Skip to main content

Anatomy, Applied Embryology, and Pathogenesis of Congenital Anomalies of the Kidney and Urinary Tract

  • Chapter
  • First Online:
Congenital Anomalies of the Kidney and Urinary Tract

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT spectrum) affect up to 3% of human fetuses, and they present major diagnostic and management challenges to practising physicians. In order to frame the clinical implications of CAKUT, it is critical to understand the normal development of the kidney and urinary tract. Although accounts on pathogenesis focus predominantly on genetic causes of CAKUT, it is also important to consider other contributing factors such as lower urinary tract obstruction, teratogens, and maternal diet. In this chapter, we will discuss the anatomy, embryology, and pathogenesis of CAKUT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAKUT:

Congenital anomalies of the kidney and urinary tract

CKD:

Chronic kidney disease

MCDK:

Multicystic dysplastic kidney

PKD:

Polycystic kidney disease

RCAD:

Renal cysts and diabetes syndrome

UPJ:

Ureteropelvic junction

UVJ:

Ureterovesical junction

References

  1. Woolf AS, Price KL, Scambler PJ, Winyard PJ. Evolving concepts in human renal dysplasia. J Am Soc Nephrol. 2004;15:998–1007.

    Article  PubMed  Google Scholar 

  2. Winyard P, Chitty LS. Dysplastic kidneys. Semin Fetal Neonatal Med. 2008;13:142–51.

    Article  PubMed  Google Scholar 

  3. Renkema KY, Winyard PJ, Skovorodkin IN, Levtchenko E, Hindryckx A, Jeanpierre C, et al. Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrol Dial Transplant. 2011;26:3843–51.

    Article  PubMed  Google Scholar 

  4. Pruthi R, O’Brien C, Casula A, Braddon F, Lewis M, Maxwell H, et al. UK Renal Registry 16th annual report: chapter 7 demography of the UK paediatric renal replacement therapy population in 2012. Nephron Clin Pract. 2013;125:127–38.

    Article  PubMed  Google Scholar 

  5. Puelles VG, Bertram JF. Counting glomeruli and podocytes: rationale and methodologies. Curr Opin Nephrol Hypertens. 2015;24:224–30.

    PubMed  PubMed Central  Google Scholar 

  6. Luyckx VA, Brenner BM. Birth weight, malnutrition and kidney-associated outcomes-a global concern. Nat Rev Nephrol. 2015;11:135–49.

    Article  PubMed  Google Scholar 

  7. Matsell DG, Cojocaru D, Matsell EW, Eddy AA. The impact of small kidneys. Pediatr Nephrol. 2015, 30:1501-9.

    Google Scholar 

  8. Potter EL. Normal and abnormal development of the kidney. Chicago, IL: Year Book Medical Publishers Inc.; 1972.

    Google Scholar 

  9. Hum S, Rymer C, Schaffer C, Bushnell D, Sims-Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One. 2014;9(2):e88400. doi:10.1371/journal.pone.0088400.eCollection2014.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang JL, Woolf AS, Kolatsi-Joannou M, Baluk P, Sandford RN, Peters DJ, et al. Vascular endothelial growth factor C for polycystic kidney diseases. J Am Soc Nephrol. 2015. pii: ASN.2014090856.

    Google Scholar 

  11. Jennette JC, Olson JL, Silva FG, D’agati VD. Heptinstall’s pathology of the kidney. 7th Edition, 2015. Wolters Kluwer, Philadelpia, USA. ISBN 978-1-4511-4411-6.

    Google Scholar 

  12. Pope JC, Brock III JW, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol. 1999;10:2018–28.

    PubMed  Google Scholar 

  13. Narchi H. Risk of Wilms’ tumour with multicystic kidney disease: a systematic review. Arch Dis Child. 2005;90:147–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salomon R, Tellier AL, Attie-Bitach T, Amiel J, Vekemans M, Lyonnet S, et al. PAX2 mutations in oligomeganephronia. Kidney Int. 2001;59:457–62.

    Article  CAS  PubMed  Google Scholar 

  15. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet. 2013;382:273–83.

    Article  PubMed  Google Scholar 

  16. Arts HH, Knoers NV. Current insights into renal ciliopathies: what can genetics teach us? Pediatr Nephrol. 2013;28:863–74.

    Article  PubMed  Google Scholar 

  17. Hwang DY, Dworschak GC, Kohl S, Saiswat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85:1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Constantini F. GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis. 2010;6:252–62.

    Article  Google Scholar 

  19. Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015;134:905–16.

    Article  CAS  PubMed  Google Scholar 

  20. Harshman LA, Brophy PD. PAX2 in human kidney malformations and disease. Pediatr Nephrol. 2012;27:1265–75. doi:10.1007/s00467-011-2053-0. Epub 2011 Dec 3.

    Article  PubMed  Google Scholar 

  21. Sanyanusin P, Schimmentl LA, Mcnoe LA, Ward TA, Pierpoint MEM, Sullivan MJ, et al. Mutations of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet. 1995;9:358–64.

    Article  CAS  PubMed  Google Scholar 

  22. Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, et al. A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol. 2007;18:1915–21.

    Article  CAS  PubMed  Google Scholar 

  23. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A. 2004;101:8090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol. 2008;19:891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raaijmakers A, Corveleyn A, Devriendt K, Van Tienoven TP, Allegaert K, Van Dyck M, et al. Criteria for HNF1B analysis in patients with congenital abnormalities of kidney and urinary tract. Nephrol Dial Transplant. 2015;30:835–42.

    Article  PubMed  Google Scholar 

  26. Penna FJ, Elder JS. CKD and bladder problems in children. Adv Chronic Kidney Dis. 2011;18:362–9.

    Article  PubMed  Google Scholar 

  27. Yang SP, Woolf AS, Quinn F, Winyard PJD. Deregulation of renal transforming growth factor-β1 after experimental short-term ureteric obstruction in fetal sheep. Am J Pathol. 2001;159:109–17.

    Google Scholar 

  28. Chevalier RL. Congenital urinary tract obstruction: the long view. Adv Chronic Kidney Dis. 2015;22:312–9.

    Article  PubMed  Google Scholar 

  29. Morris RK, Malin GL, Quinlan-Jones E, Middleton LJ, Hemmingh K, Burke D, et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013;382:1496–506.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shepard TH. Catalog of teratogenic agents, Baltimore, MD: The Johns Hopkins University Press, 2010

    Google Scholar 

  31. Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, et al. A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A. 2012;109:13668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woolf AS. Environmental influences on renal tract development: a focus on maternal diet and the glucocorticoid hypothesis. Klin Padiatr. 2011;223 Suppl 1:S10–7.

    Article  PubMed  Google Scholar 

  33. Fisher RE, Steele M, Karrow NA. Fetal programming of the neuroendocrine-immune system and metabolic disease. J Pregnancy. 2012;2012:792934. doi:10.1155/2012/792934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Winyard B.M., B.Ch., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Al-Harbi, A., Winyard, P. (2016). Anatomy, Applied Embryology, and Pathogenesis of Congenital Anomalies of the Kidney and Urinary Tract. In: Barakat, A., Rushton, H. (eds) Congenital Anomalies of the Kidney and Urinary Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-29219-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29219-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29217-5

  • Online ISBN: 978-3-319-29219-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics