Skip to main content

Accuracy of BG Meters and CGM Systems: Possible Influence Factors for the Glucose Prediction Based on Tissue Glucose Concentrations

  • Chapter
  • First Online:
Prediction Methods for Blood Glucose Concentration

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

The goal of this paper is to describe the metrics used for the evaluation of accuracy of blood glucose (BG) meters for self-monitoring of blood glucose (SMBG) and continuous-glucose monitoring (CGM) system and their limitations and to discuss the current status of SMBG and CGM accuracy. SMBG measurement is used by patients for therapy control and for calculation of appropriate insulin doses for approximately 30 years. The minimum accuracy criteria for SMBG meters are currently defined by ISO 15197:2003 (at least 95 % of results within \(\pm \)20 % or \(\pm \)15 mg/dL of the comparison method measurement results for BG concentrations above or below 75 mg/dL, respectively). In 2013, these accuracy limits were revised in the standard ISO 15197:2013: at least 95 % of results within \(\pm \)15 % or \(\pm \)15 mg/dL for BG above or below 100 mg/dL, respectively. SMBG systems are also used by patients for calibration of CGM systems. Therefore, precision and trueness of the SMBG system are influencing the accuracy of the CGM results. The timing of the BG measurement used for calibration has to be taken into account because, during rapid glucose changes, a time lag exists between BG and the tissue glucose that is measured by CGM systems. The accuracy of CGM devices is often reported by the mean absolute relative deviation (MARD) between CGM results and BG comparison results. This parameter is influenced by different factors like study procedures, glucose fluctuations during the study, and distribution of comparison BG measurements. It is important to define standard study procedures and evaluations to be able to compare MARD results from different studies. For the correct prediction of glucose concentrations, the specific prediction method as well as the accuracy of the CGM system, which may be affected by the accuracy of the SMBG system used for calibration, and the timing of the calibration are important aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association: self-monitoring of blood glucose. Diabetes Care 17(1), 81–86 (1994). doi:10.2337/diacare.17.1.81. http://care.diabetesjournals.org/content/17/1/81.short

  2. Bailey, T., Zisser, H., Chang, A.: New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time. Diabetes Technol. Ther. 11(12), 749–755 (2009)

    Article  Google Scholar 

  3. Baumstark, A., Pleus, S., Schmid, C., Link, M., Haug, C., Freckmann, G.: Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197. J. Diabetes Sci. Technol. 6(5), 1076–1086 (2012)

    Article  Google Scholar 

  4. Brazg, R.L., Klaff, L.J., Parkin, C.G.: Performance variability of seven commonly used self-monitoring of blood glucose systems: clinical considerations for patients and providers. J. Diabetes Sci. Technol. 7(1), 144–152 (2013)

    Article  Google Scholar 

  5. Clinical and Laboratory Standards Institute: performance metrics for continuous interstitial glucose monitoring; approved guideline (2008). http://shopping.netsuite.com/c.1253739/site/Sample_pdf/POCT05A_sample.pdf. Accessed 24 June 14 A.D

  6. Consensus statement on self-monitoring of blood glucose. Diabetes Care 10(1), pp. 95–99 (1987)

    Google Scholar 

  7. Damiano, E.R., El-Khatib, F.H., Zheng, H., Nathan, D.M., Russell, S.J.: A comparative effectiveness analysis of three continuous glucose monitors. Diabetes Care 36(2), 251–259 (2013)

    Article  Google Scholar 

  8. Del Favero, S., Bruttomesso, D., Di Palma, F., Lanzola, G., Visentin, R., Filippi, A., Scotton, R., Toffanin, C., Messori, M., Scarpellini, S., Keith-Hynes, P., Kovatchev, B.P., Devries, J.H., Renard, E., Magni, L., Avogaro, A., Cobelli, C.: First use of model predictive control in outpatient wearable artificial pancreas. Diabetes Care 37(5), 1212–1215 (2014)

    Article  Google Scholar 

  9. Freckmann, G., Baumstark, A., Jendrike, N., Zschornack, E., Kocher, S., Tshiananga, J., Heister, F., Haug, C.: System accuracy evaluation of 27 blood glucose monitoring systems according to DIN EN ISO 15197. Diabetes Technol. Ther. 12(3), 221–231 (2010)

