Skip to main content

How to Manipulate the Microbiota: Prebiotics

  • Chapter
  • First Online:
Microbiota of the Human Body

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 902))

Abstract

During the last century, human nutrition has evolved from the definition of our nutritional needs and the identification of ways to meet them, to the identification of food components that can optimise our physiological and psychological functions. This development, which aims to ensure the welfare, health and reduced susceptibility to disease during life, gave birth to the concept of “functional foods”. In this context, there is an increasing interest in the physiological effects induced by the dense and diverse microbiota which inhabits the human colon and whose development depends on the fermentation of undigested food residues. Thus, much research aims at identifying ways to guide these impacts in order to benefit the health of the host. It is in this context that the concept of “prebiotics” was developed in the 1990s. Since then, prebiotics have stimulated extensive work in order to clarify their definition, their nature and their physiological properties in accordance with the evolution of knowledge on the intestinal microbiota. However many questions remain open about their specificities, their mechanism(s) of action and therefore the relevance of their current categorisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • [No authors listed] (2005) Br J Nutr 93(Suppl 1):S1–168

    Google Scholar 

  • [No authors listed] (2007) Inulin and oligofructose: proven health benefits and claims. Proceedings of the 5th ORAFTI Research Conference, 28–29 Sept 2006, Boston, MA. J Nutr 137(11 Suppl):2489S–2597S

    Google Scholar 

  • Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476

    CAS  PubMed  Google Scholar 

  • Alliet P, Scholtens P, Raes M, Hensen K, Jongen H, Rummens JL, Boehm G, Vandenplas Y (2007) Effect of prebiotic galacto-oligosaccharide, long-chain fructo-oligosaccharide infant formula on serum cholesterol and triacylglycerol levels. Nutrition 23:719–723

    Article  CAS  PubMed  Google Scholar 

  • Anastasovska J, Arora T, Sanchez Canon GJ, Parkinson JR, Touhy K, Gibson GR, Nadkarni NA, So PW, Goldstone AP, Thomas EL, Hankir MK, Van Loo J, Modi N, Bell JD, Frost G (2012) Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity (Silver Spring) 20:1016–1023

    Article  CAS  Google Scholar 

  • Ashley C, Johnston WH, Harris CL, Stolz SI, Wampler JL, Berseth CL (2012) Growth and tolerance of infants fed formula supplemented with polydextrose (PDX) and/or galactooligosaccharides (GOS): double-blind, randomized, controlled trial. Nutr J 11:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrat E, Michel C, Poupeau G, David-Sochard A, Rival M, Pagniez A, Champ M, Darmaun D (2008) Supplementation with galactooligosaccharides and inulin increases bacterial translocation in artificially reared newborn rats. Pediatr Res 64:34–39

    Article  PubMed  Google Scholar 

  • Belenguer A, Duncan SH, Calder G, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belenguer A, Duncan SH, Holtrop G, Anderson S, Lobley GE, Flint HJ (2007) Impact of pH on lactate formation and utilisation by human fecal microbial communities. Appl Environ Microbiol 73:6526–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergillos-Meca T, Navarro-Alarcón M, Cabrera-Vique C, Artacho R, Olalla M, Giménez R, Moreno-Montoro M, Ruiz-Bravo A, Lasserrot A, Ruiz-López MD (2013) The probiotic bacterial strain Lactobacillus fermentum D3 increases in vitro the bioavailability of Ca, P, and Zn in fermented goat milk. Biol Trace Elem Res 151:307–314

    Article  CAS  PubMed  Google Scholar 

  • Boucher J, Daviaud D, Siméon-Remaud M, Carpéné C, Saulnier-Blache JS, Monsan P, Valet P (2003) Effect of non-digestible gluco-oligosaccharides on glucose sensitivity in high fat diet fed mice. J Physiol Biochem 59:169–173

    Article  CAS  PubMed  Google Scholar 

  • Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourié B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate faecal bifidobacteria in healthy humans: a double blind, randomized, placebo-controlled, parallel-group, dose response relation study. Am J Clin Nutr 80:1658–1664

    CAS  PubMed  Google Scholar 

  • Bourriaud C, Robins RJ, Martin L, Kozlowski F, Tenailleau E, Cherbut C, Michel C (2005) Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol 99:201–212

    Article  CAS  PubMed  Google Scholar 

  • Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, Slavin JL (2012) Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr 142:962–974

    Article  CAS  PubMed  Google Scholar 

  • Bunout D, Hirsch S, de la Maza MP, Munoz C, Hascke F, Steenhout P, Klassen P, Barrera G, Gattas V, Petermann M (2002) Effects of prebiotics on the immune response to vaccination in the elderly. JPEN Parenter Enter 26:372–376

    Article  Google Scholar 

  • Candela M, Maccaferri S, Turroni S, Carnevali P, Brigidi P (2010) Functional intestinal microbiome, new frontiers in prebiotic design. Int J Food Microbiol 140:93–101

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006a) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Joly E, Horsmans Y, Delzenne NM (2006b) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60:567–572

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Cecchini DA, Laville E, Laguerre S, Robe P, Leclerc M, Doré J, Henrissat B, Remaud-Siméon M, Monsan P, Potocki-Véronèse G (2013) Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS ONE 8:e72766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung WSF, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, Duncan SH, Flint HJ (2016) Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    Article  CAS  PubMed  Google Scholar 

  • Costabile A, Fava F, Röytiö H, Forssten SD, Olli K, Klievink J, Rowland IR, Ouwehand AC, Rastall RA, Gibson GR, Walton GE (2012) Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in health human subjects. Br J Nutr 108:471–481

    Article  CAS  PubMed  Google Scholar 

  • Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Qunquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto J-M, Renault P, ANR MicroObes consortium, Doré J, Zucker J-D, Clément K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588

    Article  CAS  PubMed  Google Scholar 

  • Coxam V (2007) Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr 137:2527S–2533S

    CAS  PubMed  Google Scholar 

  • Cummings JH, Macfarlane GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 87:S145–S151

    Article  CAS  PubMed  Google Scholar 

  • Dalvi PS, Nazarians-Armavil A, Purser MJ, Belsham D (2012) Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated neuropeptides in hypothalamic neurons in vivo and in vitro. Endocrinology 153:2208–2222

    Article  CAS  PubMed  Google Scholar 

  • de Luis DA, de la Fuente B, Izaola O, Conde R, Gutiérrez S, Morillo M, Teba Torres C (2011) Double blind randomized clinical trial controlled by placebo with an alpha linoleic acid and prebiotic enriched cookie on risk cardiovascular factor in obese patients. Nutr Hosp 26:827–833

    PubMed  Google Scholar 

  • Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A (2014) Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr 65(1):117–123

    Article  CAS  PubMed  Google Scholar 

  • Delzenne N (2003) Oligosaccharides: state of the art. Proc Nutr Soc 62:177–182

    Article  CAS  PubMed  Google Scholar 

  • Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31:15–31

    Article  CAS  PubMed  Google Scholar 

  • Delzenne NM, Kok N (2001) Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr 73:456S–458S

    CAS  PubMed  Google Scholar 

  • Delzenne NM, Neyrinck AM, Cani PD (2013) Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr 109:S81–S85

    Article  CAS  PubMed  Google Scholar 

  • Dewulf EM, Cani P, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen J-P, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djouzi Z, Andrieux C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78:313–324

    Article  CAS  PubMed  Google Scholar 

  • Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ (2002) Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52:2141–2146

    CAS  PubMed  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122

    Article  PubMed  Google Scholar 

  • EFSA Panel on Dietatic Products Nutrition and Allergies (2011) Guidance on the scientific requirements for health claims related to gut and immune function. EFSA J 9:1984

    Google Scholar 

  • Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27:73–83

    Article  CAS  PubMed  Google Scholar 

  • Ewaschuk JB, Naylor JM, Zello GA (2005) D-lactate in human and ruminant metabolism. J Nutr 135:1619–1625

    CAS  PubMed  Google Scholar 

  • Falony G, Vlachou A, Verbrugghe K, de Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Scott KP, Louis P, Duncan SH (2012a) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012b) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, Pérez-Alvarez JA (2011) Resistant starch as prebiotic: a review. Starch 63:406–415

    Article  CAS  Google Scholar 

  • Fukushima A, Aizaki Y, Sakuma K (2012) Short-chain fatty acids increase the level of calbindin-D9k messenger RNA in Caco-2 cells. J Nutr Sci Vitaminol (Tokyo) 58:287–291

    Article  CAS  Google Scholar 

  • Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkoop I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7:1–19

    Article  Google Scholar 

  • Gilman J, Cashman KD (2006) The effect of probiotic bacteria on transepithelial calcium transport and calcium uptake in human intestinal-like Caco-2 cells. Curr Issues Intest Microbiol 7:1–5

    CAS  PubMed  Google Scholar 

  • Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M (2011) Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr 51:394–409

    Article  PubMed  Google Scholar 

  • Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87:S187–S191

    Article  CAS  PubMed  Google Scholar 

  • Guigoz Y, Rochat F, Perruisseau-Carrier G, Rochat I, Schiffrin EJ (2002) Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr Res 22:13–25

    Article  CAS  Google Scholar 

  • Gullón B, Gómez B, Martínez-Sabajanes M, Yánez R, Parajó JC, Alonso JL (2013) Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Technol 30:153–161

    Article  CAS  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  PubMed  Google Scholar 

  • Hess JR, Birkett AM, Thomas W, Slavin JL (2011) Effects of short-chain fructooligosaccharides on satiety responses in healthy men and women. Appetite 56:128–134

    Article  CAS  PubMed  Google Scholar 

  • Hicks PD, Hawthorne KM, Berseth CL, Marunycz JD, Heubi JE, Abrams SA (2012) Total calcium absorption is similar from infant formulas with and without prebiotics and exceeds that in human milk-fed infants. BMC Pediatr 12:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett JF, Betteridge VA, Champ M, Craig SAS, Meheust A, Jones JM (2010) The definition of dietary fiber – discussions at the Ninth Vahouny Fiber Symposium: building scientific agreement. Food Nutr Res 54:5750

    Article  Google Scholar 

  • Jenkins DJ, Kendall CW, Vuksan V (1999) Inulin, oligofructose and intestinal function. J Nutr 129:1431S–1433S

    CAS  PubMed  Google Scholar 

  • Jeurink PV, van Esch BC, Rijnierse A, Garssen J, Knippels LM (2013) Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr 98:572S–577S

    Article  CAS  PubMed  Google Scholar 

  • Johnson CR, Thavarajah D, Combs GF Jr, Thavarajah P (2013) Lentil (Lens culinaris L.): a prebiotic-rich whole food legume. Food Res Int 51:107–113

    Article  CAS  Google Scholar 

  • Kleessen B, Blaut M (2005) Modulation of gut mucosal biofilms. Br J Nutr 93:S35–S40

    Article  CAS  PubMed  Google Scholar 

  • Kruger MC, Brown KE, Collett G, Layton L, Schollum LM (2003) The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med (Maywood) 228:683–688

    CAS  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Ameida M, Arumugam M, Batto J-M, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker J-D, Raes J, Hansen T, MetaHIT consortium, Bork P, Wang J, Ehrlich DS, Pedersen O (2013) Richness of human gut microbiome correlates woth metabolic markers. Nature 500:541–546

    Article  PubMed  CAS  Google Scholar 

  • Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM (2012) Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci 77:H88–H94

    Article  CAS  PubMed  Google Scholar 

  • Licht TR, Ebersbach T, Frøkiær H (2012) Prebiotics for prevention of gut infections. Trends Food Sci Technol 23:70–82

    Article  CAS  Google Scholar 

  • Lopez-Siles M, Khan TM, Duncan SH, Harmsen HM, Garcia-Gil LJ, Flint HJ (2012) Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 78:420–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  CAS  PubMed  Google Scholar 

  • Louis P, O’Byrne CP (2010) Life in the gut: microbial responses to stress in the gastrointestinal tract. Sci Prog 93:7–36

    Article  PubMed  Google Scholar 

  • Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Stornbaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis AJH, van den Heuvel EG, Schoterman MHC, Venema K (2012) Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J Nutr 142:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344

    CAS  PubMed  Google Scholar 

  • Marín-Manzano MC, Abecia L, Hernández-Hernández O, Sanz ML, Montilla A, Olano A, Rubio LA, Moreno FJ, Clemente A (2013) Galacto-oligosaccharides derived from lactulose exert a selective stimulation on the growth of Bifidobacterium animalis in the large intestine of growing rats. J Agric Food Chem 61:7560–7567

    Article  PubMed  CAS  Google Scholar 

  • Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes sus-like paradigm. J Biol Chem 284:24673–24677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2461:1282–1286

    Article  CAS  Google Scholar 

  • McIntosh FM, Maison N, Holtrop G, Young P, Stevens VH, Ince J, Johnstone AM, Lobley GE, Flint HJ, Louis P (2012) Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 14:1876–1887

    Article  CAS  PubMed  Google Scholar 

  • Meslin JC, Andrieux C, Sakata T, Beaumatin P, Bensaada M, Popot F, Szylit O, Durand M (1993) Effects of galacto-oligosaccharide and bacterial status on mucin distribution in mucosa and on large intestine fermentation in rats. Br J Nutr 69:903–912

    Article  CAS  PubMed  Google Scholar 

  • Moro GE, Stahl B, Fanaro S, Jelinek J, Boehm G, Coppa GV (2005) Dietary prebiotic oligosaccharides are detectable in the faeces of formula-fed infants. Acta Paediatr Suppl 94:27–30

    Article  PubMed  Google Scholar 

  • Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT (2006) Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr 96:570–577

    CAS  PubMed  Google Scholar 

  • Neyrinck AM, Van Hée VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM (2012) Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes 2:e28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298:G807–G819

    Article  CAS  PubMed  Google Scholar 

  • Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K (1998) Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr 128:934–939

    CAS  PubMed  Google Scholar 

  • Osborn DA, Sinn JK (2013) Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 3:CD006474

    PubMed  Google Scholar 

  • Otieno DO, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 360:84–92

    Article  CAS  PubMed  Google Scholar 

  • Overduin J, Schoterman MH, Calame W, Schonewille AJ, Ten Bruggencate SJ (2013) Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br J Nutr 109:1338–1348

    Article  CAS  PubMed  Google Scholar 

  • Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89:1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Peters HP, Boers HM, Haddeman E, Melnikov SM, Qvyjt F (2009) No effect of added beta-glucan or of fructooligosaccharide on appetite or energy intake. Am J Clin Nutr 89:58–63

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550

    Article  CAS  PubMed  Google Scholar 

  • Raninen K, Lappi J, Mykkänen H, Poutanen K (2011) Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutr Rev 69:9–21

    Article  PubMed  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozan P, Nejdi A, Hidalgo S, Bisson JF, Desor D, Messaoudi M (2008) Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br J Nutr 100:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Russell W, Duthie G (2011) Symposium on ‘nutrition: getting the balance right in 2010’. Session 3: influences of food constituents on gut health plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc 70:389–396

    Article  CAS  PubMed  Google Scholar 

  • Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16:246–254

    Article  CAS  PubMed  Google Scholar 

  • Russo F, Linsalata M, Clemente C, Chiloiro M, Orlando A, Marconi E, Chimienti G, Riezzo G (2012) Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 32:940–946

    Article  CAS  PubMed  Google Scholar 

  • Ryan SM, Fitzgerald GF, Van Sinderen D (2006) Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in Bifidobacterial strains. Appl Environ Microbiol 72:5289–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz-Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral metabolism – experimental data and mechanism. Br J Nutr 87:S179–S186

    Article  CAS  PubMed  Google Scholar 

  • Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Açil Y, Glüer CC, Schrezenmeir J (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838S–846S

    CAS  PubMed  Google Scholar 

  • Scott KP, Martin JC, Duncan SH, Flint HJ (2013) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Seifert S, Watzl B (2007) Inulin and oligofructose: review of experimental data on immune modulation. J Nutr 137:2563S–2567S

    CAS  PubMed  Google Scholar 

  • Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavin J, Green H (2007) Dietary fibre and satiety. Nutr Bull 32:32–42

    Article  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos W (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8:2218–2230

    Article  CAS  PubMed  Google Scholar 

  • Speert DP, Eftekhar F, Puterman ML (1984) Nonopsonic phagocytosis of strains of Pseudomonas aeruginosa from cystic fibrosis patients. Infect Immun 43:1006–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabbers MM, Boluyt N, Berger MY, Benninga MA (2011) Nonpharmacologic treatments for childhood constipation: systematic review. Pediatrics 128:753–761

    Article  PubMed  Google Scholar 

  • Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J-P, Ugarte E, Munoz-Tamayo R, Paslier DLE, Nallin R, Doré J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584

    Article  PubMed  Google Scholar 

  • Thakur M, Connellan P, Deseo MA, Morris C, Praznik W, Loeppert R, Dixit VK (2012) Characterization and in vitro immunomodulatory screening of fructo-oligosaccharides of Asparagus racemosus Willd. Int J Biol Macromol 50:77–81

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble F (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93:62–72

    Article  CAS  PubMed  Google Scholar 

  • Van den Abbeele P, Verstraete W, El Aidy S, Geirnaert A, Van de Wiele T (2013) Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microb Biotechnol 6:335–340

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel EG, Schoterman MH, Muijs T (2000) Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 130:2938–2942

    PubMed  Google Scholar 

  • Vandenplas Y, De Greef E, Hauser B, Devreker T, Veereman-Wauters G (2013) Probiotics and prebiotics in pediatric diarrheal disorders. Expert Opin Pharmacother 14:397–409

    Article  CAS  PubMed  Google Scholar 

  • Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M (1988) Fecal lactate and ulcerative colitis. Gastroenterology 95:1564–1568

    CAS  PubMed  Google Scholar 

  • Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88:1438–1446

    CAS  PubMed  Google Scholar 

  • Vulevic J, Juric A, Tzortzis G, Gibson GR (2013) A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 143:324–331

    Article  CAS  PubMed  Google Scholar 

  • Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, McCabe GP, Duignan S, Schoterman MH, van den Heuvel EG (2011) Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem 59:6501–6510

    Article  CAS  PubMed  Google Scholar 

  • Westerbeek EA, van den Berg A, Lafeber HN, Fetter WP, van Elburg RM (2011) The effect of enteral supplementation of a prebiotic mixture of non-human milk galacto-, fructo- and acidic oligosaccharides on intestinal permeability in preterm infants. Br J Nutr 105:268–274

    Article  CAS  PubMed  Google Scholar 

  • Whelan K (2011) Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr Opin Clin Nutr Metab Care 14:581–587

    Article  PubMed  Google Scholar 

  • Whelan K (2013) Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proc Nutr Soc 72:288–298

    Article  CAS  PubMed  Google Scholar 

  • Yap KW, Mohamed S, Yazid AM, Maznah I, Meyer DM (2005) Dose-response effects of inulin on the faecal fatty acids content and mineral absorption of formula-fed infants. Nutr Food Sci 35:208–219

    Article  Google Scholar 

  • Yoo H-D, Kim D, Paek S-H, Oh S-E (2012) Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol Ther 20:371–379

    Article  CAS  Google Scholar 

  • Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295:E1160–E1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Louis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Louis, P., Flint, H.J., Michel, C. (2016). How to Manipulate the Microbiota: Prebiotics. In: Schwiertz, A. (eds) Microbiota of the Human Body. Advances in Experimental Medicine and Biology, vol 902. Springer, Cham. https://doi.org/10.1007/978-3-319-31248-4_9

Download citation

Publish with us

Policies and ethics