Skip to main content

Inflammation and Sickle Cell Anemia

  • Chapter
  • First Online:
Sickle Cell Anemia

Abstract

Inflammatory processes play a key role in the initiation of the acute painful vaso-occlusive crises that constitute the main cause of hospitalization in individuals with sickle cell anemia, as well as many of its numerous complications, including autosplenectomy, pulmonary hypertension, acute chest syndrome, leg ulcers, nephropathy and stroke. Ischemia-reperfusion injury (due to microvascular and macrovascular occlusions), membrane alterations of the sickle red blood cell, and hemolysis may all trigger endogenous proinflammatory signals (damage-associated molecular patterns-DAMPs) that lead to the vicious circle of pan-cellular activation, inflammatory mediator release, leukocyte recruitment and occlusive mechanisms that result in the chronic inflammatory state that is associated with sickle cell anemia. We, herein, review the probable primary inflammatory triggers that initiate inflammatory mechanisms in the disease and postulate the cells and molecules that may contribute to establish chronic inflammation. The anti-inflammatory effects of hydroxyurea are discussed, as are novel anti-inflammatory approaches currently under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abais JM, Xia M, Li G et al (2014) Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia. Free Radic Biol Med 67:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamides S, Konstantopoulos K, Toumbis M et al (1990) A study of beta-thromboglobulin and platelet factor-4 plasma levels in steady state sickle cell patients. Blut 61(4):245–247

    Article  CAS  PubMed  Google Scholar 

  • Adewoye AH, Klings ES, Farber HW et al (2005) Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol 78(3):240–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinlade KS, Atere AD, Rahamon SK, Olaniyi JA (2013) Serum levels of copeptin, C-reactive protein and cortisol in different severity groups of sickle cell anaemia. Niger J Physiol Sci 28(2):159–164

    CAS  PubMed  Google Scholar 

  • Almeida CB, Scheiermann C, Jang JE et al (2012) Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 120(14):2879–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida CB, Souza LE, Leonardo FC et al (2015) Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood

    Google Scholar 

  • Amer J, Ghoti H, Rachmilewitz E et al (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132(1):108–113

    Article  CAS  PubMed  Google Scholar 

  • Andreotti C, King AA, Macy E, Compas BE, DeBaun MR (2014) The association of cytokine levels with cognitive function in children with sickle cell disease and normal MRI studies of the brain. J Child Neurol 30(10):1349–1353

    Article  PubMed  Google Scholar 

  • Aoki T, Narumiya S (2012) Prostaglandins and chronic inflammation. Trends Pharmacol Sci 33(6):304–311

    Article  CAS  PubMed  Google Scholar 

  • Arndt H, Russell JB, Kurose I, Kubes P, Granger DN (1993) Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology 105(3):675–680

    CAS  PubMed  Google Scholar 

  • Asare K, Gee BE, Stiles JK et al (2010) Plasma interleukin-1beta concentration is associated with stroke in sickle cell disease. Cytokine 49(1):39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan M, Thornley-Brown D, Freeman BA (2000) Reactive species in sickle cell disease. Ann N Y Acad Sci 899:375–391

    Article  CAS  PubMed  Google Scholar 

  • Aslan M, Ryan TM, Adler B et al (2001) Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci U S A 98(26):15215–15220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ataga KI, Moore CG, Hillery CA et al (2008) Coagulation activation and inflammation in sickle cell disease-associated pulmonary hypertension. Haematologica 93(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Ballas SK, Lusardi M (2005) Hospital readmission for adult acute sickle cell painful episodes: frequency, etiology, and prognostic significance. Am J Hematol 79(1):17–25

    Article  PubMed  Google Scholar 

  • Bartolucci P, Chaar V, Picot J et al (2010) Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of Lu/BCAM protein phosphorylation. Blood 116(12):2152–2159

    Article  CAS  PubMed  Google Scholar 

  • Beckman JD, Belcher JD, Vineyard JV et al (2009) Inhaled carbon monoxide reduces leukocytosis in a murine model of sickle cell disease. Am J Physiol Heart Circ Physiol 297(4):H1243–H1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher JD, Vineyard JV, Bruzzone CM et al (2010) Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease. J Mol Med (Berl) 88(7):665–675

    Article  CAS  PubMed Central  Google Scholar 

  • Belcher JD, Young M, Chen C et al (2013) MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice. Blood 122(15):2757–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher JD, Chen C, Nguyen J et al (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123(3):377–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler E (1975) The effect of carbon monoxide on red cell life span in sickle cell disease. Blood 46(2):253–259

    CAS  PubMed  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Bondeva T, Wolf G (2014) Reactive oxygen species in diabetic nephropathy: friend or foe? Nephrol Dial Transplant 29(11):1998–2003

    Article  PubMed  Google Scholar 

  • Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Brittain JE, Hulkower B, Jones SK et al (2010) Placenta growth factor in sickle cell disease: association with hemolysis and inflammation. Blood 115(10):2014–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brousse V, Buffet P, Rees D (2014) The spleen and sickle cell disease: the sick(led) spleen. Br J Haematol 166(2):165–176

    Article  PubMed  Google Scholar 

  • Brun M, Bourdoulous S, Couraud PO et al (2003) Hydroxyurea downregulates endothelin-1 gene expression and upregulates ICAM-1 gene expression in cultured human endothelial cells. Pharmacogenomics J 3(4):215–226

    Article  CAS  PubMed  Google Scholar 

  • Buchanan GR, Holtkamp CA (1985) Plasma levels of platelet and vascular prostaglandin derivatives in children with sickle cell anaemia. Thromb Haemost 54(2):394–396

    CAS  PubMed  Google Scholar 

  • Bzowska M, Stalinska K, Mezyk-Kopec R et al (2009) Exogenous nitric oxide inhibits shedding of ADAM17 substrates. Acta Biochim Pol 56(2):325–335

    CAS  PubMed  Google Scholar 

  • Calabrese LH, Rose-John S (2014) IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol 10(12):720–727

    Article  CAS  PubMed  Google Scholar 

  • Camus SM, De Moraes JA, Bonnin P et al (2015) Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vaso-occlusions in sickle cell disease. Blood 125(24):3805–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canalli AA, Franco-Penteado CF, Traina F et al (2007) Role for cAMP-protein kinase A signalling in augmented neutrophil adhesion and chemotaxis in sickle cell disease. Eur J Haematol 79(4):330–337

    Article  CAS  PubMed  Google Scholar 

  • Canalli AA, Franco-Penteado CF, Saad ST, Conran N, Costa FF (2008) Increased adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica 93(4):605–609

    Article  CAS  PubMed  Google Scholar 

  • Capra V, Back M, Barbieri SS et al (2013) Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke. Med Res Rev 33(2):364–438

    Article  CAS  PubMed  Google Scholar 

  • Cartron JP, Elion J (2008) Erythroid adhesion molecules in sickle cell disease: effect of hydroxyurea. Transfus Clin Biol 15(1–2):39–50

    Article  PubMed  Google Scholar 

  • Cerqueira BA, Boas WV, Zanette AD, Reis MG, Goncalves MS (2011) Increased concentrations of IL-18 and uric acid in sickle cell anemia: contribution of hemolysis, endothelial activation and the inflammasome. Cytokine 56(2):471–476

    Article  CAS  PubMed  Google Scholar 

  • Chaar V, Laurance S, Lapoumeroulie C et al (2014) Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation. J Biol Chem 289(16):11512–11521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chantrathammachart P, Mackman N, Sparkenbaugh E et al (2012) Tissue factor promotes activation of coagulation and inflammation in a mouse model of sickle cell disease. Blood 120(3):636–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charache S, Terrin ML, Moore RD et al (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 332(20):1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Charache S, Barton FB, Moore RD et al (1996) Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine (Baltimore) 75(6):300–326

    Article  CAS  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Zhang D, Fuchs TA et al (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123(24):3818–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung ATW, Chan MS, Ramanujam S et al (2004) Effects of poloxamer 188 treatment on sickle cell vaso-occlusive crisis: computer-assisted intravital microscopy study. J Invest Med 52(6):402–406

    Article  CAS  Google Scholar 

  • Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV (2014) Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 5:279

    PubMed  PubMed Central  Google Scholar 

  • Colella MP, De Paula EV, Conran N et al (2012) Hydroxyurea is associated with reductions in hypercoagulability markers in sickle cell anemia. J Thromb Haemost 10(9):1967–1970

    Article  CAS  PubMed  Google Scholar 

  • Colin Y, Le Van Kim C, El Nemer W (2014) Red cell adhesion in human diseases. Curr Opin Hematol 21(3):186–192

    Article  PubMed  Google Scholar 

  • Conran N, Almeida CB, Lanaro C et al (2007a) Inhibition of caspase-dependent spontaneous apoptosis via a cAMP-protein kinase A dependent pathway in neutrophils from sickle cell disease patients. Br J Haematol 139(1):148–158

    Article  CAS  PubMed  Google Scholar 

  • Conran N, Saad ST, Costa FF, Ikuta T (2007b) Leukocyte numbers correlate with plasma levels of granulocyte-macrophage colony-stimulating factor in sickle cell disease. Ann Hematol 86(4):255–261

    Article  CAS  PubMed  Google Scholar 

  • Croizat H, Nagel RL (1999) Circulating cytokines response and the level of erythropoiesis in sickle cell anemia. Am J Hematol 60(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Cruz PR, Lira RP, Pereira Filho SA et al (2015) Increased circulating PEDF and low sICAM-1 are associated with sickle cell retinopathy. Blood Cells Mol Dis 54(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • da Silva RR, Pereira MC, Melo Rego MJ et al (2014) Evaluation of Th17 related cytokines associated with clinical and laboratorial parameters in sickle cell anemia patients with leg ulcers. Cytokine 65(2):143–147

    Article  PubMed  CAS  Google Scholar 

  • Davila J, Manwani D, Vasovic L et al (2015) A novel inflammatory role for platelets in sickle cell disease. Platelets 26(8):726–729

    Article  CAS  PubMed  Google Scholar 

  • De Montalembert M, Wang W (2013) Cerebrovascular complications in children with sickle cell disease. Handb Clin Neurol 113:1937–1943

    Article  PubMed  Google Scholar 

  • Diebold I, Kraicun D, Bonello S, Gorlach A (2008) The ‘PAI-1 paradox’ in vascular remodeling. Thromb Haemost 100(6):984–991

    CAS  PubMed  Google Scholar 

  • Dominical VM, Samsel L, Nichols JS et al (2014) Prominent role of platelets in the formation of circulating neutrophil-red cell heterocellular aggregates in sickle cell anemia. Haematologica 99(11):e214–e217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong JF, Moake JL, Nolasco L et al (2002) ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100(12):4033–4039

    Article  CAS  PubMed  Google Scholar 

  • Driss A, Wilson NO, Mason K et al (2012) Elevated IL-1alpha and CXCL10 serum levels occur in patients with homozygous sickle cell disease and a history of acute splenic sequestration. Dis Markers 32(5):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duits AJ, Pieters RC, Saleh AW et al (1996) Enhanced levels of soluble VCAM-1 in sickle cell patients and their specific increment during vasoocclusive crisis. Clin Immunol Immunopathol 81(1):96–98

    Article  CAS  PubMed  Google Scholar 

  • Duits AJ, Rodriguez T, Schnog JJ, CURAMA Study Group (2006) Serum levels of angiogenic factors indicate a pro-angiogenic state in adults with sickle cell disease. Br J Haematol 134(1):116–119

    Article  CAS  PubMed  Google Scholar 

  • Dutra FF, Bozza MT (2014) Heme on innate immunity and inflammation. Front Pharmacol 5:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutra FF, Alves LS, Rodrigues D et al (2014) Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci U S A 111(39):E4110–E4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkis DA, Klings ES, Solovieff N et al (2011) Severe sickle cell anemia is associated with increased plasma levels of TNF-R1 and VCAM-1. Am J Hematol 86(2):220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshazly SA, Heiba NM, Abdelmageed WM (2014) Plasma PTX3 levels in sickle cell disease patients, during vaso occlusion and acute chest syndrome (data from Saudi population). Hematology 19(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Field JJ, Krings J, White NL et al (2009) Urinary cysteinyl leukotriene E(4) is associated with increased risk for pain and acute chest syndrome in adults with sickle cell disease. Am J Hematol 84(3):158–160

    Article  CAS  PubMed  Google Scholar 

  • Field JJ, Nathan DG, Linden J (2011) Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol 140(2):177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field JJ, Ataga KI, Majerus EM et al (2013) A phase I single ascending dose study of NKTT120 in stable adult sickle cell patients. Blood 122(21):977

    Google Scholar 

  • Field JJ, Nathan DG, Linden J (2014) The role of adenosine signaling in sickle cell therapeutics. Hematol Oncol Clin North Am 28(2):287–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis RB Jr (1989) Elevated fibrin D-dimer fragment in sickle cell anemia: evidence for activation of coagulation during the steady state as well as in painful crisis. Haemostasis 19(2):105–111

    CAS  PubMed  Google Scholar 

  • Francis RB Jr, Haywood LJ (1992) Elevated immunoreactive tumor necrosis factor and interleukin-1 in sickle cell disease. J Natl Med Assoc 84(7):611–615

    PubMed  PubMed Central  Google Scholar 

  • Franck PF, Bevers EM, Lubin BH et al (1985) Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells. J Clin Invest 75(1):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambero S, Canalli AA, Traina F et al (2007) Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties. Eur J Haematol 78(2):144–151

    CAS  PubMed  Google Scholar 

  • Garraud O, Cognasse F (2015) Are platelets cells? and if yes, are they immune cells? Front Immunol 6:70

    PubMed  PubMed Central  Google Scholar 

  • Garrido VT, Proenca-Ferreira R, Dominical VM et al (2012) Elevated plasma levels and platelet-associated expression of the pro-thrombotic and pro-inflammatory protein, TNFSF14 (LIGHT), in sickle cell disease. Br J Haematol 158(6):788–797

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Adisa OA, Chappa P et al (2013) Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest 123(11):4809–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladwin MT, Ofori-Acquah SF (2014) Erythroid DAMPs drive inflammation in SCD. Blood 123(24):3689–3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graido-Gonzalez E, Doherty JC, Bergreen EW et al (1998) Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood 92(7):2551–2555

    CAS  PubMed  Google Scholar 

  • Gros A, Ollivier V, Ho-Tin-Noe B (2015) Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 5:678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammerman SI, Kourembanas S, Conca TJ et al (1997) Endothelin-1 production during the acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 156(1):280–285

    Article  CAS  PubMed  Google Scholar 

  • Hasan RN, Schafer AI (2008) Hemin upregulates Egr-1 expression in vascular smooth muscle cells via reactive oxygen species ERK-1/2-Elk-1 and NF-kappaB. Circ Res 102(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • Hebbel RP (2014) Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol Oncol Clin North Am 28(2):181–198

    Article  PubMed  Google Scholar 

  • Hebbel RP, Eaton JW, Balasingam M, Steinberg MH (1982) Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 70(6):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265(3):621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbert JM, Hsu LL, Bhathena SJ et al (2005) Proinflammatory cytokines and the hypermetabolism of children with sickle cell disease. Exp Biol Med (Maywood) 230(1):68–74

    CAS  Google Scholar 

  • Hofmann SR, Rösen-Wolff A, Tsokos GC, Hedrich CM (2012) Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol 143(2):116–127

    Article  CAS  PubMed  Google Scholar 

  • Hoppe C, Kuypers F, Larkin S et al (2011) A pilot study of the short-term use of simvastatin in sickle cell disease: effects on markers of vascular dysfunction. Br J Haematol 153(5):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain M, Qadri SM, Liu L (2012) Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm (Lond) 9(1):28

    Article  CAS  Google Scholar 

  • Huang AL, Vita JA (2006) Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc Med 16(1):15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyacinth HI, Gee BE, Adamkiewicz TV et al (2012) Plasma BDNF and PDGF-AA levels are associated with high TCD velocity and stroke in children with sickle cell anemia. Cytokine 60(1):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibe BO, Morris J, Kurantsin-Mills J, Raj JU (1997) Sickle erythrocytes induce prostacyclin and thromboxane synthesis by isolated perfused rat lungs. Am J Physiol 272(4 Pt 1):L597–L602

    CAS  PubMed  Google Scholar 

  • Idzko M, Ferrari D, Eltzschig HK (2014a) Nucleotide signalling during inflammation. Nature 509(7500):310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idzko M, Ferrari D, Riegel AK, Eltzschig HK (2014b) Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood 124(7):1029–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikuta T, Adekile AD, Gutsaeva DR et al (2011) The proinflammatory cytokine GM-CSF downregulates fetal hemoglobin expression by attenuating the cAMP-dependent pathway in sickle cell disease. Blood Cells Mol Dis 47(4):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki K, Mackenzie EL, Hailemariam K, Sakamoto K, Tsuji Y (2006) Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol 26(7):2845–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowski JA, Zhou C, Winters KJ et al (2014) The effect of prasugrel on ADP-stimulated markers of platelet activation in patients with sickle cell disease. Platelets 1–6

    Google Scholar 

  • Jennings JE, Ramkumar T, Mao J et al (2008) Elevated urinary leukotriene E4 levels are associated with hospitalization for pain in children with sickle cell disease. Am J Hematol 83(8):640–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joneckis CC, Ackley RL, Orringer EP, Wayner EA, Parise LV (1993) Integrin alpha 4 beta 1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood 82(12):3548–3555

    CAS  PubMed  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanavaki I, Makrythanasis P, Lazaropoulou C et al (2012) Adhesion molecules and high-sensitivity C-reactive protein levels in patients with sickle cell beta-thalassaemia. Eur J Clin Invest 42(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21(1):37–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaul DK, Nagel RL, Chen D, Tsai HM (1993) Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion. Blood 81(9):2429–2438

    CAS  PubMed  Google Scholar 

  • Kaul DK, Finnegan E, Barabino GA (2009) Sickle red cell-endothelium interactions. Microcirculation 16(1):97–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Keikhaei B, Mohseni AR, Norouzirad R et al (2013) Altered levels of pro-inflammatory cytokines in sickle cell disease patients during vaso-occlusive crises and the steady state condition. Eur Cytokine Netw 24(1):45–52

    CAS  PubMed  Google Scholar 

  • Key NS, Slungaard A, Dandelet L et al (1998) Whole blood tissue factor procoagulant activity is elevated in patients with sickle cell disease. Blood 91(11):4216–4223

    CAS  PubMed  Google Scholar 

  • King SB (2003) The nitric oxide producing reactions of hydroxyurea. Curr Med Chem 10(6):437–452

    Article  CAS  PubMed  Google Scholar 

  • Koenen RR, Weber C (2011) Chemokines: established and novel targets in atherosclerosis. EMBO Mol Med 3(12):713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    Article  CAS  PubMed  Google Scholar 

  • Kowalska MA, Rauova L, Poncz M (2010) Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res 125(4):292–296

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Setty Y, Betal SG et al (2010) Increased levels of the inflammatory biomarker C-reactive protein at baseline are associated with childhood sickle cell vasocclusive crises. Br J Haematol 148(5):797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuruppu S, Rajapakse NW, Dunstan RA, Smith AI (2014) Nitric oxide inhibits the production of soluble endothelin converting enzyme-1. Mol Cell Biochem 396(1–2):49–54

    Article  CAS  PubMed  Google Scholar 

  • Lanaro C, Franco-Penteado CF, Albuqueque DM et al (2009) Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol 85(2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Lance EI, Casella JF, Everett AD, Barron-Casella E (2014) Proteomic and biomarker studies and neurological complications of pediatric sickle cell disease. Proteomics Clin Appl 8(11–12):813–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landburg PP, Nur E, Maria N et al (2009) Elevated circulating stromal-derived factor-1 levels in sickle cell disease. Acta Haematol 122(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Lapoumeroulie C, Benkerrou M, Odievre MH et al (2005) Decreased plasma endothelin-1 levels in children with sickle cell disease treated with hydroxyurea. Haematologica 90(3):401–403

    CAS  PubMed  Google Scholar 

  • Lee SP, Ataga KI, Orringer EP, Phillips DR, Parise LV (2006) Biologically active CD40 ligand is elevated in sickle cell anemia: potential role for platelet-mediated inflammation. Arterioscler Thromb Vasc Biol 26(7):1626–1631

    Article  CAS  PubMed  Google Scholar 

  • Leick M, Azcutia V, Newton G, Luscinskas FW (2014) Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 355(3):647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lira SA, Furtado GC (2012) The biology of chemokines and their receptors. Immunol Res 54(1–3):111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister MF, Sharkey J, Sawatzky DA et al (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 4:5

    Article  CAS  Google Scholar 

  • Lopes FC, Ferreira R, Albuquerque DM et al (2014) In vitro and in vivo anti-angiogenic effects of hydroxyurea. Microvasc Res 94:106–113

    Article  CAS  PubMed  Google Scholar 

  • Lopes FC, Traina F, Almeida CB et al (2015) Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea. Haematologica 100(6):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubin B, Chiu D, Bastacky J, Roelofsen B, Van Deenen LL (1981) Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest 67(6):1643–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manwani DM, Chen C, Carullo V et al (2014) Vaso-occlusion-promoting neutrophil mac-1 integrin activation in human sickle cell crises is stabilized by a single dose of intravenous gammaglobulin. Blood 124(21), ASH abstract:4089

    Google Scholar 

  • McCracken JM, Allen LA (2014) Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death 7:15–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGann PT, Ware RE (2011) Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain? Curr Opin Hematol 18(3):158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor L, Martin J, McGregor JL (2006) Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Front Biosci 11:830–837

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Albiol L (1982) Prostacyclin and platelet aggregation in sickle cell disease. Pediatrics 70(3):354–359

    CAS  PubMed  Google Scholar 

  • Michaels LA, Ohene-Frempong K, Zhao H, Douglas SD (1998) Serum levels of substance P are elevated in patients with sickle cell disease and increase further during vaso-occlusive crisis. Blood 92(9):3148–3151

    CAS  PubMed  Google Scholar 

  • Minniti CP, Delaney KM, Gorbach AM et al (2014) Vasculopathy, inflammation, and blood flow in leg ulcers of patients with sickle cell anemia. Am J Hematol 89(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed FA, Mahdi N, Sater MA, Al-Ola K, Almawi WY (2010) The relation of C-reactive protein to vasoocclusive crisis in children with sickle cell disease. Blood Cells Mol Dis 45(4):293–296

    Article  CAS  PubMed  Google Scholar 

  • Mohan JS, Lip PL, Blann AD, Bareford D, Lip GY (2005) The angiopoietin/Tie-2 system in proliferative sickle retinopathy: relation to vascular endothelial growth factor, its soluble receptor Flt-1 and von Willebrand factor, and to the effects of laser treatment. Br J Ophthalmol 89(7):815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreth K, Iozzo RV, Schaefer L (2012) Small leucine-rich proteoglycans orchestrate receptor crosstalk during inflammation. Cell Cycle 11(11):2084–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morganroth ML, Stenmark KR, Zirrolli JA et al (1984) Leukotriene C4 production during hypoxic pulmonary vasoconstriction in isolated rat lungs. Prostaglandins 28(6):867–875

    Article  CAS  PubMed  Google Scholar 

  • Mukaida N, Harada A, Matsushima K (1998) Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev 9(1):9–23

    Article  CAS  PubMed  Google Scholar 

  • Nath KA, Hebbel RP (2015) Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol 11(3):161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath KA, Grande JP, Haggard JJ et al (2001) Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am J Pathol 158(3):893–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natta CL, Chen LC, Chow CK (1990) Selenium and glutathione peroxidase levels in sickle cell anemia. Acta Haematol 83(3):130–132

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Nouraie M, Campbell A et al (2009) Angiogenic and inflammatory markers of cardiopulmonary changes in children and adolescents with sickle cell disease. PLoS One 4(11), e7956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nsiri B, Gritli N, Bayoudh F et al (1996) Abnormalities of coagulation and fibrinolysis in homozygous sickle cell disease. Hematol Cell Ther 38(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Nur E, van Beers EJ, Martina S et al (2011) Plasma levels of pentraxin-3, an acute phase protein, are increased during sickle cell painful crisis. Blood Cells Mol Dis 46(3):189–194

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell A, Premawardhena A, Arambepola M et al (2009) Interaction of malaria with a common form of severe thalassemia in an Asian population. Proc Natl Acad Sci U S A 106(44):18716–18721

    Article  PubMed  PubMed Central  Google Scholar 

  • Okocha C, Manafa P, Ozomba J et al (2014) C-reactive protein and disease outcome in Nigerian sickle cell disease patients. Ann Med Health Sci Res 4(5):701–705

    Article  PubMed  PubMed Central  Google Scholar 

  • Okpala I (2015) Investigational selectin-targeted therapy of sickle cell disease. Expert Opin Investig Drugs 24(2):229–238

    Article  CAS  PubMed  Google Scholar 

  • Opene M, Kurantsin-Mills J, Husain S, Ibe BO (2014) Sickle erythrocytes and platelets augment lung leukotriene synthesis with downregulation of anti-inflammatory proteins: relevance in the pathology of the acute chest syndrome. Pulm Circ 4(3):482–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega-Gomez A, Perretti M, Soehnlein O (2013) Resolution of inflammation: an integrated view. EMBO Mol Med 5(5):661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki E, Campbell M, Doyle SL (2015) Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 8:15–27

    PubMed  PubMed Central  Google Scholar 

  • Page C, Pitchford S (2013) Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 17(4):1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Pallis FR, Conran N, Fertrin KY et al (2014) Hydroxycarbamide reduces eosinophil adhesion and degranulation in sickle cell anaemia patients. Br J Haematol 164(2):286–295

    Article  CAS  PubMed  Google Scholar 

  • Papadimitriou CA, Travlou A, Kalos A, Douratsos D, Lali P (1993) Study of platelet function in patients with sickle cell anemia during steady state and vaso-occlusive crisis. Acta Haematol 89(4):180–183

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Kalra VK (2010) Placenta growth factor-induced early growth response 1 (Egr-1) regulates hypoxia-inducible factor-1alpha (HIF-1alpha) in endothelial cells. J Biol Chem 285(27):20570–20579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Gonsalves CS, Malik P, Kalra VK (2008) Placenta growth factor augments endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-1 alpha. Blood 112(3):856–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Gonsalves CS, Yang M, Malik P, Kalra VK (2009) Placenta growth factor induces 5-lipoxygenase-activating protein to increase leukotriene formation in sickle cell disease. Blood 113(5):1129–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Sundaram N, Yang M et al (2010) Placenta growth factor (PlGF), a novel inducer of plasminogen activator inhibitor-1 (PAI-1) in sickle cell disease (SCD). J Biol Chem 285(22):16713–16722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathare A, Al Kindi S, Alnaqdy AA et al (2004) Cytokine profile of sickle cell disease in Oman. Am J Hematol 77(4):323–328

    Article  CAS  PubMed  Google Scholar 

  • Perelman N, Selvaraj SK, Batra S et al (2003) Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood 102(4):1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Pernow J, Shemyakin A, Bohm F (2012) New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 91(13–14):507–516

    Article  CAS  PubMed  Google Scholar 

  • Platt OS, Orkin SH, Dover G et al (1984) Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest 74(2):652–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt OS, Thorington BD, Brambilla DJ et al (1991) Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Proenca-Ferreira R, Franco-Penteado CF, Traina F et al (2010) Increased adhesive properties of platelets in sickle cell disease: roles for alphaIIb beta3-mediated ligand binding, diminished cAMP signalling and increased phosphodiesterase 3A activity. Br J Haematol 149(2):280–288

    Article  CAS  PubMed  Google Scholar 

  • Proenca-Ferreira R, Brugnerotto AF, Garrido VT et al (2014) Endothelial activation by platelets from sickle cell anemia patients. PLoS One 9(2), e89012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qari MH, Dier U, Mousa SA (2012) Biomarkers of inflammation, growth factor, and coagulation activation in patients with sickle cell disease. Clin Appl Thromb Hemost 18(2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Reiter CD, Wang X, Tanus-Santos JE et al (2002) Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 8(12):1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues L, Costa FF, Saad ST, Grotto HZ (2006) High levels of neopterin and interleukin-3 in sickle cell disease patients. J Clin Lab Anal 20(3):75–79

    Article  CAS  PubMed  Google Scholar 

  • Rowley CA, Ikeda AK, Seidel M et al (2014) Microvascular oxygen consumption during sickle cell pain crisis. Blood 123(20):3101–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LH (1991) Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181(3):1392–1397

    Article  CAS  PubMed  Google Scholar 

  • Safaya S, Steinberg MH, Klings ES (2012) Monocytes from sickle cell disease patients induce differential pulmonary endothelial gene expression via activation of NF-kappaB signaling pathway. Mol Immunol 50(1–2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto TM, Lanaro C, Ozelo MC et al (2013) Increased adhesive and inflammatory properties in blood outgrowth endothelial cells from sickle cell anemia patients. Microvasc Res 90:173–179

    Article  CAS  PubMed  Google Scholar 

  • Sarray S, Saleh LR, Lisa Saldanha F et al (2015) Serum IL-6, IL-10, and TNFalpha levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 72(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Schacter L, Warth JA, Gordon EM, Prasad A, Klein BL (1988) Altered amount and activity of superoxide dismutase in sickle cell anemia. FASEB J 2(3):237–243

    CAS  PubMed  Google Scholar 

  • Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121(8):1276–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev 25(4):453–472

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Chiang N, Dalli J, Levy BD (2014) Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol 7(2), a016311

    Article  PubMed  Google Scholar 

  • Setty BN, Betal SG (2008) Microvascular endothelial cells express a phosphatidylserine receptor: a functionally active receptor for phosphatidylserine-positive erythrocytes. Blood 111(2):905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setty BN, Stuart MJ (2002) Eicosanoids in sickle cell disease: potential relevance of neutrophil leukotriene B4 to disease pathophysiology. J Lab Clin Med 139(2):80–89

    Article  CAS  PubMed  Google Scholar 

  • Setty BN, Key NS, Rao AK et al (2012) Tissue factor-positive monocytes in children with sickle cell disease: correlation with biomarkers of haemolysis. Br J Haematol 157(3):370–380

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Thornburg C, Telen MJ, Ortel TL (2012) Characterization of the hypercoagulable state in patients with sickle cell disease. Thromb Res 130(5):e241–e245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Kreisel D, Goldstein DR (2013) Processes of sterile inflammation. J Immunol 191(6):2857–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shet AS, Aras O, Gupta K et al (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102(7):2678–2683

    Article  CAS  PubMed  Google Scholar 

  • Shiu YT, Udden MM, McIntire LV (2000) Perfusion with sickle erythrocytes up-regulates ICAM-1 and VCAM-1 gene expression in cultured human endothelial cells. Blood 95(10):3232–3241

    CAS  PubMed  Google Scholar 

  • Sikora J, Orlov SN, Furuya K, Grygorczyk R (2014) Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood 124(13):2150–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solovey A, Gui L, Key NS, Hebbel RP (1998) Tissue factor expression by endothelial cells in sickle cell anemia. J Clin Invest 101(9):1899–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solovey A, Kollander R, Milbauer LC et al (2010) Endothelial nitric oxide synthase and nitric oxide regulate endothelial tissue factor expression in vivo in the sickle transgenic mouse. Am J Hematol 85(1):41–45

    CAS  PubMed  Google Scholar 

  • Sparkenbaugh E, Pawlinski R (2013) Interplay between coagulation and vascular inflammation in sickle cell disease. Br J Haematol 162(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Sparkenbaugh EM, Chantrathammachart P, Wang S et al (2015) Excess of heme induces tissue factor-dependent activation of coagulation in mice. Haematologica 100(3):308–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg MH, Barton F, Castro O et al (2003) Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 289(13):1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Sultana C, Shen Y, Rattan V, Johnson C, Kalra VK (1998) Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood 92(10):3924–3935

    CAS  PubMed  Google Scholar 

  • Sundaram N, Tailor A, Mendelsohn L et al (2010) High levels of placenta growth factor in sickle cell disease promote pulmonary hypertension. Blood 116(1):109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadie JM, Bae HB, Jiang S et al (2013) HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 304(5):L342–L349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tantawy AA, Adly AA, Ismail EA, Darwish YW, Ali Zedan M (2014) Growth differentiation factor-15 in young sickle cell disease patients: relation to hemolysis, iron overload and vascular complications. Blood Cells Mol Dis 53(4):189–193

    Article  CAS  PubMed  Google Scholar 

  • Tomer A, Kasey S, Connor WE et al (2001) Reduction of pain episodes and prothrombotic activity in sickle cell disease by dietary n-3 fatty acids. Thromb Haemost 85(6):966–974

    CAS  PubMed  Google Scholar 

  • Tsoumani ME, Kalantzi KI, Goudevenos IA, Tselepis AD (2012) Platelet-mediated inflammation in cardiovascular disease. Potential role of platelet-endothelium interactions. Curr Vasc Pharmacol 10(5):539–549

    Article  CAS  PubMed  Google Scholar 

  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS (2002) Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A 99(5):3047–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turhan A, Jenab P, Bruhns P et al (2004) Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood 103(6):2397–2400

    Article  CAS  PubMed  Google Scholar 

  • Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582

    Article  CAS  PubMed  Google Scholar 

  • van Beers EJ, Yang Y, Raghavachari N et al (2015) Iron, inflammation, and early death in adults with sickle cell disease. Circ Res 116(2):298–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Golen RF, van Gulik TM, Heger M (2012) The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev 23(3):69–84

    Article  PubMed  CAS  Google Scholar 

  • Van Kaer L, Parekh VV, Wu L (2013) Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol 34(2):50–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vincent L, Vang D, Nguyen J et al (2013) Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood 122(11):1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace JL (2005) Nitric oxide as a regulator of inflammatory processes. Mem Inst Oswaldo Cruz 100(Suppl 1):5–9

    CAS  PubMed  Google Scholar 

  • Walley KR, McDonald TE, Higashimoto Y, Hayashi S (1999) Modulation of proinflammatory cytokines by nitric oxide in murine acute lung injury. Am J Respir Crit Care Med 160(2):698–704

    Article  CAS  PubMed  Google Scholar 

  • Walter MR (2014) The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Curr Top Microbiol Immunol 380:191–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber DJ, Allette YM, Wilkes DS, White FA (2015) The HMGB1-RAGE inflammatory pathway: implications for brain injury induced pulmonary dysfunction. Antioxid Redox Signal

    Google Scholar 

  • Werdehoff SG, Moore RB, Hoff CJ, Fillingim E, Hackman AM (1998) Elevated plasma endothelin-1 levels in sickle cell anemia: relationships to oxygen saturation and left ventricular hypertrophy. Am J Hematol 58(3):195–199

    Article  CAS  PubMed  Google Scholar 

  • Westwick J, Watson-Williams EJ, Krishnamurthi S et al (1983) Platelet activation during steady state sickle cell disease. J Med 14(1):17–36

    CAS  PubMed  Google Scholar 

  • Wood KC, Granger DN (2007) Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol 34(9):926–932

    Article  CAS  PubMed  Google Scholar 

  • Wood BL, Gibson DF, Tait JF (1996) Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood 88(5):1873–1880

    CAS  PubMed  Google Scholar 

  • Wood KC, Hebbel RP, Granger DN (2005) Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J 19(8):989–991

    CAS  PubMed  Google Scholar 

  • Wun T, Cordoba M, Rangaswami A, Cheung AW, Paglieroni T (2002) Activated monocytes and platelet-monocyte aggregates in patients with sickle cell disease. Clin Lab Haematol 24(2):81–88

    Article  PubMed  Google Scholar 

  • Wun T, Styles L, DeCastro L et al (2014) Phase 1 study of the E-selectin inhibitor GMI 1070 in patients with sickle cell anemia. PLoS One 9(7), e101301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A 93(13):6770–6774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Wandersee NJ, Guo Y et al (2014) Sickle cell disease increases high mobility group box 1: a novel mechanism of inflammation. Blood 124(26):3978–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin Z, Witting S, Palascak MB et al (2003) Phosphatidylserine externalization in sickle red blood cells: associations with cell age, density, and hemoglobin F. Blood 102(1):365–370

    Article  CAS  PubMed  Google Scholar 

  • Zachlederova M, Jarolim P (2000) Gene expression in human lung microvascular cells interacting with sickle and calcium-loaded red cells and with inflammatory cytokines. Blood 96(11):598A

    Google Scholar 

  • Zhang Y, Dai Y, Wen J et al (2011) Detrimental effects of adenosine signaling in sickle cell disease. Nat Med 17(1):79–86

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Conran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Almeida, C.B., Kato, G.J., Conran, N. (2016). Inflammation and Sickle Cell Anemia. In: Costa, F., Conran, N. (eds) Sickle Cell Anemia. Springer, Cham. https://doi.org/10.1007/978-3-319-06713-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06713-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06712-4

  • Online ISBN: 978-3-319-06713-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics