Skip to main content

Human MDSCs

  • Chapter
  • First Online:
Myeloid-Derived Suppressor Cells and Cancer

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

Abstract

Myeloid-derived suppressor cells strongly expand in many pathological conditions including cancer, and they suppress immunological responses by interfering with the effector functions of T cells, dendritic cells, and NK cells. The differentiation and accumulation of MDSCs is a negative outcome caused by the interplay between tumor cells and myelopoiesis. Since the phenotype of MDSCs and their mechanisms of action seem to depend on the type of cancer and stage of the disease, it is important to evaluate which MDSC subsets have prognostic values in the outcome of the disease. In the present chapter we will systematize the current information on the different populations of human MDSCs and their markers as well as their similarities/differences with MDSCs from murine models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, Villagra A, Antonia S, McCaffrey JC, Fishman M, Sarnaik A, Horna P, Sotomayor E, Gabrilovich DI (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14(3):211ā€“220. doi:10.1038/ni.2526 ni.2526 [pii]

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Liechtenstein T, Perez-Janices N, Gato M, Caliendo F, Kochan G, Blanco-Luquin I, Van der Jeught K, Arce F, Guerrero-Setas D, Fernandez-Irigoyen J, Santamaria E, Breckpot K, Escors D (2014) A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget 5(17):7843ā€“7857

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161(10):5313ā€“5320

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51(6):293ā€“298

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728ā€“5737

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Haile LA, Gamrekelashvili J, Manns MP, Korangy F, Greten TF (2010) CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol 185(1):203ā€“210. doi:10.4049/jimmunol.0903573

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562ā€“6568. doi:10.4049/jimmunol.0803831

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553ā€“1560. doi:10.1158/0008-5472.CAN-08-1921

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Eruslanov E, Neuberger M, Daurkin I, Perrin GQ, Algood C, Dahm P, Rosser C, Vieweg J, Gilbert SM, Kusmartsev S (2012) Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 130(5):1109ā€“1119. doi:10.1002/ijc.26123

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Gielen PR, Schulte BM, Kers-Rebel ED, Verrijp K, Petersen-Baltussen HM, ter Laan M, Wesseling P, Adema GJ (2015) Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol 74(5):390ā€“400. doi:10.1097/NEN.0000000000000183

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123(4):1580ā€“1589. doi:10.1172/JCI60083

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, Lang S (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89(2):311ā€“317. doi:10.1189/jlb.0310162

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546ā€“2553. doi:10.1200/JCO.2006.08.5829

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Tarhini AA, Butterfield LH, Shuai Y, Gooding WE, Kalinski P, Kirkwood JM (2012) Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-alpha or TLR-9 agonist and GM-CSF with peptide vaccination. J Immunother 35(9):702ā€“710. doi:10.1097/CJI.0b013e318272569b

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR, Okada H (2013) GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-alpha. Cancer Res 73(21):6413ā€“6423. doi:10.1158/0008-5472.CAN-12-4124

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Napolitano M, Dā€™Alterio C, Cardone E, Trotta AM, Pecori B, Rega D, Pace U, Scala D, Scognamiglio G, Tatangelo F, Cacciapuoti C, Pacelli R, Delrio P, Scala S (2015) Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget 6(10):8261ā€“8270

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190(2):794ā€“804. doi:10.4049/jimmunol.1202088

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Gros A, Turcotte S, Wunderlich JR, Ahmadzadeh M, Dudley ME, Rosenberg SA (2012) Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res 18(19):5212ā€“5223. doi:10.1158/1078-0432.CCR-12-1108

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49ā€“59. doi:10.1007/s00262-008-0523-4

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Gehad AE, Lichtman MK, Schmults CD, Teague JE, Calarese AW, Jiang Y, Watanabe R, Clark RA (2012) Nitric oxide-producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomas. J Invest Dermatol 132(11):2642ā€“2651. doi:10.1038/jid.2012.190

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180ā€“191. doi:10.1111/j.1600-065X.2008.00608.x

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68ā€“77

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693ā€“5701

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783ā€“3797. doi:10.4049/jimmunol.1201449 jimmunol.1201449 [pii]

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Chevolet I, Speeckaert R, Schreuer M, Neyns B, Krysko O, Bachert C, Hennart B, Allorge D, van Geel N, Van Gele M, Brochez L (2015) Characterization of the immune network of IDO, tryptophan metabolism, PD-L1, and in circulating immune cells in melanoma. Oncoimmunology 4(3):e982382. doi:10.4161/2162402X.2014.982382

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  26. Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, Aakre M, Wu H, Shyr Y, Moses HL (2011) TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov 1(5):430ā€“441. doi:10.1158/2159-8290.CD-11-0100

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23ā€“35. doi:10.1016/j.ccr.2007.12.004

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Condamine T, Ramachandran I, Youn JI, Gabrilovich DI (2015) Regulation of tumor metastasis by myeloid-derived suppressor cells. Ann Rev Med 66:97ā€“110. doi:10.1146/annurev-med-051013-052304

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185(4):2273ā€“2284. doi:10.4049/jimmunol.1000901 jimmunol.1000901 [pii]

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66(18):9290ā€“9298

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Gato-CaƱas M, Martinez de Morentin X, Blanco-Luquin I, Fernandez-Irigoyen J, Zudaire I, Liechtenstein T, Arasanz H, Lozano T, Casares N, Knapp S, Chaikuad A, Guerrero-Setas D, Escors D, Kochan G, Santamaria E (2015) A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget (In press)

    Google ScholarĀ 

  32. Boutte AM, McDonald WH, Shyr Y, Yang L, Lin PC (2011) Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS ONE 6(8):e22446. doi:10.1371/journal.pone.0022446

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol Cell Proteomics10(3):M110 002980. doi:10.1074/mcp.M110.002980

    Google ScholarĀ 

Download references

Acknowledgments

Grazyna Kochan research is funded by a CAIXA project grant from the, Spain, a Sandra Ibarra research grant, and a Gobierno Vasco BioEf project grant (BIO13/CI/014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazyna Kochan .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 The Author(s)

About this chapter

Cite this chapter

Kochan, G. (2016). Human MDSCs. In: Myeloid-Derived Suppressor Cells and Cancer. SpringerBriefs in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-26821-7_3

Download citation

Publish with us

Policies and ethics