1956) A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178:792–794

    Article  CAS  PubMed  Google Scholar 

  • Jeffers A, Gladwin MT, Kim-Shapiro DB (2006) Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias. Free Radic Biol Med 41(10):1557–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joiner CH, Gallagher PG (2009) The erythrocyte membrane. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL (eds) Disorders of hemoglobin: genetics, pathophysiology, and clinical management, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Kan YW, Dozy AM (1980) Evolution of the hemoglobin S and C genes in world populations. Science 209:388–391

    Article  CAS  PubMed  Google Scholar 

  • Kato GJ, Hsieh M, Machado R et al (2006a) Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol 81(7):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato GJ, McGowan V, Machado RF et al (2006b) Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 107(6):2279–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaul DK (2009) Rheology and vascular pathobiology in sickle cell disease and thalassemia. In: Steinberg MH, Forget BG, Higgs D, Weatherall DJ (eds) Disorders of hemoglobin: genetics, pathophysiology and clinical management, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaul DK, Baez S, Nagel RL (1981) Flow properties of oxygenated Hb S and Hb C erythrocytes in the isolated microvasculature of the rat: a contribution to the hemorheology of hemoglobinopathies. Clin Hemorheol 1:73–86

    Google Scholar 

  • Kaul DK, Fabry ME, Windisch P, Baez S, Nagel RL (1983) Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest 72:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Fabry ME, Nagel RL (1989) Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci U S A 86(9):3356–3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Fabry ME, Costantini F, Rubin EM, Nagel RL (1995) In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest 96:2845–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Fabry ME, Nagel RL (1996) The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev 10:29–44

    Article  CAS  PubMed  Google Scholar 

  • Kim-Shapiro DB, Schechter AN, Gladwin MT (2006) Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol 26(4):697–705

    Article  CAS  PubMed  Google Scholar 

  • Kulozik AE, Wainscoat JS, Serjeant GR et al (1986) Geographical survey of the ás-globin gene haplotypes: evidence for an independent Asian origin of the sickle-cell mutation. Am J Hum Genet 39:239–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulozik AE, Kar BC, Satapathy RK et al (1987) Fetal hemoglobin levels and áS globin haplotypes in an Indian population with sickle cell disease. Blood 69:1742–1746

    CAS  PubMed  Google Scholar 

  • Kutlar A, Embury SH (2014) Cellular adhesion and the endothelium: p-selectin. Hematol Oncol Clin North Am 28(2):323–339

    Article  PubMed  Google Scholar 

  • Kuypers FA (2008) Red cell membrane lipids in hemoglobinopathies. Curr Mol Med 8(7):633–638

    Article  CAS  PubMed  Google Scholar 

  • Kuypers FA, Lewis RA, Hua M et al (1996) Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood 87(3):1179–1187

    CAS  PubMed  Google Scholar 

  • Labie D, Pagnier J, Lapoumeroulie C et al (1985) Common haplotype dependency of high Gg-globin gene expression and high HbF levels in á_thalassemia and sickle cell anemia patients. Proc Natl Acad Sci U S A 82:2111–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labie D, Srinivas R, Dunda O et al (1989) Haplotypes in tribal Indians bearing the sickle gene: evidence for the unicentric origin of the beta S mutation and the unicentric origin of the tribal populations of India. Hum Biol 61(4):479–491

    CAS  PubMed  Google Scholar 

  • Lane PA, O'Connell JL, Marlar RA (1994) Erythrocyte membrane vesicles and irreversibly sickled cells bind protein S. Am J Hematol 47:295–300

    Article  CAS  PubMed  Google Scholar 

  • Lapoumeroulie C, Dunda O, Ducrocq R et al (1989) A novel sickle gene of yet another origin in Africa: the Cameroon type. Hum Genet 89:333–337

    Google Scholar 

  • Liem RI, Young LT, Thompson AA (2007) Tricuspid regurgitant jet velocity is associated with hemolysis in children and young adults with sickle cell disease evaluated for pulmonary hypertension. Haematologica 92:1549–1552

    Google Scholar 

  • Lim MY, Ataga KI, Key NS (2013) Hemostatic abnormalities in sickle cell disease. Curr Opin Hematol 20:472–477

    Google Scholar 

  • Lin G, Field JJ, Yu JC et al (2013) NF-kappaB is activated in CD4+ iNKT cells by sickle cell disease and mediates rapid induction of adenosine A2A receptors. PLoS One 8(10), e74664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipowsky HH, Usami S, Chien S (1982) Human SS red cell rheological behavior in the microcirculation of cremaster muscle. Blood Cells 8(1):113–126

    CAS  PubMed  Google Scholar 

  • Liu SC, Derick LH, Zhai S, Palek J (1991) Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells. Science 252(5005):574–576

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Marshall P, Schreibman I et al (1999) Interaction between terminal complement proteins C5b-7 and anionic phospholipids. Blood 93(7):2297–2301

    CAS  PubMed  Google Scholar 

  • Lux SE, John KM, Karnovsky MJ (1976) Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J Clin Invest 58:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado RF, Martyr S, Kato GJ et al (2005) Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol 130(3):445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado RF, Barst RJ, Yovetich NA et al (2011) Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood 118(4):855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier-Redelsperger M, Noguchi CT, De Montalembert M et al (1994) Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian prospective study on sickle cell disease. Blood 84:3182–3188

    CAS  PubMed  Google Scholar 

  • Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122(24):3892–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marotta CA, Forget BG, Cohen-Solal M, Weissman SM (1976) Nucleotide sequence analysis of coding and noncoding regions of human beta-globin mRNA. Prog Nucleic Acid Res Mol Biol 19:165–175

    Article  CAS  PubMed  Google Scholar 

  • Marouf R, Gupta R, Haider MZ, Adekile AD (2003a) Silent brain infarcts in adult Kuwaiti sickle cell disease patients. Am J Hematol 73(4):240–243

    Article  CAS  PubMed  Google Scholar 

  • Marouf R, Gupta R, Haider MZ, Al-Wazzan H, Adekile AD (2003b) Avascular necrosis of the femoral head in adult Kuwaiti sickle cell disease patients. Acta Haematol 110(1):11–15

    Article  CAS  PubMed  Google Scholar 

  • Mason VR (1922) Sickle cell anemia. JAMA 79:1318–1320

    Article  Google Scholar 

  • Miller BA, Salameh M, Ahmed M et al (1986) High fetal hemoglobin production in sickle cell anemia in the eastern province of Saudi Arabia is genetically determined. Blood 67(5):1404–1410

    CAS  PubMed  Google Scholar 

  • Milton JN, Rooks H, Drasar E et al (2013) Genetic determinants of haemolysis in sickle cell anaemia. Br J Haematol 161(2):270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minniti CP, Taylor JG, Hildesheim M et al (2011) Laboratory and echocardiography markers in sickle cell patients with leg ulcers. Am J Hematol 86(8):705–708

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohandas N, Evans E (1984) Adherence of sickle erythrocytes to vascular endothelial cells: requirement for both cell membrane changes and plasma factors. Blood 64(1):282–287

    CAS  PubMed  Google Scholar 

  • Morris CR, Morris SM Jr, Hagar W et al (2003) Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med 168(1):63–69

    Article  PubMed  Google Scholar 

  • Mozzarelli A, Hofrichter J, Eaton WA (1987) Delay time of Hb S gelation prevents most cells from sickling in vivo. Science 237:500–506

    Article  CAS  PubMed  Google Scholar 

  • Nagel RL, Labie D (1989) DNA haplotypes and the beta s globin gene. [Review]. Prog Clin Biol Res 316B:371–393

    CAS  PubMed  Google Scholar 

  • Nagel RL, Bookchin RM, Labie D et al (1979) Structural basis for the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci U S A 76:670–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel RL, Fabry ME, Pagnier J et al (1984) Hematologically and genetically distinct forms of sickle cell anemia in Africa. The Senegal type and the Benin type. N Engl J Med 312:880–884

    Article  Google Scholar 

  • Nathan DG, Field J, Lin G et al (2012) Sickle cell disease (SCD), iNKT cells, and regadenoson infusion. Trans Am Clin Climatol Assoc 123:312–317, discussion 317–318

    PubMed  PubMed Central  Google Scholar 

  • Ngo DA, Aygun B, Akinsheye I et al (2012) Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol 156(2):259–264

    Article  CAS  PubMed  Google Scholar 

  • Ngo D, Bae H, Steinberg MH et al (2013) Fetal hemoglobin in sickle cell anemia: genetic studies of the Arab-Indian haplotype. Blood Cells Mol Dis 51(1):22–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi CT, Schechter AN, Rodgers GP (1993) Sickle cell disease pathophysiology. Baillieres Clin Haematol 6(1):57–91

    Article  CAS  PubMed  Google Scholar 

  • Nolan VG, Wyszynski DF, Farrer LA, Steinberg MH (2005) Hemolysis-associated priapism in sickle cell disease. Blood 106(9):3264–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan VG, Adewoye A, Baldwin C et al (2006) Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-beta/BMP pathway. Br J Haematol 133(5):570–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouraie M, Lee JS, Zhang Y et al (2013) The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica 98:464–472

    Google Scholar 

  • Padmos MA, Roberts GT, Sackey K et al (1991) Two different forms of homozygous sickle cell disease occur in Saudi Arabia. Br J Haematol 79:93–98

    Article  CAS  PubMed  Google Scholar 

  • Pauling L, Itano H, Singer SJ, Wells IC (1949) Sickle cell anemia: a molecular disease. Science 110:543–548

    Article  CAS  PubMed  Google Scholar 

  • Perrine RP, Brown MJ, Clegg JB, Weatherall DJ, May A (1972) Benign sickle-cell anaemia. Lancet 2:1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Perrine RP, Pembrey ME, John P, Perrine S, Shoup F (1978) Natural history of sickle cell anemia in Saudi Arabs. A study of 270 subjects. Ann Intern Med 88(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Platt OS (1994) Membrane proteins. In: Embury S, Hebbel RP, Mohandas N, Steinberg MH (eds) Sickle cell disease: basic principles and clinical practice. Raven Press, New York, pp 125–137

    Google Scholar 

  • Platt OS, Brambilla DJ, Rosse WF et al (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330(23):1639–1644

    Article  CAS  PubMed  Google Scholar 

  • Reiter CD, Gladwin MT (2003) An emerging role for nitric oxide in sickle cell disease vascular homeostasis and therapy. Curr Opin Hematol 10(2):99–107

    Article  CAS  PubMed  Google Scholar 

  • Reiter CD, Wang X, Tanus-Santos JE et al (2002) Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8(12):1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Repka T, Hebbel RP (1991) Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents. Blood 78(10):2753–2758

    CAS  PubMed  Google Scholar 

  • Sakamoto TM, Lanaro C, Ozelo MC et al (2013) Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients. Microvasc Res 90:173–179

    Article  CAS  PubMed  Google Scholar 

  • Saraf SL, Zhang X, Kanias T et al (2014) Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br J Haematol 164(5): 729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz RS, Rybicki AC, Heath RH, Lubin BH (1987) Protein 4.1 in sickle erythrocytes. Evidence for oxidative damage. J Biol Chem 262(32):15666–15672

    CAS  PubMed  Google Scholar 

  • Setty BN, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99(5):1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Shartava A, Monteiro CA, Bencsath FA et al (1995) A posttranslational modification of á-actin contributes to the slow dissociation of the spectrin-protein 4.1-actin complex of irreversibly sickled cells. J Cell Biol 128:805–818

    Article  CAS  PubMed  Google Scholar 

  • Sherwood JB, Goldwasser E, Chilcote R, Carmichael LD, Nagel RL (1986) Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood 67(1):46–49

    CAS  PubMed  Google Scholar 

  • Smith BD, La Celle PL (1986) Erythrocyte-endothelial cell adherence in sickle cell disorders. Blood 68(5):1050–1054

    CAS  PubMed  Google Scholar 

  • Solovey A, Lin Y, Browne P et al (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337(22):1584–1590

    Article  CAS  PubMed  Google Scholar 

  • Solovieff N, Milton JN, Hartley SW et al (2010) Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5' olfactory receptor gene cluster. Blood 115(9):1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkenbaugh E, Pawlinski R (2013) Interplay between coagulation and vascular inflammation in sickle cell disease. Br J Haematol 162(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258(5090):1898–1902

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Jia L, Eu JP et al (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MH (2006) Pathophysiologically based drug treatment of sickle cell disease. Trends Pharmacol Sci 27(4):204–210

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MH (2009) Other sickle hemoglobinopathies. In: Steinberg MH, Forget BG, Higgs DR, Weatherall DJ (eds) Disorders of hemoglobin, 2nd edn. Cambridge University Press, Cambridge, pp 564–586

    Chapter  Google Scholar 

  • Steinberg MH, Embury SH (1986) Alpha-thalassemia in blacks: genetic and clinical aspects and interactions with the sickle hemoglobin gene. [Review]. Blood 68:985–990

    CAS  PubMed  Google Scholar 

  • Steinberg MH, Sebastiani P (2012) Genetic modifiers of sickle cell disease. Am J Hematol 87:824–826

    Article  PubMed  CAS  Google Scholar 

  • Steinberg MH, Forget BG, Higgs DR, Weatherall DJ (2009) Disorders of hemoglobin: genetics, pathophysiology, clinical management, 2 edn, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A (2014) Fetal hemoglobin in sickle cell anemia: a glass half full? Blood 123(4):481–485

    Article  CAS  PubMed  Google Scholar 

  • Stuart MJ, Setty BN (2001) Hemostatic alterations in sickle cell disease: relationships to disease pathophysiology. Pediatr Pathol Mol Med 20(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Sugihara T, Repka T, Hebbel RP (1992) Detection, characterization, and bioavailability of membrane- associated iron in the intact sickle red cell. J Clin Invest 90:2327–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tait JF, Gibson D (1994) Measurement of membrane phospholipid asymmetry in normal and sickle-cell erythrocytes by means of annexin V binding. J Lab Clin Med 123:741–748

    CAS  PubMed  Google Scholar 

  • Taylor JG, Nolan VG, Mendelsohn L et al (2008) Chronic hyper-hemolysis in sickle cell anemia: association of vascular complications and mortality with less frequent vasoocclusive pain. PLoS One 3(5), e2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Test ST, Woolworth VS (1994) Defective regulation of complement by the sickle erythrocyte: evidence for a defect in control of membrane attack complex formation. Blood 83:842–852

    CAS  PubMed  Google Scholar 

  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS (2002) Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A 99(5):3047–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Land V, Peters M, Biemond BJ et al (2013) Markers of endothelial dysfunction differ between subphenotypes in children with sickle cell disease. Thromb Res 132(6):712–717

    Article  PubMed  CAS  Google Scholar 

  • Wagner GM, Chiu DT, Yee MC, Lubin BH (1986) Red cell vesiculation--a common membrane physiologic event. J Lab Clin Med 108(4):315–324

    CAS  PubMed  Google Scholar 

  • Wallace KL, Marshall MA, Ramos SI et al (2009) NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood 114(3):667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RH, Phillips G Jr, Medof ME, Mold C (1993) Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients. J Clin Invest 92:1326–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson J, Stahman AW, Bilello FP (1948) Significance of paucity of sickle cells in newborn negro infants. Am J Med Sci 215:419–423

    Article  CAS  PubMed  Google Scholar 

  • Weiner DL, Hibberd PL, Betit P et al (2003) Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease. JAMA 289(9):1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Westerman MP, Cole ER, Wu K (1984) The effect of spicules obtained from sickle red cells on clotting activity. Br J Haematol 56(4):557–562

    Article  CAS  PubMed  Google Scholar 

  • Zennadi R, Hines PC, De Castro LM et al (2004) Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood 104(12):3774–3781

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin H. Steinberg M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinberg, M.H. (2016). Overview of Sickle Cell Anemia Pathophysiology. In: Costa, F., Conran, N. (eds) Sickle Cell Anemia. Springer, Cham. https://doi.org/10.1007/978-3-319-06713-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06713-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06712-4

  • Online ISBN: 978-3-319-06713-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics