Skip to main content

HIFU Tissue Ablation: Concept and Devices

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Bataineh O, Jenne J, Huber P (2012) Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 38:346–353

    Article  PubMed  Google Scholar 

  • Aptel F, Charrel T, Lafon C, Romano F, Chapelon JY, Blumen-Ohana E, Denis P (2011) Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study. Investig Ophthalmol Vis Sci 52:8747–8753

    Article  Google Scholar 

  • Aptel F, Dupuy C, Rouland JF (2014) Treatment of refractory open-angle glaucoma using ultrasonic circular cyclocoagulation: a prospective case series. Curr Med Res Opin 30:1599–1605

    Article  CAS  PubMed  Google Scholar 

  • Aubry JF, Pernot M, Marquet F, Tanter M, Fink M (2008) Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Phys Med Biol 53:2937–2951

    Article  PubMed Central  PubMed  Google Scholar 

  • Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive trans-skull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93

    Article  CAS  PubMed  Google Scholar 

  • Baco E, Gelet A, Crouzet S, Rud E, Rouvière O, Tonoli‐Catez H, Eggesbø HB (2014) Hemi salvage high‐intensity focused ultrasound (HIFU) in unilateral radiorecurrent prostate cancer: a prospective two‐centre study. BJU Int 114:532–540

    Article  PubMed  Google Scholar 

  • Bacon DR (1982) Characteristics of a PVDF membrane hydrophone for use in the range 1–100 MHz. IEEE Trans Sonics Ultrasonics 29:18–25

    Article  Google Scholar 

  • Bailey MR, Maxwell AD, Pishchalnikov YA, Sapozhnikov OA (2011) Polyvinylidene fluoride membrane hydrophone low‐frequency response to medical shockwaves. J Acoust Soc Am 129:2677–2677

    Article  Google Scholar 

  • Ballantine HT, Bell E, Manlapaz J (1960) Progress and problems in the neurological application of focused ultrasound. J Neurosurg 17:858–876

    Article  PubMed  Google Scholar 

  • Casper AJ, Liu D, Ballard JR, Ebbini ES (2013) Real-time implementation of a dual-mode ultrasound array system: in vivo results. IEEE Trans Biomed Eng 60:2751–2759

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S (2002) An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys 29:2611–2620

    Article  PubMed  Google Scholar 

  • Chapelon JY, Cathignol D, Cain C, Ebbini E, Kluiwstra JU, Sapozhnikov OA, Guey JL (2000) New piezoelectric transducers for therapeutic ultrasound. Ultrasound Med Biol 26:153–159

    Article  CAS  PubMed  Google Scholar 

  • Chaussy C, Thuroff S, de la Rosette JJMC (2001) Results and side effects of high-intensity focused ultrasound in localized prostate cancer. J Endourol 15:437–440

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang Z, Wu F, Zhu H, Zou J, Bai J, Li K, Xie F (2002) High intensity focused ultrasound in the treatment of primary malignant bone tumor. Zhonghua Zhong Liu Za Zhi 24:612–615

    PubMed  Google Scholar 

  • Chen WS, Brayman AA, Matula TJ, Crum LA (2003) Inertial cavitation dose and hemolysis produced in vitro with or without Optison®. Ultrasound Med Biol 29:725–737

    Article  PubMed  Google Scholar 

  • Chen W, Zhou K (2005) High-intensity focused ultrasound ablation: a new strategy to manage primary bone tumors. Curr Opin Orthop 16:494–500

    Article  Google Scholar 

  • Chen GS, Lin CY, Jeong JS, Cannata JM, Lin WL, Chang H, Shung KK (2012) Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer. IEEE Trans Ultrason Ferroelectr Freq Control 59:150–155

    Article  PubMed Central  PubMed  Google Scholar 

  • Civale J, Clarke RL, Rivens IH, ter Haar GR (2006) The use of a segmented transducer for rib sparing in HIFU treatments. Ultrasound Med Biol 32:1753–1761

    Article  PubMed  Google Scholar 

  • Clement GT, Hynynen K (2002a) Micro-receiver guided transcranial beam steering. IEEE Trans Ultrason Ferroelectr Freq Control 49:447–453

    Article  PubMed  Google Scholar 

  • Clement GT, Hynynen K (2002b) A non-invasive method for focusing ultrasound through the skull. Phys Med Biol 47:1219–1236

    Article  CAS  PubMed  Google Scholar 

  • Coleman DJ, Lizzi FL, El-Mofty AAM, Driller J, Franzen LA (1980) Ultrasonically accelerated absorption of vitreous membranes. Am J Ophthalmol 89:490–499

    Article  CAS  PubMed  Google Scholar 

  • Coleman DJ, Lizzi FL, Torpey JH, Burgess SEP, Driller J, Rosado A, Nguyen HT (1985a) Treatment of experimental lens capsular tears with intense focused ultrasound. Br J Ophthalmol 69:645–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman DJ, Lizzi FL, Driller J, Rosado AL, Burgess SEP, Torpey JH, Smith ME, Silverman RH, Yablonski ME, Chang S et al (1985b) Therapeutic ultrasound in the treatment of Glaucoma – II Clinical Applications. Ophthalmol 92:347–353

    Article  CAS  Google Scholar 

  • Couppis A, Damianou C, Kyriacou P, Lafon C, Chavrier F, Chapelon JY, Birer A (2012) Heart ablation using a planar rectangular high intensity ultrasound transducer and MRI guidance. Ultrasonics 52:821–829

    Article  PubMed  Google Scholar 

  • Crouzet S, Rouvière O, Lafon C, Chapelon JY, Gelet A (2015) Focal High-Intensity Focused Ultrasound (HIFU). In: Technical aspects of focal therapy in localized prostate cancer. Springer, Paris, pp 137–151

    Google Scholar 

  • Crouzet S, Rouviere O, Martin X, Gelet A (2014) High-intensity focused ultrasound as focal therapy of prostate cancer. Curr Opin Urol 24:225–230

    Article  PubMed  Google Scholar 

  • Daum DR, Hynynen K (1999) A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue. IEEE Trans Ultrason Ferroelectr Freq Control 46:1254–1268

    Article  CAS  PubMed  Google Scholar 

  • Dickinson L, Ahmed H, McCartan N, Weir S, Hindley R, Lewi H, Cornaby A et al (2013) 553 Five year oncological outcomes following whole gland primary HIFU from the UK independent HIFU registry. J Urol 189, e227

    Article  Google Scholar 

  • Duck FA (2013) Physical properties of tissues: a comprehensive reference book. Academic press, London

    Google Scholar 

  • Dupenloup F, Chapelon J-Y, Cathignol DJ, Sapozhnikov OA (1996) Reduction of the grating lobes of annular arrays used in focused ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 43:991–998

    Article  Google Scholar 

  • Dupré A, Melodelima D, Pérol D, Chen Y, Vincenot J, Chapelon JY, Rivoire M (2015) First clinical experience of intra-operative high intensity focused ultrasound in patients with colorectal liver metastases: a phase I-IIa study. PLoS One 10, e0118212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ebbini ES, Yao H, Shrestha A (2006) Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason Imaging 28:65–82

    Article  PubMed  Google Scholar 

  • Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, Frysinger RC, Sperling SA, Wylie S, Monteith SJ, Druzgal J, Shah BB, Harrison M, Wintermark M (2013) A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 369:640–648

    Article  CAS  PubMed  Google Scholar 

  • Ellens N, Lucht BBC, Gunaseelan ST, Hudson JM, Hynynen KH (2015) A novel, flat, electronically-steered phased array transducer for tissue ablation:preliminary results. Phys Med Biol 60:2195–2215

    Article  PubMed  Google Scholar 

  • Filonenko EA, Gavrilov LR, Khokhlova VA, Hand JW (2004) Heating of biological tissues by two-dimensional phased arrays with random and regular element distributions. Acoust Phys 50:222–231

    Article  Google Scholar 

  • Fjield T, Silcox CE, Hynynen K (1999) Low-profile lenses for ultrasound surgery. Phys Med Biol 44:1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Froeling VK, Meckelburg NF, Schreiter C, Scheurig-Muenkler J, Kamp MH, Maurer A, Beck A, Hamm B, Kroencke TJ (2013) Outcome of uterine artery embolization versus MR-guided high-intensity focused ultrasound treatment for uterine fibroids: long-term results. Eur J Radiol 82:2265–2269

    Article  CAS  PubMed  Google Scholar 

  • Fry WJ (1953) Action of ultrasound on nerve tissue—a review. J Acoust Soc Am 25:1–5

    Article  Google Scholar 

  • Fry FJ (1958) Precision high intensity focused ultrasonic machines for surgery. Am J Phys Med 37:152–156

    CAS  PubMed  Google Scholar 

  • Fry FJ (1977) Transkull transmission of an intense focused ultrasonic beam. Ultrasound Med Biol 3:179–189

    Article  CAS  PubMed  Google Scholar 

  • Fry WJ, Mosberg WH, Barnard JW, Fry FJ (1954) Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11:471–478

    Article  CAS  PubMed  Google Scholar 

  • Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science 127:83–84

    Article  CAS  PubMed  Google Scholar 

  • Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron ME-7:166–181

    Article  CAS  PubMed  Google Scholar 

  • Gavrilov LR, Hand JW (2000) Two-dimensional phased arrays for surgery: movement of a single focus. Acoust Phys 46:390–399

    Article  Google Scholar 

  • Gavrilov LR, Hand JW, Abel P, Cain CA (1997) A method of reducing grating lobes associated with an ultrasound linear phased array intended for transrectal thermotherapy. IEEE Trans Ultrason Ferroelectr Freq Control 44:1010–1017

    Article  Google Scholar 

  • Gavrilov LR, Hand JW, Yushina IG (2000) Two-dimensional phased arrays for application in surgery: scanning by several focuses. Acoust Phys 46:551–558

    Article  Google Scholar 

  • Gelet A, Chapelon JY, Margonari J, Theilliere Y, Gorry F, Souchon R, Bouvier R (1993) High-intensity focused ultrasound experimentation on human benign prostatic hypertrophy. Eur Urol 23:44–47

    PubMed  Google Scholar 

  • Gelet A et al (2004) Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology 63:625–629

    Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1980) Compilation of empirical ultrasonic properties of mammalian tissues. II. J Acoust Soc Am 68:93–108

    Article  CAS  PubMed  Google Scholar 

  • Goss SA, Frizell LA, Kouzmanoff JT, Barich JM, Yang JM (1996) Sparse random ultrasound phased array for focal surgery. IEEE Trans Ultrason Ferroelectr Freq Control 43:1111–1121

    Article  Google Scholar 

  • ter Haar GR, Coussios CC (2007) HIFU physical principles & devices. Int J Hyperthermia 23:89–104

    Article  PubMed  Google Scholar 

  • ter Haar G (2010) Ultrasound bioeffects and safety. Proc Inst Mech Eng H 224:363–373

    Article  PubMed  Google Scholar 

  • ter Haar G, Shaw A, Pye S, Ward B, Bottomley F, Nolan R, Coady AM (2011) Guidance on reporting ultrasound exposure conditions for bioeffects studies. Ultrasound Med Biol 37:177–183

    Article  PubMed  Google Scholar 

  • Hand JW, Shaw A, Sadhoo N, Rajagopal S, Dickinson RJ, Gavrilov LR (2009) A random phased array device for delivery of high intensity focused ultrasound. Phys Med Biol 54:5675–5693

    Article  CAS  PubMed  Google Scholar 

  • Hesley GK, Gorny KR, Woodrum DA (2013) MR-guided focused ultrasound for the treatment of uterine fibroids. Cardiovasc Intervent Radiol 36:5–13

    Article  PubMed  Google Scholar 

  • Hill CR, Rivens IH, Vaughan MG, ter Haar GR (1994) Lesion development in focused ultrasound surgery: a general model. Ultrasound Med Biol 20:259–269

    Article  CAS  PubMed  Google Scholar 

  • Holt RG, Roy RA (2001) Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 27:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Tu J, Brayman AA, Matula TJ, Crum LA (2006) Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 32:1611–1619

    Article  PubMed  Google Scholar 

  • Hurwitz MD, Ghanouni P, Kanaev SV, Iozeffi D, Gianfelice D, Fennessy FM, Kuten A, Meyer JE, LeBlang SD, Roberts A, Choi J, Larner JM, Napoli A, Turkevich VG, Inbar Y, Tempany CM, Pfeller RM (2014) Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 106:1–9

    Article  Google Scholar 

  • Hutchinson EB, Buchanan MT, Hynynen K (1996) Design and optimization of an aperiodic ultrasound phased array for intracavitary prostate thermal therapies. Med Phys 23:767–776

    Article  CAS  PubMed  Google Scholar 

  • Hynynen K, Chung A, Fjield T, Buchanan M, Daum D, Colucci V, Lopath P, Jolesz F (1996) Feasibility of using ultrasound phased arrays for MRI monitored noninvasive surgery. IEEE Trans Ultrason Ferroelectr Freq Control 43:1043–1053

    Article  Google Scholar 

  • Hynynen K, Sun J (1999) Transskull ultrasound therapy: The feasibility of using image derived skull thickness information to correct the phase distortion. IEEE Trans Ultrason Ferroelectr Freq Control 46:752–755

    Article  CAS  PubMed  Google Scholar 

  • Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Philips RR, Middleton MR (2005) The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 93:890–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, Crum LA (2006) Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J Acoust Soc Am 119:1834–1848

    Article  PubMed  Google Scholar 

  • Khuri-Yakub BT, Oralkan Ö (2011) Capacitive micromachined ultrasonic transducers for medical imaging and therapy. J Micromech Microeng 21:054004

    Article  PubMed Central  Google Scholar 

  • Kovatcheva R, Vlahov J, Stoinov J, Lacoste F, Ortuno C, Zaletel K (2014) US-guided high-intensity focused ultrasound as a promising non-invasive method for treatment of primary hyperparathyroidism. Eur Radiol 24:2052–2058

    Article  PubMed  Google Scholar 

  • Kovatcheva R, Guglielmina JN, Abehsera M, Boulanger L, Laurent N, Poncelet E (2015) Ultrasound-guided high-intensity focused ultrasound treatment of breast fibroadenoma—a multicenter experience. J Ther Ultrasound 3:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Lafon C, Theillere Y, Prat F, Arefiev A, Chapelon J, Cathignol D (2000) Development of an interstitial ultrasound applicator for endoscopic procedures: animal experimentation. Ultrasound Med Biol 26:669–675

    Article  CAS  PubMed  Google Scholar 

  • Lavine O, Langenstrass K, Bowyer C, Fox F, Griffing V, Thaler W (1952) Effects of ultrasonic waves on the refractive media of the eye. Arch Ophthalmol 47:204–209

    Article  CAS  Google Scholar 

  • Lee BC, Nikoozadeh A, Park KK, Khuri-Yakub BPT (2013) Fabrication of CMUTs with substrate-embedded springs. In: Proceeding IEEE Ultrasonics Symposium, Czech Republic, Prague, pp 1733–1736

    Google Scholar 

  • Li C, Bian D, Chen W, Zhao C, Yin N, Wang Z (2004) Focused ultrasound therapy of vulvar dystrophies: a feasibility study. Obstet Gynecol 104:915–921

    Article  PubMed  Google Scholar 

  • Li C, Zhang W, Fan W, Huang J, Zhang F, Wu P (2010) Noninvasive treatment of malignant bone tumors using high‐intensity focused ultrasound. Cancer 116:3934–3942

    Article  PubMed  Google Scholar 

  • Liberman B, Gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, Chander G, Hengst S, Pfeller R, Chechick A, Hanannel A, Dogadkin O, Catane R (2009) Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 16:140–146

    Article  PubMed  Google Scholar 

  • Lizzi FL, Coleman DJ, Driller J, Franzen LA, Jackobiec FA (1978) Experimental ultrasonically induced lesions in the retina, choroid, and sclera. Invest Ophthalmol 17:350–360

    CAS  Google Scholar 

  • Lynn JG, Zwemer RL, Chick AJ, Miller AE (1942) A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 26:179–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McDannold N, Tempany CM, Fennessy FM, So MJ, Rybicki FJ, Stewart EA, Hynynen K (2006) Uterine leiomyomas: MR imaging–based thermometry and thermal dosimetry during focused ultrasound thermal ablation 1. Radiol 240:263–272

    Article  Google Scholar 

  • Madersbacher S, Schatzl G, Djavan B, Stulnig T, Marberger M (2000) Long-term outcome of transrectal high- intensity focused ultrasound therapy for benign prostatic hyperplasia. Eur Urol 37:687–694

    Article  CAS  PubMed  Google Scholar 

  • Mari JM, Bouchoux G, Dillenseger JL, Gimonet S, Birer A, Garnier C, Brasset L, Ke W, Guey JL, Fleury G (2013) Study of a dual-mode array integrated in a multi-element transducer for imaging and therapy of prostate cancer. IRBM 34:147–158

    Article  Google Scholar 

  • Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66:858–861

    Article  PubMed  Google Scholar 

  • Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, Sheehan JP, Wintermark M, Jolesz FA, Kassell NF (2012) Magnetic resonance guided focused ultrasound surgery: part 2 – a review of current and future applications. Neurosurgery 71:755–763

    Article  PubMed Central  PubMed  Google Scholar 

  • Melodelima D, Lafon C, Prat F, Theillère Y, Arefiev A, Cathignol D (2003) Transoesophageal ultrasound applicator for sector-based thermal ablation: first in vivo experiments. Ultrasound Med Biol 29:285–291

    Article  PubMed Central  PubMed  Google Scholar 

  • Melodelima D, Salomir R, Chapelon JY, Theillère Y, Moonen C, Cathignol D (2005) Intraluminal high intensity ultrasound treatment in the esophagus under fast MR temperature mapping: in vivo studies. Magn Reson Med 54:975–982

    Article  PubMed  Google Scholar 

  • Melodelima D, N’Djin WA, Parmentier H, Chesnais S, Rivoire M, Chapelon JY (2009) Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments. Ultrasound Med Biol 35:425–435

    Article  PubMed  Google Scholar 

  • Orsi F, Arnone P, Chen W, Zhang L (2010) High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J Cancer Res Ther 6:414–420

    Article  PubMed  Google Scholar 

  • Owen NR, Chapelon JY, Bouchoux G, Berriet R, Fleury G, Lafon C (2010) Dual-mode transducers for ultrasound imaging and thermal therapy. Ultrasonics 50:216–220

    Article  CAS  PubMed  Google Scholar 

  • Payne A, Vyas U, Todd N, de Bever J, Christensen DA, Parker DL (2011) The effect of electronically steering a phased array ultrasound transducer on nearfield tissue heating. Med Phys 38:4971–4981

    Article  PubMed Central  PubMed  Google Scholar 

  • Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M (2003) High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol 48:2577–2589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prat F, Lafon C, Margonari J, Gorry F, Theillere Y, Chapelon JY, Cathignol D (1999) A high-intensity US probe designed for intraductal tumor destruction: experimental results. Gastrointest Endosc 50:388–392

    Article  CAS  PubMed  Google Scholar 

  • Prat F, Lafon C, Theillere JY, Fritsch J, Choury AD, Lorand I, Cathignol D (2001) Destruction of bile duct carcinoma by intraductal high intensity ultrasound during ERCP. Gastrointest Endosc 53:797–800

    Article  CAS  PubMed  Google Scholar 

  • Quinn SD, Gedroye WM (2015) Thermal ablation treatment of uterine fibroids. Int J Hyperthermia 31:272–279

    Google Scholar 

  • Rivens IH, Clarke RL, ter Haar GR (1996) Design of focused ultrasound surgery transducers. IEEE Trans Ultrason Ferroelectr Freq Control 43:1023–1031

    Article  Google Scholar 

  • Rivens I, Shaw A, Civale J, Morris H (2007) Treatment monitoring and thermometry for therapeutic focused ultrasound. Int J Hyperthermia 23:121–139

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg RS, Purnell E (1967) Effects of ultrasonic radiation on the ciliary body. Am J Ophthalmol 63:403–409

    Article  CAS  PubMed  Google Scholar 

  • Sanghvi NT, Foster RS, Bihrle R, Casey R, Uchida T, Phillips MH, Syrus J, Zaitsev AV, Marich KW, Fry FJ (1999) Noninvasive surgery of prostate tissue by high intensity focused ultrasound: an updated report. Eur J Ultrasound 9:19–29

    Article  CAS  PubMed  Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800

    Article  CAS  PubMed  Google Scholar 

  • Shotton KC, Bacon DR, Quilliam RM (1980) A PVDF membrane hydrophone for operation in the range 0.5 MHz to 15 MHz. Ultrasonics 18:123–126

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui K, Chopra R, Vedula S, Sugar L, Haider M, Boyes A, Klotz L (2010) MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 76:1506–1511

    Article  PubMed  Google Scholar 

  • Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ (1991) Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol 111:327–337

    Article  CAS  PubMed  Google Scholar 

  • Sommer G, Pauly KB, Holbrook A, Plata J, Daniel B, Bouley D, Diederich C (2013) Applicators for MR-guided ultrasonic ablation of BPH. Invest Radiol 48:387–394

    Article  PubMed Central  PubMed  Google Scholar 

  • Sullivan LD, McLoughlin MG, Goldenberg LG, Gleave ME, Marich KW (1997) Early experience with high-intensity focused ultrasound for the treatment of benign prostatic hypertrophy. Br J Urol 79:172–176

    Article  CAS  PubMed  Google Scholar 

  • Tanter M, Thomas JL, Fink M (1998) Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am 103:2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Tanter M, Aubry JF, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter: part I. Basic principles. J Acoust Soc Am 101:37–47

    Article  Google Scholar 

  • Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiol 226:897–905

    Article  Google Scholar 

  • Thomas JL, Fink M (1996) Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans Ultrason Ferroelectr Freq Control 43:1122–1129

    Article  Google Scholar 

  • Thüroff S, Chaussy CG (2015) Transrectal prostate cancer ablation by robotic High-Intensity Focused Ultrasound (HIFU) at 3 MHz: 18 years clinical experiences. In: Focal therapy of prostate cancer, Springer International Publishing, Switzerland, pp 105–133

    Google Scholar 

  • Uddin Ahmed H, Cathcart P, Chalasani V, Williams A, McCartan N, Freeman A, Emberton M (2012) Whole‐gland salvage high‐intensity focused ultrasound therapy for localized prostate cancer recurrence after external beam radiation therapy. Cancer 118:3071–3078

    Article  PubMed  Google Scholar 

  • Urban MW, Chalek C, Haider B, Thomenius KE, Fatemi M, Alizad A (2013) A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer. IEEE Trans Ultrason Ferroelectr Freq Control 60:535–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Valerio M, Ahmed HU, Emberton M, Lawrentschuk N, Lazzeri M, Montironi R, Polascik TJ (2014) The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol 66:732–751

    Article  PubMed Central  PubMed  Google Scholar 

  • Vincenot J, Melodelima D, Chavrier F, Vignot A, Kocot A, Chapelon JY (2013) Electronic beam steering used with a toroidal HIFU transducer substantially increases the coagulated volume. Ultrasound Med Biol 39:1241–1254

    Article  PubMed  Google Scholar 

  • Wear K, Gammell P, Maruvada S, Liu Y, Harris G (2014) Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity. IEEE Trans Ultrason Ferroelectr Freq Control 61:62–75

    Article  PubMed  Google Scholar 

  • Wong SH, Kupnik M, Watkins RD, Butts-Pauly K, Khuri-Yakub BT (2010) Capacitive micromachined ultrasonic transducers for therapeutic ultrasound applications. IEEE Trans Biomed Eng 57:114–123

    Article  PubMed Central  PubMed  Google Scholar 

  • Wharton IP, Rivens IH, ter Haar GR, Gilderdale DJ, Collins DJ, Hand JW, Desouza NM (2007) Design and development of a prototype endocavitary probe for high‐intensity focused ultrasound delivery with integrated magnetic resonance imaging. J Magn Reson Imaging 25:548–556

    Article  PubMed  Google Scholar 

  • Wu F, Wang ZB, Chen WZ, Wang W, Gui Y, Zhang M, Feng R (2004) Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem 11:149–154

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Wang ZB, Chen WZ, Zou JZ, Bai J, Zhu H, Li KQ, Jin CB, Xie FL, Su HB (2005a) Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology 235:659–667

    Article  PubMed  Google Scholar 

  • Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, Bai J, Li KQ, Jin CB, Xie FL, Su HB (2005b) Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: initial experience. Radiol 236:1034–1040

    Article  Google Scholar 

  • Yamaner FY, Olcum S, Oguz HK, Bozkurt A, Koymen H, Atalar A (2012) High-power CMUTs: design and experimental verification. IEEE Trans Ultrason Ferroelectr Freq Control 59:1276–1284

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I should like to thank my team at the ICR for providing me with photographs and figures, most especially Drs Ian Rivens, John Civale, David Sinden and Pierre Gelat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail ter Haar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

ter Haar, G. (2016). HIFU Tissue Ablation: Concept and Devices. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_1

Download citation

Publish with us

Policies and ethics