    Article  Google Scholar 

  10. Freckmann, G., Pleus, S., Link, M., Zschornack, E., Klotzer, H.M., Haug, C.: Performance evaluation of three continuous glucose monitoring systems: comparison of six sensors per subject in parallel. J. Diabetes Sci. Technol. 7(4), 842–853 (2013)

    Article  Google Scholar 

  11. Freckmann, G., Baumstark, A., Schmid, C., Pleus, S., Link, M., Haug, C.: Evaluation of 12 blood glucose monitoring systems for self-testing: system accuracy and measurement reproducibility. Diabetes Technol. Ther. 16(2), 113–122 (2014)

    Article  Google Scholar 

  12. Hasslacher, C., Kulozik, F., Platten, I.: Accuracy of self monitoring blood glucose systems in a clinical setting: application of new planned ISO- standards. Clin. Lab. 59(7–8), 727–733 (2013)

    Google Scholar 

  13. Hirose, T., Mita, T., Fujitani, Y., Kawamori, R., Watada, H.: Glucose monitoring after fruit peeling: pseudohyperglycemia when neglecting hand washing before fingertip blood sampling: wash your hands with tap water before you check blood glucose level. Diabetes Care 34(3), 596–597 (2011)

    Article  Google Scholar 

  14. Hortensius, J., Slingerland, R.J., Kleefstra, N., Logtenberg, S.J., Groenier, K.H., Houweling, S.T., Bilo, H.J.: Self-monitoring of blood glucose: the use of the first or the second drop of blood. Diabetes Care 34(3), 556–560 (2011)

    Article  Google Scholar 

  15. International Organization for Standardization: in vitro diagnostic test systems—requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. EN ISO 15197 (2003)

    Google Scholar 

  16. International Organization for Standardization: in vitro diagnostic test systems—requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. ISO 15197 (2013)

    Google Scholar 

  17. Kamath, A., Mahalingam, A., Brauker, J.: Analysis of time lags and other sources of error of the DexCom SEVEN continuous glucose monitor. Diabetes Technol. Ther. 11(11), 689–695 (2009)

    Article  Google Scholar 

  18. Koschinsky, T., Heinemann, L.: Sensors for glucose monitoring: technical and clinical aspects. Diabetes Metab. Res. Rev. 17(2), 113–123 (2001)

    Article  Google Scholar 

  19. Kovatchev, B.P., Renard, E., Cobelli, C., Zisser, H.C., Keith-Hynes, P., Anderson, S.M., Brown, S.A., Chernavvsky, D.R., Breton, M.D., Mize, L.B., Farret, A., Place, J., Bruttomesso, D., Del Favero, S., Boscari, F., Galasso, S., Avogaro, A., Magni, L., Di Palma, F., Toffanin, C., Messori, M., Dassau, E., Doyle, F.J.: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care 37(7), 1789–1796 (2014)

    Article  Google Scholar 

  20. Kuo, C.Y., Hsu, C.T., Ho, C.S., Su, T.E., Wu, M.H., Wang, C.J.: Accuracy and precision evaluation of seven self-monitoring blood glucose systems. Diabetes Technol. Ther. 13(5), 596–600 (2011)

    Article  Google Scholar 

  21. Leelarathna, L., Thabit, H., Allen, J.M., Nodale, M., Wilinska, M.E., Powell, K., Lane, S., Evans, M.L., Hovorka, R.: Evaluating the performance of a novel embedded closed-loop system. J. Diabetes Sci. Technol. 8(2), 267–272 (2014)

    Article  Google Scholar 

  22. Luijf, Y.M., DeVries, J.H., Zwinderman, K., Leelarathna, L., Nodale, M., Caldwell, K., Kumareswaran, K., Elleri, D., Allen, J.M., Wilinska, M.E., Evans, M.L., Hovorka, R., Doll, W., Ellmerer, M., Mader, J.K., Renard, E., Place, J., Farret, A., Cobelli, C., Del Favero, S., Dalla Man, C., Avogaro, A., Bruttomesso, D., Filippi, A., Scotton, R., Magni, L., Lanzola, G., Di Palma, F., Soru, P., Toffanin, C., De Nicolao, G., Arnolds, S., Benesch, C., Heinemann, L.: Day and night closed-loop control in adults with type 1 diabetes: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management. Diabetes Care 36(12), 3882–3887 (2013)

    Article  Google Scholar 

  23. Nielsen, J.K., Freckmann, G., Kapitza, C., Ocvirk, G., Koelker, K.H., Kamecke, U., Gillen, R., Amann-Zalan, I., Jendrike, N., Christiansen, J.S., Koschinsky, T., Heinemann, L.: Glucose monitoring by microdialysis: performance in a multicentre study. Diabet. Med. 26(7), 714–721 (2009)

    Article  Google Scholar 

  24. Obermaier, K., Schmelzeisen-Redeker, G., Schoemaker, M., Klotzer, H.M., Kirchsteiger, H., Eikmeier, H., del Re, L.: Performance evaluations of continuous glucose monitoring systems: precision absolute relative deviation is part of the assessment. J. Diabetes Sci. Technol. 7(4), 824–832 (2013)

    Article  Google Scholar 

  25. Parkes, J.L., Slatin, S.L., Pardo, S., Ginsberg, B.H.: A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8), 1143–1148 (2000). doi:10.2337/diacare.23.8.1143. http://care.diabetesjournals.org/content/23/8/1143.abstract

    Google Scholar 

  26. Pfutzner, A., Mitri, M., Musholt, P.B., Sachsenheimer, D., Borchert, M., Yap, A., Forst, T.: Clinical assessment of the accuracy of blood glucose measurement devices. Curr. Med. Res. Opin. 28(4), 525–531 (2012)

    Article  Google Scholar 

  27. Phillip, M., Battelino, T., Atlas, E., Kordonouri, O., Bratina, N., Miller, S., Biester, T., Stefanija, M.A., Muller, I., Nimri, R., Danne, T.: Nocturnal glucose control with an artificial pancreas at a diabetes camp. N. Engl. J. Med. 368(9), 824–833 (2013)

    Article  Google Scholar 

  28. Pleus, S., Schmid, C., Link, M., Zschornack, E., Klotzer, H.M., Haug, C., Freckmann, G.: Performance evaluation of a continuous glucose monitoring system under conditions similar to daily life. J. Diabetes Sci. Technol. 7(4), 833–841 (2013)

    Article  Google Scholar 

  29. Pleus, S., Schmid, C., Link, M., Baumstark, A., Haug, C., Stolberg, E., Freckmann, G.: Accuracy assessment of two novel systems for self-monitoring of blood glucose following ISO 15197:2013. J. Diabetes Sci. Technol. 8(4), 906–908 (2014). doi:10.1177/1932296814536030. http://dst.sagepub.com/content/8/4/906.short

    Google Scholar 

  30. Schmid, C., Haug, C., Heinemann, L., Freckmann, G.: System accuracy of blood glucose monitoring systems: impact of use by patients and ambient conditions. Diabetes Technol. Ther. 15(10), 889–896 (2013)

    Article  Google Scholar 

  31. Thorpe, G.H.: Assessing the quality of publications evaluating the accuracy of blood glucose monitoring systems. Diabetes Technol. Ther. 15(3), 253–259 (2013)

    Article  Google Scholar 

  32. Twomey, P.J.: Plasma glucose measurement with the yellow springs glucose 2300 STAT and the Olympus AU640. J. Clin. Pathol. 57(7), 752–754 (2004)

    Article  Google Scholar 

  33. Zisser, H.C., Bailey, T.S., Schwartz, S., Ratner, R.E., Wise, J.: Accuracy of the SEVEN continuous glucose monitoring system: comparison with frequently sampled venous glucose measurements. J. Diabetes Sci. Technol. 3(5), 1146–1154 (2009)

    Article  Google Scholar 

  34. Zschornack, E., Schmid, C., Pleus, S., Link, M., Klotzer, H.M., Obermaier, K., Schoemaker, M., Strasser, M., Frisch, G., Schmelzeisen-Redeker, G., Haug, C., Freckmann, G.: Evaluation of the performance of a novel system for continuous glucose monitoring. J. Diabetes Sci. Technol. 7(4), 815–823 (2013)

    Article  Google Scholar 

  35. Zueger, T., Diem, P., Mougiakakou, S., Stettler, C.: Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes. Diabetes Technol. Ther. 14(7), 583–588 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Freckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freckmann, G., Pleus, S., Link, M., Haug, C. (2016). Accuracy of BG Meters and CGM Systems: Possible Influence Factors for the Glucose Prediction Based on Tissue Glucose Concentrations. In: Kirchsteiger, H., Jørgensen, J., Renard, E., del Re, L. (eds) Prediction Methods for Blood Glucose Concentration. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25913-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25913-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25911-6

  • Online ISBN: 978-3-319-25913-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics