Skip to main content

Fibrinolysis

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Derangement of fibrinolysis has been in the interest of surgical scientist for over 200 years. Appreciation of the spectrum of fibrinolysis following severe injury confirms the long perceived notion that pathology occurs at the extremes of any protease system. Trauma can cause overactivation of fibrinolysis resulting in uncontrolled bleeding or inhibition resulting in fibrinolysis shutdown resulting in organ dysfunction. While the CRASH II trial demonstrated a modest benefit in survival using an antifibrinolytic medication in trauma patients, there are likely superior resuscitation strategies to improve survival in patients with abnormal fibrinolytic function. This chapter is intended to refresh the reader’s historic appreciation of surgery trauma and fibrinolysis and stress the physiologic role of the fibrinolytic system in response to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macfarlane RG, Biggs R. Fibrinolysis; its mechanism and significance. Blood. 1948;3:1167–87.

    CAS  PubMed  Google Scholar 

  2. Stafford JL. The fibrinolytic mechanism in haemostasis: a review. J Clin Pathol. 1964;17:520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, et al. Homotransplantation of the liver in humans. Surg Gynecol Obstet. 1963;117:659–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hardaway RM. Microcoagulation in shock. Am J Surg. 1965;110:298–301.

    Article  CAS  PubMed  Google Scholar 

  5. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77:811–7. discussion 817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol. 1994;144:855–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakrabarti R, Fearnley GR. The ‘fibrinolytic potential’ as a simple measure of spontaneous fibrinolysis. J Clin Pathol. 1962;15:228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katz J, Lurie A, Becker D, Metz J. The euglobulin lysis time test: an ineffectual monitor of the therapeutic inhibition of fibrinolysis. J Clin Pathol. 1970;23:529–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brass LF, Zhu L, Stalker TJ. Minding the gaps to promote thrombus growth and stability. J Clin Invest. 2005;115:3385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brass LF, Stalker TJ. Minding the gaps--and the junctions, too. Circulation. 2012;125:2414–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moore HB, Moore EE, Gonzalez E, Hansen KC, Dzieciatkowska M, et al. Hemolysis exacerbates hyperfibrinolysis while platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock. 2015;43:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75:961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73:365–70. discussion 370.

    Article  CAS  PubMed  Google Scholar 

  14. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67:125–31.

    Article  PubMed  Google Scholar 

  15. Chakrabarti R, Hocking ED, Fearnley GR. Reaction pattern to three stresses--electroplexy, surgery, and myocardial infarction--of fibrinolysis and plasma fibrinogen. J Clin Pathol. 1969;22:659–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raza I, Davenport R, Rourke C, Platton S, Manson J, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost. 2013;11:307–14.

    Article  CAS  PubMed  Google Scholar 

  17. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64:1211–7. discussion 1217.

    Article  PubMed  Google Scholar 

  18. Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Acute Care Surg. 2013;74:1223–9. discussion 1229–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chin TL, Moore EE, Moore HB, Gonzalez E, Chapman MP, et al. A principal component analysis of postinjury viscoelastic assays: clotting factor depletion versus fibrinolysis. Surgery. 2014;156:570.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schochl H, Cadamuro J, Seidl S, Franz A, Solomon C, et al. Hyperfibrinolysis is common in out-of-hospital cardiac arrest: results from a prospective observational thromboelastometry study. Resuscitation. 2013;84:454–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hayakawa M, Gando S, Ieko M, Honma Y, Homma T, et al. Massive amounts of tissue factor induce fibrinogenolysis without tissue hypoperfusion in rats. Shock. 2013;39:514–9.

    Article  CAS  PubMed  Google Scholar 

  22. Stein SC, Chen XH, Sinson GP, Smith DH. Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg. 2002;97:1373–7.

    Article  PubMed  Google Scholar 

  23. Maeda T, Katayama Y, Kawamata T, Aoyama N, Mori T. Hemodynamic depression and microthrombosis in the peripheral areas of cortical contusion in the rat: role of platelet activating factor. Acta Neurochir Suppl. 1997;70:102–5.

    CAS  PubMed  Google Scholar 

  24. Kashuk JL, Moore EE, Sawyer M, Wohlauer M, Pezold M, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252:434–42. discussion 443–444.

    PubMed  Google Scholar 

  25. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, et al. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R, Caballero J, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.

    Article  Google Scholar 

  27. Sherry S, Fletcher AP, Alkjaersig N. Fibrinolysis and fibrinolytic activity in man. Physiol Rev. 1959;39:343–82.

    CAS  PubMed  Google Scholar 

  28. Wiener G, Moore HB, Moore EE, Gonzalez E, Diamond S, et al. Shock releases bile acid inducing platelet inhibition and fibrinolysis. J Surg Res. 2015;195:390.

    Article  CAS  PubMed  Google Scholar 

  29. Groth CG, Pechet L, Starzl TE. Coagulation during and after orthotopic transplantation of the human liver. Arch Surg. 1969;98:31–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Otter M, Kuiper J, van Berkel TJ, Rijken DC. Mechanisms of tissue-type plasminogen activator (tPA) clearance by the liver. Ann N Y Acad Sci. 1992;667:431–42.

    Article  CAS  PubMed  Google Scholar 

  31. Einarsson M, Smedsrod B, Pertoft H. Uptake and degradation of tissue plasminogen activator in rat liver. Thromb Haemost. 1988;59:474–9.

    CAS  PubMed  Google Scholar 

  32. Cardenas JC, Matijevic N, Baer LA, Holcomb JB, Cotton BA, et al. Elevated tissue plasminogen activator and reduced plasminogen activator inhibitor promote hyperfibrinolysis in trauma patients. Shock. 2014;41:514–21.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Avello A, Lorente JA, Cesar-Perez J, Garcia-Frade LJ, Alvarado R, et al. Degree of hypercoagulability and hyperfibrinolysis is related to organ failure and prognosis after burn trauma. Thromb Res. 1998;89:59–64.

    Article  CAS  PubMed  Google Scholar 

  34. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13:680–5.

    Article  PubMed  Google Scholar 

  35. Kuramoto M, Yamashita J, Ogawa M. Tissue-type plasminogen activator predicts endocrine responsiveness of human pancreatic carcinoma cells. Cancer. 1995;75:1263–72.

    Article  CAS  PubMed  Google Scholar 

  36. Kostousov V, Wang YW, Cotton BA, Wade CE, Holcomb JB, et al. Influence of resuscitation fluids, fresh frozen plasma and antifibrinolytics on fibrinolysis in a thrombelastography-based, in-vitro, whole-blood model. Blood Coagul Fibrinolysis. 2013;24:489–97.

    Article  CAS  PubMed  Google Scholar 

  37. Hardaway RM. The role of intravascular clotting in the etiology of shock. Ann Surg. 1962;155:325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robb HJ. The role of micro-embolism in the production of irreversible shock. Ann Surg. 1963;158:685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hardaway RM, Burns JW. Mechanism of action of fibrinolysin in the prevention of irreversible hemorrhagic shock. Ann Surg. 1963;157:305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hardaway RM, James Jr PM, Anderson RW, Bredenberg CE, West RL. Intensive study and treatment of shock in man. JAMA. 1967;199:779–90.

    Article  CAS  PubMed  Google Scholar 

  41. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331:1601–6.

    Article  CAS  PubMed  Google Scholar 

  42. Schultz DJ, Brasel KJ, Washington L, Goodman LR, Quickel RR, et al. Incidence of asymptomatic pulmonary embolism in moderately to severely injured trauma patients. J Trauma. 2004;56:727–31. discussion 731–733.

    Article  PubMed  Google Scholar 

  43. Kwaan HC. Microvascular thrombosis: a serious and deadly pathologic process in multiple diseases. Semin Thromb Hemost. 2011;37:961–78.

    Article  PubMed  Google Scholar 

  44. Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 2010;38:S35–42.

    Article  PubMed  Google Scholar 

  45. Prakash S, Verghese S, Roxby D, Dixon D, Bihari S, et al. Changes in fibrinolysis and severity of organ failure in sepsis: a prospective observational study using point-of-care test-ROTEM. J Crit Care. 2015;30:264.

    Article  CAS  PubMed  Google Scholar 

  46. Schochl H, Solomon C, Schulz A, Voelckel W, Hanke A, et al. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17:266–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ostrowski SR, Berg RM, Windelov NA, Meyer MA, Plovsing RR, et al. Discrepant fibrinolytic response in plasma and whole blood during experimental endotoxemia in healthy volunteers. PLoS One. 2013;8:e59368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rancourt RC, Ahmad A, Veress LA, Rioux JS, Garlick RB, et al. Antifibrinolytic mechanisms in acute airway injury after sulfur mustard analog inhalation. Am J Respir Cell Mol Biol. 2014;51:559–67.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Enderson BL, Chen JP, Robinson R, Maull KI. Fibrinolysis in multisystem trauma patients. J Trauma. 1991;31:1240–6.

    Article  CAS  PubMed  Google Scholar 

  50. Nielsen VG. Colloids decrease clot propagation and strength: role of factor XIII-fibrin polymer and thrombin-fibrinogen interactions. Acta Anaesthesiol Scand. 2005;49:1163–71.

    Article  CAS  PubMed  Google Scholar 

  51. Bickell WH, Wall Jr MJ, Pepe PE, Martin RR, Ginger VF, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331:1105–9.

    Article  CAS  PubMed  Google Scholar 

  52. Brown JB, Cohen MJ, Minei JP, Maier RV, West MA, et al. Goal-directed resuscitation in the prehospital setting: a propensity-adjusted analysis. J Trauma Acute Care Surg. 2013;74:1207–12. discussion 1212–1224.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Napolitano LM, Cohen MJ, Cotton BA, Schreiber MA, Moore EE. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74:1575–86.

    Article  PubMed  Google Scholar 

  54. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147:113–9.

    Article  CAS  PubMed  Google Scholar 

  55. Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76:1373–8.

    Article  CAS  PubMed  Google Scholar 

  56. Holcomb JB, Zarzabal LA, Michalek JE, Kozar RA, Spinella PC, et al. Increased platelet:RBC ratios are associated with improved survival after massive transfusion. J Trauma. 2011;71:S318–28.

    Article  PubMed  Google Scholar 

  57. Morrison JJ, Ross JD, Dubose JJ, Jansen JO, Midwinter MJ, et al. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg. 2013;148:218–25.

    Article  CAS  PubMed  Google Scholar 

  58. He S, Johnsson H, Zabczyk M, Hultenby K, Wallen H, et al. Fibrinogen depletion after plasma-dilution: impairment of proteolytic resistance and reversal via clotting factor concentrates. Thromb Haemost. 2014;111:417–28.

    Article  CAS  PubMed  Google Scholar 

  59. Hoppe B. Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation. Thromb Haemost. 2014;112:649–58.

    Article  PubMed  Google Scholar 

  60. Ramanathan A, Karuri N. Fibronectin alters the rate of formation and structure of the fibrin matrix. Biochem Biophys Res Commun. 2014;443:395–9.

    Article  CAS  PubMed  Google Scholar 

  61. Hardaway RM, Harke H, Tyroch AH, Williams CH, Vazquez Y, et al. Treatment of severe acute respiratory distress syndrome: a final report on a phase I study. Am Surg. 2001;67:377–82.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter B. Moore M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moore, H.B., Moore, E.E., Gonzalez, E. (2016). Fibrinolysis. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics