Skip to main content

Center of Ventilation—Methods of Calculation Using Electrical Impedance Tomography and the Influence of Image Segmentation

  • Conference paper
  • First Online:
XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016

Part of the book series: IFMBE Proceedings ((IFMBE,volume 57))

Abstract

Electrical impedance tomography (EIT) is a promising non-invasive, radiation-free imaging modality. Using EIT-derived index Center of ventilation (CoV), ventral-to-dorsal shifts in distribution of lung ventilation can be assessed. The methods of CoV calculation differ among authors and so does the segmentation of EIT images from which the CoV is calculated. The aim of this study is to compare the values of CoV obtained using different algorithms, applied in variously segmented EIT images. An animal trial (n=4) with anesthetized mechanically ventilated pigs was conducted. In one animal, acute respiratory distress syndrome (ARDS) was induced by repeated whole lung lavage. Incremental steps in positive end-expiratory pressure (PEEP), each with a value of 5 cmH2O (or 4 cmH2O in the ARDS model), were performed to reach total PEEP level of 25 cmH2O (or 22 cmH2O in the ARDS model). EIT data were acquired continuously during this PEEP trial. From each PEEP level, 30 tidal variation (TV) images were used for analysis. Functional regions of interest (ROI) were defined based on the standard deviation (SD) of pixel values, using threshold 15%–35% of maximum pixel SD. The results of this study show that there might be statistically significant differences between the values obtained using different methods for calculation of CoV. The differences occured in healthy animals as well as in the ARDS model. Both investigated algorithms are relatively insensitive to the image segmentation.

The original version of this chapter was inadvertently published with an incorrect chapter pagination 1258–1263 and DOI 10.1007/978-3-319-32703-7_241. The page range and the DOI has been re-assigned. The correct page range is 1264–1269 and the DOI is 10.1007/978-3-319-32703-7_242. The erratum to this chapter is available at DOI: 10.1007/978-3-319-32703-7_260

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-32703-7_260

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frerichs I., Hinz J., Herrmann P., et al. Detection of local lung air content by electrical impedance tomography compared with electron beam CT J Appl Physiol. 2002;93:660-666.

    Google Scholar 

  2. Holder D.S.. Electrical Impedance Tomography: methods, history and applications. Philadelphia: Institute of Physics Pub. 2005.

    Google Scholar 

  3. Putensen C., Wrigge H., Zinserling J.. Electrical impedance tomography guided ventilation therapy Curr Opin Crit Care. 2007;13:344-350.

    Google Scholar 

  4. Adler A., Amato M.B., Arnold J.H., et al. Whither lung EIT: Where are we, where do we want to go and what do we need to get there? Physiol Meas. 2012;33:679-694.

    Google Scholar 

  5. Frerichs I., Hahn G., Golisch W., Kurpitz M., Burchardi H., Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography Acta Anaesthesiol Scand. 1998;42:721-726.

    Google Scholar 

  6. Frerichs I., Dargaville P.A., Van Genderingen H., Morel D.R., Rimensberger P.C.. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation Am J Respir Crit Care Med. 2006;174:772-779.

    Google Scholar 

  7. Schibler A., Yuill M., Parsley C., Pham T., Gilshenan K., Dakin C.. Regional ventilation distribution in non-sedated spontaneously breathing newborns and adults is not different Pediatr Pulmonol. 2009;44:851-858.

    Google Scholar 

  8. Van Heerde M., Roubik K., Kopelent V., Kneyber M.C.J., Markhorst D.G.. Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury Acta Anaesthesiol Scand. 2010;54:1248-1256.

    Google Scholar 

  9. Radke O.C., Schneider T., Heller A.R., Koch T.. Spontaneous breathing during general anesthesia prevents the ventral redistribution of ventilation as detected by electrical impedance tomography: A randomized trial Anesthesiology. 2012;116:1227-1234.

    Google Scholar 

  10. Blankman P., Hasan D., Erik G.J., Gommers D.. Detection of ‘best’ positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial Crit Care. 2014;18.

    Google Scholar 

  11. Zhao Z., Frerichs I., Pulletz S., Müller-Lisse U., Möller K.. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation Physiol Meas. 2014;35:1083-1093.

    Google Scholar 

  12. Schaefer M.S., Wania V., Bastin B., et al. Electrical impedance tomography during major open upper abdominal surgery: A pilot-study BMC Anesthesiol. 2014;14.

    Google Scholar 

  13. Luepschen H., Meier T., Grossherr M., Leibecke T., Karsten J., Leonhardt S.. Protective ventilation using electrical impedance tomography Physiol Meas. 2007;28:S247-S260.

    Google Scholar 

  14. Pulletz S., Van Genderingen H.R., Schmitz G., et al. Comparison of different methods to define regions of interest for evaluation of regional lung ventilation by EIT Physiol Meas. 2006;27:S115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sobota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sobota, V., Roubik, K. (2016). Center of Ventilation—Methods of Calculation Using Electrical Impedance Tomography and the Influence of Image Segmentation. In: Kyriacou, E., Christofides, S., Pattichis, C. (eds) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IFMBE Proceedings, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-32703-7_242

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32703-7_242

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32701-3

  • Online ISBN: 978-3-319-32703-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics