Skip to main content

microRNA in Human Reproduction

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity.

In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lau PP, Chang BH, Chan L. Two-hybrid cloning identifies an RNA-binding protein, GRY-RBP, as a component of apobec-1 editosome. Biochem Biophys Res Commun. 2001;282(4):977–83.

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lai EC. microRNAs: runts of the genome assert themselves. Curr Biol. 2003;13(23):R925–36.

    Article  CAS  PubMed  Google Scholar 

  4. Plasterk RH. Micro RNAs in animal development. Cell. 2006;124(5):877–81.

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ro S, Song R, Park C, Zheng H, Sanders KM, Yan W. Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA. 2007;13(12):2366–80; PMCID: 2080611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, et al. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. Int J Biol Sci. 2011;7(7):1016–26; PMCID: 3164151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahn HW, Morin RD, Zhao H, Harris RA, Coarfa C, Chen ZJ, et al. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol Hum Reprod. 2010;16(7):463–71; PMCID: 2882868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mishima T, Takizawa T, Luo SS, Ishibashi O, Kawahigashi Y, Mizuguchi Y, et al. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction. 2008;136(6):811–22.

    Article  CAS  PubMed  Google Scholar 

  10. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14; PMCID: 2681231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McBride D, Carre W, Sontakke SD, Hogg CO, Law A, Donadeu FX, et al. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012;144(2):221–33.

    Article  CAS  PubMed  Google Scholar 

  12. Tripurani SK, Xiao C, Salem M, Yao J. Cloning and analysis of fetal ovary microRNAs in cattle. Anim Reprod Sci. 2010;120(1-4):16–22.

    Article  CAS  PubMed  Google Scholar 

  13. Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, et al. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 2009;10:443; PMCID: 2762473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, et al. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci. 2011;7(7):1045–55; PMCID: 3174389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hossain MM, Sohel MM, Schellander K, Tesfaye D. Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res. 2012;349(3):679–90.

    Article  CAS  PubMed  Google Scholar 

  16. Luense LJ, Carletti MZ, Christenson LK. Role of Dicer in female fertility. Trends Endocrinol Metab. 2009;20(6):265–72; PMCID: 3121329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  18. Mallory AC, Dugas DV, Bartel DP, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol. 2004;14(12):1035–46.

    Article  CAS  PubMed  Google Scholar 

  19. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–101.

    Article  CAS  PubMed  Google Scholar 

  20. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117(1):69–81.

    Article  CAS  PubMed  Google Scholar 

  21. Carletti MZ, Christenson LK. MicroRNA in the ovary and female reproductive tract. J Anim Sci. 2009;87(14 Suppl):E29–38; PMCID: 3118666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A. 2002;99(7):4465–70; PMCID: 123671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicholson RH, Nicholson AW. Molecular characterization of a mouse cDNA encoding Dicer, a ribonuclease III ortholog involved in RNA interference. Mamm Genome. 2002;13(2):67–73.

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453(7194):539–43.

    Article  CAS  PubMed  Google Scholar 

  25. Cui XS, Shen XH, Kim NH. Dicer1 expression in preimplantation mouse embryos: involvement of Oct3/4 transcription at the blastocyst stage. Biochem Biophys Res Commun. 2007;352(1):231–6.

    Article  CAS  PubMed  Google Scholar 

  26. Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, et al. Critical roles for Dicer in the female germline. Genes Dev. 2007;21(6):682–93; PMCID: 1820942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21(6):644–8; PMCID: 1820938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schier AF. The maternal-zygotic transition: death and birth of RNAs. Science. 2007;316(5823):406–7.

    Article  CAS  PubMed  Google Scholar 

  29. Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008;149(12):6207–12; PMCID: 2613048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol. 2008;22(10):2336–52; PMCID: 2582529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol. 2010;315(1–2):63–73; PMCID: 2814883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mattiske DM, Han L, Mann JR. Meiotic maturation failure induced by DICER1 deficiency is derived from primary oocyte ooplasm. Reproduction. 2009;137(4):625–32.

    Article  CAS  PubMed  Google Scholar 

  33. Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79(6):1030–7; PMCID: 2780477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, et al. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest. 2008;118(5):1944–54; PMCID: 2289794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez G, Behringer RR. Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev. 2009;76(7):678–88; PMCID: 2752678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD, et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome. 2009;20(3):140–51.

    Article  PubMed  Google Scholar 

  37. Sirotkin AV, Ovcharenko D, Grossmann R, Laukova M, Mlyncek M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol. 2009;219(2):415–20.

    Article  CAS  PubMed  Google Scholar 

  38. Yao G, Yin M, Lian J, Tian H, Liu L, Li X, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24(3):540–51.

    Article  CAS  PubMed  Google Scholar 

  39. Lannes J, L’Hote D, Garrel G, Laverriere JN, Cohen-Tannoudji J, Querat B. A MicroRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol. 2015;29(3):364–72.

    Article  CAS  PubMed  Google Scholar 

  40. Yao N, Yang BQ, Liu Y, Tan XY, Lu CL, Yuan XH, et al. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine. 2010;38(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  41. Christenson LK. MicroRNA control of ovarian function. Anim Reprod. 2010;7(3):129–33; PMCID: 3111027.

    PubMed  PubMed Central  Google Scholar 

  42. Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011;152(10):3941–51; PMCID: 3176644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toms D, Xu S, Pan B, Wu D, Li J. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol. 2015;399:95–102.

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Graham I, Hastings R, Gunewardena S, Brinkmeier ML, Conn PM, et al. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem. 2015;290(5):2699–714; PMCID: 4317015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science. 2013;341(6141):71–3.

    Article  CAS  PubMed  Google Scholar 

  46. Lamouille S, Subramanyam D, Blelloch R, Derynck R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol. 2013;25(2):200–7; PMCID: 4240277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW, Sun Y, Chen C, et al. High-throughput microRNAome analysis in human germ cell tumours. J Pathol. 2007;213(3):319–28.

    Article  CAS  PubMed  Google Scholar 

  49. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):R214; PMCID: 2246288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  51. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  52. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.

    Article  PubMed  CAS  Google Scholar 

  53. Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J. 2011;278(10):1619–33; PMCID: 3087823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, et al. Identification of microRNAs of the herpesvirus family. Nat Methods. 2005;2(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  55. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005;309(5740):1577–81.

    Article  CAS  PubMed  Google Scholar 

  56. Wei YF, Cui GY, Ye P, Chen JN, Diao HY. MicroRNAs may solve the mystery of chronic hepatitis B virus infection. World J Gastroenterol. 2013;19(30):4867–76; PMCID: 3740416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Singh PK, Singh AV, Chauhan DS. Current understanding on micro RNAs and its regulation in response to Mycobacterial infections. J Biomed Sci. 2013;20:14; PMCID: 3599176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ono K. MicroRNA links obesity and impaired glucose metabolism. Cell Res. 2011;21(6):864–6; PMCID: 3203709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci. 2013;6:39; PMCID: 3840814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hitachi K, Tsuchida K. Role of microRNAs in skeletal muscle hypertrophy. Front Physiol. 2013;4:408; PMCID: 3893574.

    PubMed  PubMed Central  Google Scholar 

  61. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370(9588):685–97.

    Article  CAS  PubMed  Google Scholar 

  62. Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–65.

    CAS  PubMed  Google Scholar 

  63. Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31(3):355–62; PMCID: 3947080.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068–79.

    Article  CAS  PubMed  Google Scholar 

  65. Xu B, Zhang YW, Tong XH, Liu YS. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26–36.

    Article  CAS  PubMed  Google Scholar 

  66. Yin M, Wang X, Yao G, Lu M, Liang M, Sun Y, et al. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014;289(26):18239–57; PMCID: 4140302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burks DJ, Font de Mora J, Schubert M, Withers DJ, Myers MG, Towery HH, et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature. 2000;407(6802):377–82.

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M. Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol Hum Reprod. 2014;20(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  69. Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278–86; PMCID: 3712080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ye X, Hemida MG, Qiu Y, Hanson PJ, Zhang HM, Yang D. MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/beta-catenin signal pathways. Cell Mol Life Sci. 2013;70(23):4631–44.

    Article  CAS  PubMed  Google Scholar 

  71. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206.

    Article  CAS  PubMed  Google Scholar 

  72. Persani L, Rossetti R, Cacciatore C, Fabre S. Genetic defects of ovarian TGF-beta-like factors and premature ovarian failure. J Endocrinol Invest. 2011;34(3):244–51.

    Article  CAS  PubMed  Google Scholar 

  73. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.

    CAS  PubMed  Google Scholar 

  74. Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–14; PMCID: 2762081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  76. Kuang H, Han D, Xie J, Yan Y, Li J, Ge P. Profiling of differentially expressed microRNAs in premature ovarian failure in an animal model. Gynecol Endocrinol. 2014;30(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  77. Uhlenhaut NH, Treier M. Forkhead transcription factors in ovarian function. Reproduction. 2011;142(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  78. Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587(15):2474–82.

    Article  CAS  PubMed  Google Scholar 

  79. Zheng P, Dean J. Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med. 2007;25(4):243–51.

    Article  CAS  PubMed  Google Scholar 

  80. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305(5687):1157–9.

    Article  CAS  PubMed  Google Scholar 

  81. Tripurani SK, Lee KB, Wee G, Smith GW, Yao J. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev Biol. 2011;11:25; PMCID: 3103443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  83. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8; PMCID: 2492472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107(14):6328–33; PMCID: 2851954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9), e3148; PMCID: 2519789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009;112(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  88. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  89. Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54(3):482–90.

    Article  CAS  PubMed  Google Scholar 

  90. Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, et al. Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail. 2013;15(11):1277–88.

    Article  CAS  PubMed  Google Scholar 

  91. Wang JF, Yu ML, Yu G, Bian JJ, Deng XM, Wan XJ, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun. 2010;394(1):184–8.

    Article  CAS  PubMed  Google Scholar 

  92. Zheng H, Liu JY, Song FJ, Chen KX. Advances in circulating microRNAs as diagnostic and prognostic markers for ovarian cancer. Cancer Biol Med. 2013;10(3):123–30; PMCID: 3860338.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ding CF, Chen WQ, Zhu YT, Bo YL, Hu HM, Zheng RH. Circulating microRNAs in patients with polycystic ovary syndrome. Hum Fertil. 2015;18(1):22–9.

    Article  CAS  Google Scholar 

  94. Long W, Zhao C, Ji C, Ding H, Cui Y, Guo X, et al. Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell Physiol Biochem. 2014;33(5):1304–15.

    Article  CAS  PubMed  Google Scholar 

  95. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37(5):1375–83.

    Article  CAS  PubMed  Google Scholar 

  96. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem. 2011;351(1–2):197–205.

    Article  CAS  PubMed  Google Scholar 

  97. Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta. 2012;1822(12):1838–50.

    Article  CAS  PubMed  Google Scholar 

  98. Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol. 2013;29:163–87.

    Article  CAS  PubMed  Google Scholar 

  99. Kotaja N, Kimmins S, Brancorsini S, Hentsch D, Vonesch JL, Davidson I, et al. Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods. 2004;1(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  100. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF. Metabolic regulation is important for spermatogenesis. Nat Rev Urol. 2012;9(6):330–8.

    Article  CAS  PubMed  Google Scholar 

  101. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol. 2010;205(2):117–31.

    Article  CAS  PubMed  Google Scholar 

  102. Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A. 2007;104(20):8346–51; PMCID: 1864911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Laiho A, Kotaja N, Gyenesei A, Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One. 2013;8(4), e61558; PMCID: 3629203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chalmel F, Lardenois A, Evrard B, Rolland AD, Sallou O, Dumargne MC, et al. High-resolution profiling of novel transcribed regions during rat spermatogenesis. Biol Reprod. 2014;91(1):5.

    Article  PubMed  CAS  Google Scholar 

  105. Sun J, Lin Y, Wu J. Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One. 2013;8(10), e75750; PMCID: 3794988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bao J, Wu J, Schuster AS, Hennig GW, Yan W. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol Reprod. 2013;89(5):107; PMCID: 4076377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kimmins S, Kotaja N, Davidson I, Sassone-Corsi P. Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction. 2004;128(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  108. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434(7033):583–9.

    Article  CAS  PubMed  Google Scholar 

  109. Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 2013;3(6):2179–90.

    Article  CAS  PubMed  Google Scholar 

  110. Paronetto MP, Sette C. Role of RNA-binding proteins in mammalian spermatogenesis. Int J Androl. 2010;33(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  111. Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl. 2012;33(3):309–37.

    Article  CAS  PubMed  Google Scholar 

  112. Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A. 2006;103(8):2647–52; PMCID: 1413789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kotaja N, Sassone-Corsi P. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol. 2007;8(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  114. Meikar O, Da Ros M, Korhonen H, Kotaja N. Chromatoid body and small RNAs in male germ cells. Reproduction. 2011;142(2):195–209.

    Article  CAS  PubMed  Google Scholar 

  115. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  116. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108; PMCID: 2724769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ketting RF. The many faces of RNAi. Dev Cell. 2011;20(2):148–61.

    Article  CAS  PubMed  Google Scholar 

  118. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update. 2012;18(1):44–59.

    Article  CAS  PubMed  Google Scholar 

  119. Papaioannou MD, Nef S. microRNAs in the testis: building up male fertility. J Androl. 2010;31(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  120. Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction. 2007;134(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  121. Yan N, Lu Y, Sun H, Qiu W, Tao D, Liu Y, et al. Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet. 2009;26(4):179–86; PMCID: 2682186.

    Article  PubMed  PubMed Central  Google Scholar 

  122. McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, McLaughlin EA. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One. 2012;7(4), e35553; PMCID: 3334999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Niu Z, Goodyear SM, Rao S, Wu X, Tobias JW, Avarbock MR, et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2011;108(31):12740–5; PMCID: 3150879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. He Z, Jiang J, Kokkinaki M, Tang L, Zeng W, Gallicano I, et al. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1. Stem Cells. 2013;31(10):2205–17; PMCID: 3859454.

    Article  CAS  PubMed  Google Scholar 

  125. Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007;311(2):592–602; PMCID: 2121622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Buchold GM, Coarfa C, Kim J, Milosavljevic A, Gunaratne PH, Matzuk MM. Analysis of microRNA expression in the prepubertal testis. PLoS One. 2010;5(12), e15317; PMCID: 3012074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ro S, Park C, Young D, Sanders KM, Yan W. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res. 2007;35(17):5944–53; PMCID: 2034466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marcon E, Babak T, Chua G, Hughes T, Moens PB. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res. 2008;16(2):243–60.

    Article  CAS  PubMed  Google Scholar 

  129. Smorag L, Zheng Y, Nolte J, Zechner U, Engel W, Pantakani DV. MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol Cell. 2012;104(11):677–92.

    Article  CAS  PubMed  Google Scholar 

  130. Sree S, Radhakrishnan K, Indu S, Kumar PG. Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: global regulatory insights generated by miRNA-mRNA network analysis. Biol Reprod. 2014;91(3):69.

    Article  PubMed  CAS  Google Scholar 

  131. Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol. 2009;326(1):250–9; PMCID: 2705812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Papaioannou MD, Lagarrigue M, Vejnar CE, Rolland AD, Kuhne F, Aubry F, et al. Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics. 2011;10(4):M900587MCP200; PMCID: 3069350.

    Article  PubMed  CAS  Google Scholar 

  133. Ortogero N, Hennig GW, Langille C, Ro S, McCarrey JR, Yan W. Computer-assisted annotation of murine Sertoli cell small RNA transcriptome. Biol Reprod. 2013;88(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Nicholls PK, Harrison CA, Walton KL, McLachlan RI, O’Donnell L, Stanton PG. Hormonal regulation of sertoli cell micro-RNAs at spermiation. Endocrinology. 2011;152(4):1670–83.

    Article  CAS  PubMed  Google Scholar 

  135. Panneerdoss S, Chang YF, Buddavarapu KC, Chen HI, Shetty G, Wang H, et al. Androgen-responsive microRNAs in mouse Sertoli cells. PLoS One. 2012;7(7), e41146; PMCID: 3401116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, et al. Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013;23(1):34–45; PMCID: 3530682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet. 2009;41(4):488–93; PMCID: 2723799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Song R, Hennig GW, Wu Q, Jose C, Zheng H, Yan W. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A. 2011;108(32):13159–64; PMCID: 3156200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ewen KA, Koopman P. Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol. 2010;323(1):76–93.

    Article  CAS  PubMed  Google Scholar 

  140. Rakoczy J, Fernandez-Valverde SL, Glazov EA, Wainwright EN, Sato T, Takada S, et al. MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod. 2013;88(6):143.

    Article  PubMed  Google Scholar 

  141. Wainwright EN, Jorgensen JS, Kim Y, Truong V, Bagheri-Fam S, Davidson T, et al. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod. 2013;89(2):34.

    Article  PubMed  CAS  Google Scholar 

  142. Matsui Y. The molecular mechanisms regulating germ cell development and potential. J Androl. 2010;31(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  143. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl. 2000;21(6):776–98.

    PubMed  Google Scholar 

  144. Huszar JM, Payne CJ. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod. 2013;88(1):15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development. 2013;140(2):280–90; PMCID: 3597206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tong MH, Mitchell DA, McGowan SD, Evanoff R, Griswold MD. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod. 2012;86(3):72; PMCID: 3316268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Tong MH, Mitchell D, Evanoff R, Griswold MD. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod. 2011;85(1):189–97; PMCID: 3123386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mayr F, Heinemann U. Mechanisms of Lin28-mediated miRNA and mRNA regulation—a structural and functional perspective. Int J Mol Sci. 2013;14(8):16532–53; PMCID: 3759924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Zheng K, Wu X, Kaestner KH, Wang PJ. The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol. 2009;9:38; PMCID: 2719617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Gillis AJ, Stoop H, Biermann K, van Gurp RJ, Swartzman E, Cribbes S, et al. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int J Androl. 2011;34(4 Pt 2):e160–74.

    Article  CAS  PubMed  Google Scholar 

  151. Aeckerle N, Eildermann K, Drummer C, Ehmcke J, Schweyer S, Lerchl A, et al. The pluripotency factor LIN28 in monkey and human testes: a marker for spermatogonial stem cells? Mol Hum Reprod. 2012;18(10):477–88; PMCID: 3457707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chakraborty P, Buaas FW, Sharma M, Snyder E, de Rooij DG, Braun RE. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells. 2014;32(4):860–73; PMCID: 4151563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li M, Yu M, Liu C, Zhu H, He X, Peng S, et al. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Prolif. 2013;46(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  154. Yu M, Mu H, Niu Z, Chu Z, Zhu H, Hua J. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2. J Cell Biochem. 2014;115(2):232–42.

    Article  CAS  PubMed  Google Scholar 

  155. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31; PMCID: 2844620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Romero Y, Meikar O, Papaioannou MD, Conne B, Grey C, Weier M, et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One. 2011;6(10), e25241; PMCID: 3187767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liang X, Zhou D, Wei C, Luo H, Liu J, Fu R, et al. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One. 2012;7(3), e33861; PMCID: 3316505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem. 2012;287(26):21686–98; PMCID: 3381132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, et al. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A. 2014;111(28):E2851–7; PMCID: 4104921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Comazzetto S, Di Giacomo M, Rasmussen KD, Much C, Azzi C, Perlas E, et al. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet. 2014;10(10), e1004597; PMCID: 4199480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, et al. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212–23; PMCID: 4365490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meikar O, Da Ros M, Kotaja N. Epigenetic regulation of male germ cell differentiation. Subcell Biochem. 2013;61:119–38.

    Article  CAS  PubMed  Google Scholar 

  163. Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem. 2011;286(52):44306–18; PMCID: 3248001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73(3):427–33.

    Article  CAS  PubMed  Google Scholar 

  165. Bjork JK, Sandqvist A, Elsing AN, Kotaja N, Sistonen L. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development. 2010;137(19):3177–84.

    Article  CAS  PubMed  Google Scholar 

  166. Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11(8):545–55; PMCID: 3402356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39(3):380–5; PMCID: 3008549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang CC, Yao HH. Inactivation of Dicer1 in Steroidogenic factor 1-positive cells reveals tissue-specific requirement for Dicer1 in adrenal, testis, and ovary. BMC Dev Biol. 2010;10:66; PMCID: 2897782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Kim GJ, Georg I, Scherthan H, Merkenschlager M, Guillou F, Scherer G, et al. Dicer is required for Sertoli cell function and survival. Int J Dev Biol. 2010;54(5):867–75.

    Article  CAS  PubMed  Google Scholar 

  170. Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008;3(3), e1738; PMCID: 2254191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD. Dicer1 is required for differentiation of the mouse male germline. Biol Reprod. 2008;79(4):696–703.

    Article  CAS  PubMed  Google Scholar 

  172. Liu D, Li L, Fu H, Li S, Li J. Inactivation of Dicer1 has a severe cumulative impact on the formation of mature germ cells in mouse testes. Biochem Biophys Res Commun. 2012;422(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  173. Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011;6(9), e24821; PMCID: 3174967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Greenlee AR, Shiao MS, Snyder E, Buaas FW, Gu T, Stearns TM, et al. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One. 2012;7(10), e46359; PMCID: 3464243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, et al. The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem. 2012;287(30):25173–90; PMCID: 3408133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chang YF, Lee-Chang JS, Imam JS, Buddavarapu KC, Subaran SS, Sinha-Hikim AP, et al. Interaction between microRNAs and actin-associated protein Arpc5 regulates translational suppression during male germ cell differentiation. Proc Natl Acad Sci U S A. 2012;109(15):5750–5; PMCID: 3326518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Johanson TM, Lew AM, Chong MM. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol. 2013;3(10):130144; PMCID: 3814725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Zimmermann C, Romero Y, Warnefors M, Bilican A, Borel C, Smith LB, et al. Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS One. 2014;9(9), e107023; PMCID: 4171096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature. 2011;471(7338):325–30; PMCID: 3077055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19(4):489–501; PMCID: 548949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A. 2005;102(34):12135–40; PMCID: 1185572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  183. Sharpe RM. Sperm counts and fertility in men: a rocky road ahead. Science & Society Series on Sex and Science. EMBO Rep. 2012;13(5):398–403; PMCID: 3343360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.

    Article  PubMed  Google Scholar 

  185. Savage T, Peek J, Hofman PL, Cutfield WS. Childhood outcomes of assisted reproductive technology. Hum Reprod. 2011;26(9):2392–400.

    Article  PubMed  Google Scholar 

  186. Batcheller A, Cardozo E, Maguire M, DeCherney AH, Segars JH. Are there subtle genome-wide epigenetic alterations in normal offspring conceived by assisted reproductive technologies? Fertil Steril. 2011;96(6):1306–11; PMCID: 3576017.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, et al. Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod. 2012;27(11):3233–48.

    Article  CAS  PubMed  Google Scholar 

  188. Liu Y, Niu M, Yao C, Hai Y, Yuan Q, Liu Y, et al. Fractionation of human spermatogenic cells using STA-PUT gravity sedimentation and their miRNA profiling. Sci Rep. 2015;5:8084.

    Article  CAS  PubMed  Google Scholar 

  189. Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360(9335):772–7.

    Article  CAS  PubMed  Google Scholar 

  190. Jodar M, Kalko S, Castillo J, Ballesca JL, Oliva R. Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod. 2012;27(5):1431–8.

    Article  CAS  PubMed  Google Scholar 

  191. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41(7):4104–17; PMCID: 3627604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401–12; PMCID: 3212879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014;102(1):213–22. e4.

    Article  CAS  PubMed  Google Scholar 

  194. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):154.

    Article  CAS  PubMed  Google Scholar 

  195. Luteijn MJ, Ketting RF. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet. 2013;14(8):523–34.

    Article  CAS  PubMed  Google Scholar 

  196. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive MN. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19(6):604–24; PMCID: 3796946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109(2):490–4; PMCID: 3258645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Platts AE, Dix DJ, Chemes HE, Thompson KE, Goodrich R, Rockett JC, et al. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet. 2007;16(7):763–73.

    Article  CAS  PubMed  Google Scholar 

  199. Montjean D, De La Grange P, Gentien D, Rapinat A, Belloc S, Cohen-Bacrie P, et al. Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet. 2012;29(1):3–10; PMCID: 3252406.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Liu T, Cheng W, Gao Y, Wang H, Liu Z. Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Mol Med Rep. 2012;6(3):535–42.

    CAS  PubMed  Google Scholar 

  201. Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013;99(5):1249–55. e16.

    Article  CAS  PubMed  Google Scholar 

  202. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–31.

    Article  CAS  PubMed  Google Scholar 

  203. Wu W, Hu Z, Qin Y, Dong J, Dai J, Lu C, et al. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod. 2012;18(10):489–97.

    Article  CAS  PubMed  Google Scholar 

  204. Belleannee C, Legare C, Calvo E, Thimon V, Sullivan R. microRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy. Hum Reprod. 2013;28(6):1455–67.

    Article  CAS  PubMed  Google Scholar 

  205. Wu W, Qin Y, Li Z, Dong J, Dai J, Lu C, et al. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013;28(7):1827–36.

    Article  CAS  PubMed  Google Scholar 

  206. Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114(6):744–54; PMCID: 516273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  208. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, et al. Host immune system gene targeting by a viral miRNA. Science. 2007;317(5836):376–81; PMCID: 4283197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Guo L, Yang Q, Lu J, Li H, Ge Q, Gu W, et al. A comprehensive survey of miRNA repertoire and 3′ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS One. 2011;6(6), e21072; PMCID: 3120834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Betoni JS, Derr K, Pahl MC, Rogers L, Muller CL, Packard RE, et al. MicroRNA analysis in placentas from patients with preeclampsia: comparison of new and published results. Hypertens Pregnancy. 2013;32(4):321–39.

    Article  CAS  PubMed  Google Scholar 

  211. Chu T, Mouillet JF, Hood BL, Conrads TP, Sadovsky Y. The assembly of miRNA-mRNA-protein regulatory networks using high-throughput expression data. Bioinformatics. 2015;11:1780–7.

    Article  Google Scholar 

  212. Murri M, Insenser M, Fernández-Durán E, San-Millán JL, Escobar-Morreale HF. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J Clin Endocrinol Metab. 2013; 98(11):E1835–44.

    Article  CAS  PubMed  Google Scholar 

  213. Ding CF, Chen WQ, Zhu YT, Bo YL, Hu HM, Zheng RH. Circulating microRNAs in patients with polycystic ovary syndrome. Hum Fertil. 2015;18(1):22–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Imbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eisenberg, I., Kotaja, N., Goldman-Wohl, D., Imbar, T. (2015). microRNA in Human Reproduction. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_18

Download citation

Publish with us

Policies and ethics