Skip to main content

Direct and Repeated Clinical Measurements of pO2 for Enhancing Cancer Therapy and Other Applications

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXVIII

Abstract

The first systematic multi-center study of the clinical use of EPR oximetry has begun, with funding as a PPG from the NCI. Using particulate oxygen sensitive EPR, materials in three complementary forms (India Ink, “OxyChips”, and implantable resonators) the clinical value of the technique will be evaluated. The aims include using repeated measurement of tumor pO2 to monitor the effects of treatments on tumor pO2, to use the measurements to select suitable subjects for the type of treatment including the use of hyperoxic techniques, and to provide data that will enable existing clinical techniques which provide data relevant to tumor pO2 but which cannot directly measure it to be enhanced by determining circumstances where they can give dependable information about tumor pO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239. doi:10.1007/s10555-007-9055-1

    Article  CAS  PubMed  Google Scholar 

  2. Vaupel P, Mayer A (2015) The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 10:878–879. doi:10.1089/ars.2014.6155

    Article  Google Scholar 

  3. Walsh JC, Lebedev A, Aten E et al (2014) The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 21:1516–1554. doi:10.1089/ars.2013.5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Menon C, Fraker DL (2005) Tumor oxygenation status as a prognostic marker. Cancer Lett 221:225–235. doi:10.1016/j.canlet.2004.06.029

    Article  CAS  PubMed  Google Scholar 

  5. Dhani N, Fyles A, Hedley D et al (2015) The clinical significance of hypoxia in human cancers. Semin Nucl Med 45:110–121. doi:10.1053/j.semnuclmed.2014.11.002

    Article  PubMed  Google Scholar 

  6. Swartz HM, Williams BB, Zaki BI et al (2014) Clinical EPR: unique opportunities and some challenges. Acad Radiol 21:197–206. doi:10.1016/j.acra.2013.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Springett R, Swartz HM (2007) Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues. Antioxid Redox Signal 9:1295–1301. doi:10.1089/ars.2007.1620

    Article  CAS  PubMed  Google Scholar 

  8. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410. doi:10.1038/nrc3064

    Article  CAS  PubMed  Google Scholar 

  9. Vaupel P (2009) Prognostic potential of the pre-therapeutic tumor oxygenation status. Adv Exp Med Biol 645:241–246. doi:10.1007/978-0-387-85998-9_36

    Article  PubMed  Google Scholar 

  10. Hoogsteen IJ, Marresy HAM, van der Kogel AJ et al (2007) The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol (R Coll Radiol) 19:385–396. doi:10.1016/j.clon.2007.03.001

    Article  CAS  Google Scholar 

  11. Goda F, O'Hara JA, Rhodes ES et al (1995) Changes of oxygen tension in experimental tumors after a single dose of X-ray irradiation. Cancer Res 55:2249–2252

    CAS  PubMed  Google Scholar 

  12. O'Hara JA, Goda F, Demidenko E et al (1998) Effect on regrowth delay in a murine tumor of scheduling split-dose irradiation based on direct pO2 measurements by electron paramagnetic resonance oximetry. Radiat Res 150:549–556. doi:10.2307/3579872

    Article  PubMed  Google Scholar 

  13. O’Hara JA, Goda F, Liu KJ et al (1995) The pO2 in a murine tumor after irradiation: an in vivo electron paramagnetic resonance oximetry study. Radiat Res 144:222–229. doi:10.2307/3579262

    Article  PubMed  Google Scholar 

  14. Khan N, Hou H, Hein P et al (2005) Black magic and EPR oximetry: from lab to initial clinical trials. In: Okunieff P, Williams J, Chen Y (eds) Advances in experimental medicine and biology: Oxygen transport to tissues XXVI. 31st annual meeting of the International Society on Oxygen Transport to Tissue, Rochester, NY, 16–20 August 2003

    Google Scholar 

  15. Khan N, Williams BB, Swartz HM (2006) Clinical applications of in vivo EPR: rationale and initial results. Appl Magn Reson 30:185–199. doi:10.1007/BF03166718

    Article  CAS  Google Scholar 

  16. Swartz HM, Khan N, Buckey J et al (2004) Clinical applications of EPR: overview and perspectives. NMR Biomed 17:335–351. doi:10.1002/nbm.911

    Article  CAS  PubMed  Google Scholar 

  17. Meenakshisundaram G, Eteshola E, Pandian RP et al (2009) Oxygen sensitivity and biocompatibility of an implantable paramagnetic probe for repeated measurements of tissue oxygenation. Biomed Microdevices 11:817–826. doi:10.1007/s10544-009-9298-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dinguizli M, Jeumont S, Beghein N et al (2006) Development and evaluation of biocompatible films of polytetrafluoroethylene polymers holding lithium phthalocyanine crystals for their use in EPR oximetry. Biosens Bioelectron 21:1015–1022. doi:10.1016/j.bios.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  19. Hou H, Dong R, Li H et al (2012) Dynamic changes in oxygenation of intracranial tumor and contralateral brain during tumor growth and carbogen breathing: a multisite EPR oximetry with implantable resonators. J Magn Reson 214:22–28. doi:10.1016/j.jmr.2011.09.043

    Article  CAS  PubMed  Google Scholar 

  20. Janssens GO, Rademakers SE, Terhaard CH et al (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 30:1777–1783. doi:10.1200/JCO.2011.35.9315

    Article  CAS  PubMed  Google Scholar 

  21. Gallez B, Baudelet C, Jordan BF (2004) Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications. NMR Biomed 17:240–262. doi:10.1002/nbm.900

    Article  CAS  PubMed  Google Scholar 

  22. Flood AB, Satinsky VA, Swartz HM (2015) Comparing the effectiveness of methods to measure oxygen in tissues for prognosis and treatment of cancer. In: Advances in experimental medicine and biology: oxygen transport to tissues XXXVIII. 43rd annual meeting of the International Society on Oxygen Transport to Tissue, Wu-han, China, 11–16 July 2015 (submitted to same volume)

    Google Scholar 

  23. Courtney A (2015) The synthesis of bouncing putty: a cross-linked silicone polymer. [image in Fig. 1b [B] from https://www.wou.edu/las/physci/ch462/BouncingPutty.htm. Accessed 20 August 2015]

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health [P01 CA190193 (the Dartmouth PPG) and R01 EB004031] and pilot project funding from the Prouty Fund of the Norris Cotton Cancer Center at Geisel Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold M. Swartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Swartz, H.M. et al. (2016). Direct and Repeated Clinical Measurements of pO2 for Enhancing Cancer Therapy and Other Applications. In: Luo, Q., Li, L., Harrison, D., Shi, H., Bruley, D. (eds) Oxygen Transport to Tissue XXXVIII. Advances in Experimental Medicine and Biology, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-319-38810-6_13

Download citation

Publish with us

Policies and ethics