Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 890))

Abstract

Lung cancer is the second most common cancer and the primary cause of cancer-related death in both men and women in the United States and rest of the world. Due to diagnosis at an advanced stage, it is associated with a high mortality in a majority of patients. In recent years, enormous advances have occurred in the development and application of nanotechnology in the detection, diagnosis, and therapy of cancer. This progress has led to the development of the emerging field of “cancer nanomedicine.” Nanoparticle-based therapeutic systems have gained immense popularity due to their bioavailability, in vivo stability, intestinal absorption, solubility, sustained and targeted delivery, and therapeutic effectiveness of several anticancer agents. Currently, a plethora of nanocarrier formulations are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. The application and expansion of novel nanocarriers for drug delivery is an exciting and challenging research filed, in particular for the delivery of emerging cancer therapies. Some of the current progress and challenges in nanoparticle-based drug delivery systems for lung cancer treatment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DACHPt:

(1,2-diaminocyclohexane) platinum(II)

EGF:

Epithelial growth factor

EPR:

Enhanced permeability and retention effect

GPs:

Gelatin nanoparticles

MSNs:

Mesoporous silica nanoparticles

MTD:

Maximum tolerated dose

MTX:

Methotrexate

NSCLC:

Non-small-cell lung carcinoma

PCL:

Poly (ε-caprolactone)

PEG:

Polyethylene glycol

PLA:

Poly(d,l-lactic acid)

PLGA:

Poly(d,l-lactic-co-glycolic acid)

PTX:

Paclitaxel

RES:

Reticuloendothelial system

SAR:

Structure-activity relationship

SCLC:

Small-cell lung carcinoma

SPIO:

Superparamagnetic iron oxide

References

  1. Ramalingam SS, Owonikoko TK, Khuri FR (2011) Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin 61(2):91–112

    Article  PubMed  Google Scholar 

  2. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E (2013) European cancer mortality predictions for the year 2013. Ann Oncol 24(3):792–800

    Article  PubMed  CAS  Google Scholar 

  3. Yano T, Okamoto T, Fukuyama S, Maehara Y (2014) Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World J Clin Oncol 5(5):1048–1054

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    Article  PubMed  Google Scholar 

  5. Carnio S, Novello S, Mele T, Levra MG, Scagliotti GV (2014) Extending survival of stage IV non-small cell lung cancer. Semin Oncol 41(1):69–92

    Article  PubMed  CAS  Google Scholar 

  6. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    Article  PubMed  CAS  Google Scholar 

  7. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  PubMed  CAS  Google Scholar 

  8. Hussain S, Pluckthun A, Allen TM, Zangemeister-Wittke U (2007) Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Mol Cancer Ther 6(11):3019–3027

    Article  PubMed  CAS  Google Scholar 

  9. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  PubMed  CAS  Google Scholar 

  10. Landesman-Milo D, Peer D (2012) Altering the immune response with lipid-based nanoparticles. J Control Release 161(2):600–608

    Article  PubMed  CAS  Google Scholar 

  11. Landesman-Milo D, Ramishetti S, Peer D (2015) Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 34(2):291–301

    Article  PubMed  CAS  Google Scholar 

  12. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743

    PubMed  CAS  Google Scholar 

  13. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  PubMed  CAS  Google Scholar 

  14. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066(1):29–36

    Article  PubMed  CAS  Google Scholar 

  15. Sapra P, Allen TM (2004) Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin Cancer Res 10(7):2530–2537

    Article  PubMed  CAS  Google Scholar 

  16. Park JW et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    PubMed  CAS  Google Scholar 

  17. Hussain S, Pluckthun A, Allen TM, Zangemeister-Wittke U (2006) Chemosensitization of carcinoma cells using epithelial cell adhesion molecule-targeted liposomal antisense against bcl-2/bcl-xL. Mol Cancer Ther 5(12):3170–3180

    Article  PubMed  CAS  Google Scholar 

  18. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    PubMed  CAS  Google Scholar 

  19. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584

    Article  PubMed  CAS  Google Scholar 

  20. Boulikas T (2004) Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep 12(1):3–12

    PubMed  CAS  Google Scholar 

  21. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Stathopoulos GP et al (2011) Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol 68(4):945–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bedard PL, Di Leo A, Piccart-Gebhart MJ (2010) Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nature reviews. Clin Oncol 7(1):22–36

    CAS  Google Scholar 

  24. Zhang Z, Mei L, Feng SS (2013) Paclitaxel drug delivery systems. Expert Opin Drug Deliv 10(3):325–340

    Article  PubMed  CAS  Google Scholar 

  25. Koudelka S, Turanek J (2012) Liposomal paclitaxel formulations. J Control Release 163(3):322–334

    Article  PubMed  CAS  Google Scholar 

  26. Wang X et al (2010) A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions. Eur J Cancer 46(8):1474–1480

    Article  PubMed  CAS  Google Scholar 

  27. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    Article  PubMed  CAS  Google Scholar 

  28. Yokoyama M et al (1990) Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 50(6):1693–1700

    PubMed  CAS  Google Scholar 

  29. Kabanov AV, Batrakova EV, Miller DW (2003) Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev 55(1):151–164

    Article  PubMed  CAS  Google Scholar 

  30. Murakami M et al (2011) Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med 3(64):64ra62

    Google Scholar 

  31. Matsumura Y et al (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91(10):1775–1781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hamaguchi T et al (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16(20):5058–5066

    Article  PubMed  CAS  Google Scholar 

  33. Dent R et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434

    Article  PubMed  Google Scholar 

  34. Hubbell JA (2003) Materials science. Enhancing drug function. Science 300(5619):595–596

    Article  PubMed  CAS  Google Scholar 

  35. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  PubMed  CAS  Google Scholar 

  36. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4(11):2043–2050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Paraskar AS et al (2010) Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci U S A 107(28):12435–12440

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC (2010) Polymeric nanoparticles for drug delivery. Methods Mol Biol 624:163–175

    Article  PubMed  CAS  Google Scholar 

  39. Wang AZ et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (Lond) 5(3):361–368

    Article  CAS  Google Scholar 

  40. Jung J et al (2012) Polymeric nanoparticles containing taxanes enhance chemoradiotherapeutic efficacy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84(1):e77–e83

    Article  PubMed  CAS  Google Scholar 

  41. Nishiyama N et al (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63(24):8977–8983

    PubMed  CAS  Google Scholar 

  42. Tseng CL, Su WY, Yen KC, Yang KC, Lin FH (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30(20):3476–3485

    Article  PubMed  CAS  Google Scholar 

  43. Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 4:1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Morgan MT et al (2003) Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 125(50):15485–15489

    Article  PubMed  CAS  Google Scholar 

  45. Morgan MT et al (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66(24):11913–11921

    Article  PubMed  CAS  Google Scholar 

  46. Liu J et al (2011) Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomedicine 6:59–69

    PubMed Central  CAS  Google Scholar 

  47. Ryan GM et al (2013) Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm 10(8):2986–2995

    Article  PubMed  CAS  Google Scholar 

  48. Kao HW et al (2014) Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology 25(29):295102

    Article  PubMed  CAS  Google Scholar 

  49. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693

    Article  CAS  Google Scholar 

  50. Barash O et al (2012) Classification of lung cancer histology by gold nanoparticle sensors. Nanomedicine 8(5):580–589

    Article  PubMed  CAS  Google Scholar 

  51. Chen YH et al (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722

    Article  PubMed  CAS  Google Scholar 

  52. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wu SH et al (2008) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. Chembiochem 9(1):53–57

    Article  PubMed  CAS  Google Scholar 

  54. Sun W et al (2008) Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem 391(6):2119–2125

    Article  PubMed  CAS  Google Scholar 

  55. Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19(10):900–914

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Hussain Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hussain, S. (2016). Nanomedicine for Treatment of Lung Cancer. In: Ahmad, A., Gadgeel, S. (eds) Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Advances in Experimental Medicine and Biology, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-319-24932-2_8

Download citation

Publish with us

Policies and ethics