Skip to main content

The Glutamate–Glutamine Cycle in Epilepsy

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Abstract

Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain’s glutamate–glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate–glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate–glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate–glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDA:

1-aminoindan-1,5-dicarboxylic acid

ALT:

Alanine aminotransferase (alanine transaminase)

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AST:

Aspartate aminotransferase (aspartate transaminase)

BGT:

Betaine/gamma-aminobutyric acid transporter

CA1-3:

Cornu ammonis subfields 1-3 of the hippocampus

CGP 37849:

(E)-(±)-2-amino-4-methyl-5-phosphono-3-pentenoic acid

CGP 39551:

(E)-(±)-2-amino-4-methyl-5-phosphono-3-pentenoic acid ethyl ester

CGS 19755:

cis-4-[phosphomethyl]-piperidine-2-carboxylic acid

CNQS:

6-cyano-7-nitroquinoxaline-2,3-dione

CNS:

Central nervous system

D-AP5 (D-APV APV):

D-2-amino-5-phosphonovaleric acid

DMCM:

Methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate

DNQX:

6,7-dinitroquinoxaline-2,3-dione

EAAT:

Excitatory amino acid transporters

GABA:

Gamma-aminobutyric acid

GAD:

Glutamic acid decarboxylase

GAT:

Gamma-aminobutyric acid transporter

GLS:

Glutaminase

GLUL:

Glutamate ammonia ligase

GluR1-4:

AMPA receptor subunits 1-4

GluR5-7:

Kainate receptor subunits 5-7

GYKI 52466:

4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzenamine

GYKI 53773 (talampanel LY 300164):

(8R)-7-Acetyl-5-(4-aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine

KA1-2:

Kainate receptor subunits 1-2

LY 274614:

((4-)3 SR 4a RS, 6 SR, 8a SR-6-(phosphonomethyl)-l,2,3,4,4a,5,6,7,8,8 a-decahydroisoquinoline-3-carboxylic acid

LY 341495:

2-[(1S,2S)-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl)-D-alanine

LY 382884:

(3S,4aR,6S,8aR)-6-[(4-carboxyphenyl)methyl]-decahydroisoquinoline-3-carboxylic acid

mGluR:

Metabotropic glutamate receptor

MK-801 (dizocilpine):

[5R,10S]-[+]-5-methyl-10,11- dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine

MPEP:

2-methyl-6-(phenylethynyl)pyridine

MSG:

Monosodium glutamate

MSOP:

(RS)-α-methylserine-O-phosphate

MTLE:

Mesial temporal lobe epilepsy

NBQX:

2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione

NMDA:

n-methyl-D-aspartate

NPC 17742:

2R,4R,5S-(2-amino-4,5-(1 2-cyclohexyl)-7-phosphonoheptanoic acid

NR1-3:

N-methyl-D-aspartate receptor subunits

NVP-AAM077:

[[[(1S)-1-(4-bromophenyl)ethyl]amino](1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl] phosphonic acid

PPDA:

(2S*,3R*)-1-(Phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid

Ro 63-1908 (Co 101244 PD 174494):

1-[2-(4-Hydroxyphenoxy)ethyl]-4-[(4-methylphenyl)methyl]-4-piperidinol

SDZ EAB-515:

(S)-α-amino-2′-chloro-5-(phosphonomethyl)[1,1′-biphenyl]-3-propanoic acid

SIB-1893:

(E)-2-methyl-6-(2-phenylethenyl)pyridine

SNAT:

System-A-transporter

TCA:

Tricarboxylic acid

UPB-302:

2-{[3-[(2S)-2-amino-2-carboxyethyl]-2,6-dioxo-3,6-dihydropyrimidin-1(2H)-yl]methyl}benzoic acid

YM872:

[2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxalinyl]-acetic acid

References

  • Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  CAS  PubMed  Google Scholar 

  • Almassy RJ, Janson CA, Hamlin R, Xuong NH, Eisenberg D (1986) Novel subunit-subunit interactions in the structure of glutamine synthetase. Nature 323:304–309

    Article  CAS  PubMed  Google Scholar 

  • Altland PD, Highman B, Sellner RG (1974) Serum enzyme and tissue changes in shaven rabbits exposed to cold. Cryobiology 11:296–304

    Article  CAS  PubMed  Google Scholar 

  • Alvestad S, Hammer J, Qu H, Haberg A, Ottersen OP, Sonnewald U (2011) Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab 31:1675–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anson LC, Chen PE, Wyllie DJ, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18:581–589

    CAS  PubMed  Google Scholar 

  • Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, Rossetti F, Miller SL, Braga MF (2014) The limitations of diazepam as a treatment for nerve agent-induced seizures and neuropathology in rats: comparison with UBP302. J Pharmacol Exp Ther 351:359–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arakawa H, Kodama H, Matsuoka N, Yamaguchi I (1997) Stress increases plasma enzyme activity in rats: differential effects of adrenergic and cholinergic blockades. J Pharmacol Exp Ther 280:1296–1303

    CAS  PubMed  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    CAS  PubMed  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci U S A 94:4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O, Goodwin J, Halliday HL, Juszczak E, Kapellou O, Levene M, Linsell L, Omar O, Thoresen M, Tusor N, Whitelaw A, Edwards AD, Group, T.S (2014) Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 371:140–149

    Article  CAS  PubMed  Google Scholar 

  • Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, Matteoli M (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88:2302–2310

    Article  CAS  PubMed  Google Scholar 

  • Bagetta G, Iannone M, Palma E, Nistico G, Dolly JO (1996) N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors mediate seizures and CA1 hippocampal damage induced by dendrotoxin-K in rats. Neuroscience 71:613–624

    Article  CAS  PubMed  Google Scholar 

  • Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 121:446–453

    Article  CAS  PubMed  Google Scholar 

  • Banfi S, Servadio A, Chung MY, Kwiatkowski TJ Jr, McCall AE, Duvick LA, Shen Y, Roth EJ, Orr HT, Zoghbi HY (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7:513–520

    Article  CAS  PubMed  Google Scholar 

  • Bartnik-Olson BL, Harris NG, Shijo K, Sutton RL (2013) Insights into the metabolic response to traumatic brain injury as revealed by (13)C NMR spectroscopy. Front Neuroenergetics 5:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barton ME, Peters SC, Shannon HE (2003) Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 56:17–26

    Article  CAS  PubMed  Google Scholar 

  • Bashkatova VG, Sudakov SK, Prast H (2015) Antagonists of Metabotropic Glutamate Receptors Prevent the Development of Audiogenic Seizures. Bull Exp Biol Med 159:1–3

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18:467–486

    Article  PubMed  CAS  Google Scholar 

  • Benjamin AM, Quastel JH (1975) Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function. J Neurochem 25:197–206

    Article  CAS  PubMed  Google Scholar 

  • Bennett AE, Hoesch RE, DeWitt LD, Afra P, Ansari SA (2014) Therapeutic hypothermia for status epilepticus: A report, historical perspective, and review. Clin Neurol Neurosurg 126:103–109

    Article  PubMed  Google Scholar 

  • Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59:560–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger C, Schabitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33:519–524

    Article  CAS  PubMed  Google Scholar 

  • Berger C, Schabitz WR, Wolf M, Mueller H, Sommer C, Schwab S (2004) Hypothermia and brain-derived neurotrophic factor reduce glutamate synergistically in acute stroke. Exp Neurol 185:305–312

    Article  CAS  PubMed  Google Scholar 

  • Bhagavan HN, Coursin DB, Stewart CN (1971) Monosodium glutamate induces convulsive disorders in rats. Nature 232:275–276

    Article  CAS  PubMed  Google Scholar 

  • Bhutia YD, Ganapathy V (2015) Glutamine transporters in mammalian cells and their functions in physiology and cancer., Biochim Biophys Acta

    Google Scholar 

  • Bissonnette B, Pellerin L, Ravussin P, Daven VB, Magistretti PJ (1999) Deep hypothermia and rewarming alters glutamate levels and glycogen content in cultured astrocytes. Anesthesiology 91:1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Blair E, Hook R, Tolley H, Bunce GE (1961) Serum glutamic oxalacetic transaminase content in hypothermia. Science 133:105–106

    Article  CAS  PubMed  Google Scholar 

  • Blomstrand E, Eliasson J, Karlsson HK, Kohnke R (2006) Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136:269S–273S

    CAS  PubMed  Google Scholar 

  • Bode JG, Peters-Regehr T, Kubitz R, Haussinger D (2000) Expression of glutamine synthetase in macrophages. J Histochem Cytochem 48:415–422

    Article  CAS  PubMed  Google Scholar 

  • Boucher J, Kroger H, Sik A (2010) Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 215:49–65

    Article  CAS  PubMed  Google Scholar 

  • Bough KJ, Paquet M, Pare JF, Hassel B, Smith Y, Hall RA, Dingledine R (2007) Evidence against enhanced glutamate transport in the anticonvulsant mechanism of the ketogenic diet. Epilepsy Res 74:232–236

    Article  CAS  PubMed  Google Scholar 

  • Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, Melamed I, Regev A, Shapira Y, Teichberg VI (2011) Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci 34:1432–1441

    Article  PubMed  Google Scholar 

  • Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Brotfain E, Shapira Y, Zlotnik A (2012) The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics 9:649–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko M, Kuts R, Gruenbaum BF, Melamed I, Gruenbaum SE, Klein M, Shapira Y, Zlotnik A (2013) The role of hypothermia in the regulation of blood glutamate levels in naive rats. J Neurosurg Anesthesiol 25:174–183

    Article  PubMed  Google Scholar 

  • Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A (2014) Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm 121:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boylan GB, Kharoshankaya L, Wusthoff CJ (2015) Seizures and hypothermia: importance of electroencephalographic monitoring and considerations for treatment. Semin Fetal Neonatal Med 20:103–108

    Article  PubMed  Google Scholar 

  • Brandl EJ, Muller DJ, Richter MA (2012) Pharmacogenetics of obsessive-compulsive disorders. Pharmacogenomics 13:71–81

    Article  CAS  PubMed  Google Scholar 

  • Broer S, Palacin M (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem J 436:193–211

    Article  PubMed  CAS  Google Scholar 

  • Bruneau EG, McCullumsmith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2005) Increased expression of glutaminase and glutamine synthetase mRNA in the thalamus in schizophrenia. Schizophr Res 75:27–34

    Article  PubMed  Google Scholar 

  • Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7:452–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burket JA, Mastropaolo J, Rosse RB, Katz EU, Deutsch SI (2010) NMDA NR2B subtype-selective receptor antagonists fail to antagonize electrically-precipitated seizures and elicit popping in mice. Eur Neuropsychopharmacol 20:207–210

    Article  CAS  PubMed  Google Scholar 

  • Cai YQ, Cai GQ, Liu GX, Cai Q, Shi JH, Shi J, Ma SK, Sun X, Sheng ZJ, Mei ZT, Cui D, Guo L, Wang Z, Fei J (2006) Mice with genetically altered GABA transporter subtype I (GAT1) expression show altered behavioral responses to ethanol. J Neurosci Res 84:255–267

    Article  CAS  PubMed  Google Scholar 

  • Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, Rodriguez-Gonzalez R, Brea D, Castillo J (2011) Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab 31:1378–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos F, Sobrino T, Perez-Mato M, Rodriguez-Osorio X, Leira R, Blanco M, Mirelman D, Castillo J (2013) Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients., Cephalalgia

    Google Scholar 

  • Campos-Sandoval JA, Martin-Rufian M, Cardona C, Lobo C, Penalver A, Marquez J (2015) Glutaminases in brain: multiple isoforms for many purposes. Neurochem Int 88:1–5

    Article  CAS  PubMed  Google Scholar 

  • Capogna M, Pearce RA (2011) GABA A, slow: causes and consequences. Trends Neurosci 34:101–112

    Article  CAS  PubMed  Google Scholar 

  • Cardona C, Sanchez-Mejias E, Davila JC, Martin-Rufian M, Campos-Sandoval JA, Vitorica J, Alonso FJ, Mates JM, Segura JA, Norenberg MD, Rama Rao KV, Jayakumar AR, Gutierrez A, Marquez J (2015) Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 63:365–382

    Article  PubMed  Google Scholar 

  • Carvalho AS, Torres LB, Persike DS, Fernandes MJ, Amado D, Naffah-Mazzacoratti Mda G, Cavalheiro EA, da Silva AV (2011) Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochem Int 58:385–390

    Article  CAS  PubMed  Google Scholar 

  • Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli C, Grodsky NB, Ariyaratne N, Colman RF, Bahnson BJ (2002) Crystal structure of porcine mitochondrial NADP + -dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. J Biol Chem 277:43454–43462

    Article  CAS  PubMed  Google Scholar 

  • Chan K, Busque SM, Sailer M, Stoeger C, Broer S, Daniel H, Rubio-Aliaga I, Wagner CA (2016) Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch 468:213–227

    Article  CAS  PubMed  Google Scholar 

  • Chang P, Augustin K, Boddum K, Williams S, Sun M, Terschak JA, Hardege JD, Chen PE, Walker MC, Williams RS (2016) Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain 139:431–443

    Article  PubMed  Google Scholar 

  • Chaperon F, Muller W, Auberson YP, Tricklebank MD, Neijt HC (2003) Substitution for PCP, disruption of prepulse inhibition and hyperactivity induced by N-methyl-D-aspartate receptor antagonists: preferential involvement of the NR2B rather than NR2A subunit. Behav Pharmacol 14:477–487

    CAS  PubMed  Google Scholar 

  • Chapman AG, Graham JL, Patel S, Meldrum BS (1991) Anticonvulsant activity of two orally active competitive N-methyl-D-aspartate antagonists, CGP 37849 and CGP 39551, against sound-induced seizures in DBA/2 mice and photically induced myoclonus in Papio papio. Epilepsia 32:578–587

    Article  CAS  PubMed  Google Scholar 

  • Chapman AG, Yip PK, Yap JS, Quinn LP, Tang E, Harris JR, Meldrum BS (1999) Anticonvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid). Eur J Pharmacol 368:17–24

    Article  CAS  PubMed  Google Scholar 

  • Chapman AG, Nanan K, Williams M, Meldrum BS (2000) Anticonvulsant activity of two metabotropic glutamate group I antagonists selective for the mGlu5 receptor: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1893). Neuropharmacology 39:1567–1574

    Article  CAS  PubMed  Google Scholar 

  • Chapman AG, Talebi A, Yip PK, Meldrum BS (2001) Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid. Eur J Pharmacol 424:107–113

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Li HZ, Ye N, Zhang J, Wang JJ (2005) Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res Bull 67:310–318

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 108:8674–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu CS, Brickley S, Jensen K, Southwell A, McKinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Hartley DM (1993) Calcium and glutamate-induced cortical neuronal death. In: Waxman SG (ed) Molecular and cellular approaches to the treatment of neurologic disease. Raven, New York

    Google Scholar 

  • Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7:605–613

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Melone M (2006) The glutamine commute: lost in the tube? Neurochem Int 48:459–464

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  CAS  PubMed  Google Scholar 

  • Contractor A, Swanson GT, Sailer A, O’Gorman S, Heinemann SF (2000) Identification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 20:8269–8278

    CAS  PubMed  Google Scholar 

  • Cooper AJ, Kuhara T (2014) alpha-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 29:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Csibi A, Lee G, Yoon SO, Tong H, Ilter D, Elia I, Fendt SM, Roberts TM, Blenis J (2014) The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 24:2274–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlin M, Elfving A, Ungerstedt U, Amark P (2005) The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 64:115–125

    Article  CAS  PubMed  Google Scholar 

  • Dalet A, Bonsacquet J, Gaboyard-Niay S, Calin-Jageman I, Chidavaenzi RL, Venteo S, Desmadryl G, Goldberg JM, Lysakowski A, Chabbert C (2012) Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings. PLoS One 7, e46261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Pines G, Kanner BI (1990) Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29:6734–6740

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Storm-Mathisen J, Kanner BI (1992) An [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51:295–310

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC, Furness DN, Zhou Y (2016a) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45

    Google Scholar 

  • Danbolt NC, Zhou Y, Furness DN, Holmseth S (2016b) Strategies for immunohistochemical protein localization using antibodies: what did we learn from neurotransmitter transporters in glial cells and neurons. Glia (in press)

    Google Scholar 

  • Danial NN, Hartman AL, Stafstrom CE, Thio LL (2013) How does the ketogenic diet work? Four potential mechanisms. J Child Neurol 28:1027–1033

    Article  PubMed  PubMed Central  Google Scholar 

  • Danielyan L, Zellmer S, Sickinger S, Tolstonog GV, Salvetter J, Lourhmati A, Reissig DD, Gleiter CH, Gebhardt R, Buniatian GH (2009) Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin. PLoS One 4, e4416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das A, Wallace GCT, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK, Banik NL (2012) Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience 220:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davalos A, Shuaib A, Wahlgren NG (2000) Neurotransmitters and pathophysiology of stroke: evidence for the release of glutamate and other transmitters/mediators in animals and humans. J Stroke Cerebrovasc Dis 9:2–8

    Article  CAS  PubMed  Google Scholar 

  • Davidson DL, Barbeau A (1975) Locomotor activity and seizures induced by picrotoxin in the fastigeal nucleus of the rat. Exp Neurol 49:622–627

    Article  CAS  PubMed  Google Scholar 

  • de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395

    Article  PubMed  Google Scholar 

  • De Sarro G, Ammendola D, Nava F, De Sarro A (1995) Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice. Brain Res 671:131–140

    Article  PubMed  Google Scholar 

  • De Simone R, Vissicchio F, Mingarelli C, De Nuccio C, Visentin S, Ajmone-Cat MA, Minghetti L (2013) Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta 1832:650–659

    Article  PubMed  CAS  Google Scholar 

  • de Vivo L, Melone M, Bucci G, Rothstein JD, Conti F (2010) Quantitative analysis of EAAT4 promoter activity in neurons and astrocytes of mouse somatic sensory cortex. Neurosci Lett 474:42–45

    Article  PubMed  CAS  Google Scholar 

  • de Vries B, Mamsa H, Stam AH, Wan J, Bakker SL, Vanmolkot KR, Haan J, Terwindt GM, Boon EM, Howard BD, Frants RR, Baloh RW, Ferrari MD, Jen JC, van den Maagdenberg AM (2009) Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol 66:97–101

    Article  PubMed  Google Scholar 

  • DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289

    Article  CAS  PubMed  Google Scholar 

  • Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619

    CAS  PubMed  Google Scholar 

  • Dennis SC, Lai JC, Clark JB (1977) Comparative studies on glutamate metabolism in synpatic and non-synaptic rat brain mitochondria. Biochem J 164:727–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaher R, Damisah EC, Wang H, Gruenbaum SE, Ong C, Zaveri HP, Gruenbaum BF, Eid T (2014) 5-aminovaleric acid suppresses the development of severe seizures in the methionine sulfoximine model of mesial temporal lobe epilepsy. Neurobiol Dis 67:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhir A, Chavda V (2016) Pre- and post-exposure talampanel (GYKI 53773) against kainic acid seizures in neonatal rats. Pharmacol Rep 68:190–195

    Article  CAS  PubMed  Google Scholar 

  • Dolgodilina E, Imobersteg S, Laczko E, Welt T, Verrey F, Makrides V (2015) Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter., J Cereb Blood Flow Metab

    Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  • Dufour F, Nalecz KA, Nalecz MJ, Nehlig A (1999) Modulation of pentylenetetrazol-induced seizure activity by branched-chain amino acids and alpha-ketoisocaproate. Brain Res 815:400–404

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich MP, McCullough JN, Zhang N, Weisz DJ, Juvonen T, Bodian CA, Griepp RB (2002) Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg 73:191–197

    Article  PubMed  Google Scholar 

  • Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  PubMed  Google Scholar 

  • Eid T, Hammer J, Runden-Pran E, Roberg B, Thomas MJ, Osen K, Davanger S, Laake P, Torgner IA, Lee TS, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC (2007) Increased expression of phosphate-activated glutaminase in hippocampal neurons in human mesial temporal lobe epilepsy. Acta Neuropathol (Berl) 113:137–152

    Article  CAS  Google Scholar 

  • Eid T, Ghosh A, Wang Y, Beckstrom H, Zaveri HP, Lee TS, Lai JC, Malthankar-Phatak GH, de Lanerolle NC (2008a) Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131:2061–2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Eid T, Williamson A, Lee TS, Petroff OA, de Lanerolle NC (2008b) Glutamate and astrocytes--key players in human mesial temporal lobe epilepsy? Epilepsia 49(Suppl 2):42–52

    Article  CAS  PubMed  Google Scholar 

  • Eid T, Williamson A, Lee TS, Petroff OA, de Lanerolle NC (2008c) Glutamate and astrocytes-key players in human mesial temporal lobe epilepsy? Epilepsia 49(Suppl 2):42–52

    Article  CAS  PubMed  Google Scholar 

  • Eliasof S, Arriza JL, Leighton BH, Amara SG, Kavanaugh MP (1998) Localization and function of five glutamate transporters cloned from the salamander retina. Vision Res 38:1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Erdo SL, Wolff JR (1990) gamma-Aminobutyric acid outside the mammalian brain. J Neurochem 54:363–372

    Article  CAS  PubMed  Google Scholar 

  • Erecinska M, Thoresen M, Silver IA (2003) Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab 23:513–530

    Article  CAS  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  CAS  PubMed  Google Scholar 

  • Eulenburg V, Gomeza J (2010) Neurotransmitter transporters expressed in glial cells as regulators of synapse function. Brain Res Rev 63:103–112

    Article  CAS  PubMed  Google Scholar 

  • Evans JE, Frostholm A, Rotter A (1996) Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges. J Comp Neurol 376:431–446

    Article  CAS  PubMed  Google Scholar 

  • Fagg GE, Olpe HR, Pozza MF, Baud J, Steinmann M, Schmutz M, Portet C, Baumann P, Thedinga K, Bittiger H et al (1990) CGP 37849 and CGP 39551: novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity. Br J Pharmacol 99:791–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Wang X (2015) Ketamine for the treatment of refractory status epilepticus. Seizure 30:14–20

    Article  PubMed  Google Scholar 

  • Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT (2004) Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. Br J Pharmacol 141:508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferkany JW, Hamilton GS, Patch RJ, Huang Z, Borosky SA, Bednar DL, Jones BE, Zubrowski R, Willetts J, Karbon EW (1993) Pharmacological profile of NPC 17742 [2R,4R,5S-(2-amino-4,5-(1, 2-cyclohexyl)-7-phosphonoheptanoic acid)], a potent, selective and competitive N-methyl-D-aspartate receptor antagonist. J Pharmacol Exp Ther 264:256–264

    CAS  PubMed  Google Scholar 

  • Folbergrova J, Passonneau JV, Lowry OH, Schulz DW (1969) Glycogen, ammonia and related metabolities in the brain during seizures evoked by methionine sulphoximine. J Neurochem 16:191–203

    Article  CAS  PubMed  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  CAS  PubMed  Google Scholar 

  • Friedrich JO, Wald R, Bagshaw SM, Burns KE, Adhikari NK (2012) Hemofiltration compared to hemodialysis for acute kidney injury: systematic review and meta-analysis. Crit Care 16:R146

    Article  PubMed  PubMed Central  Google Scholar 

  • Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157:80–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gameiro A, Braams S, Rauen T, Grewer C (2011) The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J 100:2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaoni Y, Chapman AG, Parvez N, Pook PC, Jane DE, Watkins JC (1994) Synthesis, NMDA receptor antagonist activity, and anticonvulsant action of 1-aminocyclobutanecarboxylic acid derivatives. J Med Chem 37:4288–4296

    Article  CAS  PubMed  Google Scholar 

  • Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    Article  CAS  PubMed  Google Scholar 

  • Gereau RWT, Conn PJ (1995) Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1. J Neurosci 15:6879–6889

    CAS  PubMed  Google Scholar 

  • Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383

    Article  CAS  PubMed  Google Scholar 

  • Gill R, Alanine A, Bourson A, Buttelmann B, Fischer G, Heitz MP, Kew JN, Levet-Trafit B, Lorez HP, Malherbe P, Miss MT, Mutel V, Pinard E, Roever S, Schmitt M, Trube G, Wybrecht R, Wyler R, Kemp JA (2002) Pharmacological characterization of Ro 63-1908 (1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol), a novel subtype-selective N-methyl-D-aspartate antagonist. J Pharmacol Exp Ther 302:940–948

    Article  CAS  PubMed  Google Scholar 

  • Gloor P (1991) Mesial temporal sclerosis: Historical background and an overview from a modern perspective. In: Luders H (ed) Epilepsy Surgery. Raven, New York, pp 689–703

    Google Scholar 

  • Godino Mdel C, Romera VG, Sanchez-Tomero JA, Pacheco J, Canals S, Lerma J, Vivancos J, Moro MA, Torres M, Lizasoain I, Sanchez-Prieto J (2013) Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest 123:4359–4363

    Article  PubMed  CAS  Google Scholar 

  • Goodman LS, Swinyard EA, Toman JE (1946) Effects of 1 (-) glutamic acid and other agents on experimental seizures. Arch Neurol Psychiatry 56:20–29

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126

    Article  CAS  PubMed  Google Scholar 

  • Gras G, Porcheray F, Samah B, Leone C (2006) The glutamate-glutamine cycle as an inducible, protective face of macrophage activation., J Leukoc Biol

    Google Scholar 

  • Grewal S, Defamie N, Zhang X, De Gois S, Shawki A, Mackenzie B, Chen C, Varoqui H, Erickson JD (2009) SNAT2 amino acid transporter is regulated by amino acids of the SLC6 gamma-aminobutyric acid transporter subfamily in neocortical neurons and may play no role in delivering glutamine for glutamatergic transmission. J Biol Chem 284:11224–11236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewer C, Gameiro A, Rauen T (2014) SLC1 glutamate transporters. Pflugers Arch 466:3–24

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum SE, Wang H, Zaveri HP, Tang AB, Lee TS, Eid T, Dhaher R (2015) Inhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy Behav 51:96–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    Article  CAS  PubMed  Google Scholar 

  • Guilliams K, Rosen M, Buttram S, Zempel J, Pineda J, Miller B, Shoykhet M (2013) Hypothermia for pediatric refractory status epilepticus. Epilepsia 54:1586–1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunnersen D, Haley B (1992) Detection of glutamine synthetase in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic biochemical marker. Proc Natl Acad Sci U S A 89:11949–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Pirozzi CJ, Lopez GY, Yan H (2011) Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr Opin Neurol 24:648–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Haberg A, Qu H, Sonnewald U (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival. Neurochem Int 48:531–540

    Article  CAS  PubMed  Google Scholar 

  • Haberle J, Gorg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Hohne W, Schliess F, Haussinger D, Koch HG (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–1933

    Article  PubMed  Google Scholar 

  • Haberle J, Gorg B, Toutain A, Rutsch F, Benoist JF, Gelot A, Suc AL, Koch HG, Schliess F, Haussinger D (2006) Inborn error of amino acid synthesis: human glutamine synthetase deficiency. J Inherit Metab Dis 29:352–358

    Article  PubMed  CAS  Google Scholar 

  • Haberle J, Shahbeck N, Ibrahim K, Hoffmann GF, Ben-Omran T (2011) Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 103:89–91

    Article  PubMed  CAS  Google Scholar 

  • Hagglund MG, Sreedharan S, Nilsson VC, Shaik JH, Almkvist IM, Backlin S, Wrange O, Fredriksson R (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 286:20500–20511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagglund MG, Hellsten SV, Bagchi S, Philippot G, Lofqvist E, Nilsson VC, Almkvist I, Karlsson E, Sreedharan S, Tafreshiha A, Fredriksson R (2015) Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS. J Mol Biol 427:1495–1512

    Article  PubMed  CAS  Google Scholar 

  • Hakuba N, Koga K, Gyo K, Usami SI, Tanaka K (2000) Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. J Neurosci 20:8750–8753

    CAS  PubMed  Google Scholar 

  • Hammer J, Alvestad S, Osen KK, Skare O, Sonnewald U, Ottersen OP (2008) Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy. Glia 56:856–868

    Article  PubMed  Google Scholar 

  • Hara H, Yamada N, Kodama M, Matsumoto Y, Wake Y, Kuroda S (2006) Effect of YM872, a selective and highly water-soluble AMPA receptor antagonist, in the rat kindling and rekindling model of epilepsy. Eur J Pharmacol 531:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hassel B (2001) Pyruvate carboxylation in neurons. J Neurosci Res 66:755–762

    Article  CAS  PubMed  Google Scholar 

  • Haugeto Ø, Ullensvang K, Levy LM, Chaudhry FA, Honore T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    Article  CAS  PubMed  Google Scholar 

  • Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. Epilepsia 34:453–468

    Article  CAS  PubMed  Google Scholar 

  • Haussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haussinger D, Laubenberger J, Vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480

    Article  CAS  PubMed  Google Scholar 

  • Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S (2000) Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J Hepatol 32:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T (1954) Effects of sodium glutamate on the nervous system. Keiko J Med 3:183–192

    Article  Google Scholar 

  • He Y, Hakvoort TB, Vermeulen JL, Lamers WH, Van Roon MA (2007) Glutamine synthetase is essential in early mouse embryogenesis. Dev Dyn 236:1865–1875

    Article  CAS  PubMed  Google Scholar 

  • He Y, Hakvoort TB, Vermeulen JL, Labruyere WT, De Waart DR, Van Der Hel WS, Ruijter JM, Uylings HB, Lamers WH (2010) Glutamine synthetase deficiency in murine astrocytes results in neonatal death. Glia 58:741–754

    PubMed  Google Scholar 

  • Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA (2016) Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients., J Neurotrauma

    Google Scholar 

  • Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci U S A 93:6031–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071

    Article  CAS  PubMed  Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32:6000–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoya K, Sugawara M, Asaba H, Terasaki T (1999) Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J Neurochem 73:1206–1211

    Article  CAS  PubMed  Google Scholar 

  • Hrncic D, Rasic-Markovic A, Susic V, Djuric D, Stanojlovic O (2009) Influence of NR2B-selective NMDA antagonist on lindane-induced seizures in rats. Pharmacology 84:234–239

    Article  CAS  PubMed  Google Scholar 

  • Hu SL, Wang D, Jiang H, Lei QF, Zhu XH, Cheng JZ (2014) Therapeutic effectiveness of sustained low-efficiency hemodialysis plus hemoperfusion and continuous hemofiltration plus hemoperfusion for acute severe organophosphate poisoning. Artif Organs 38:121–124

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Dykes-Hoberg M, Tanaka K, Rothstein JD, Bergles DE (2004) Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. J Neurosci 24:103–111

    Article  CAS  PubMed  Google Scholar 

  • Hudson RC, Daniel RM (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792

    CAS  PubMed  Google Scholar 

  • Hutson SM, Berkich D, Drown P, Xu B, Aschner M, LaNoue KF (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem 71:863–874

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386

    Article  CAS  PubMed  Google Scholar 

  • Imataka G, Wake K, Yamanouchi H, Ono K, Arisaka O (2014) Brain hypothermia therapy for status epilepticus in childhood. Eur Rev Med Pharmacol Sci 18:1883–1888

    CAS  PubMed  Google Scholar 

  • Isa T, Iino M, Ozawa S (1996) Spermine blocks synaptic transmission mediated by Ca(2+)-permeable AMPA receptors. Neuroreport 7:689–692

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 1, CD003311

    Google Scholar 

  • Janicki RH, Goldstein L (1969) Glutamine synthetase and renal ammonia metabolism. Am J Physiol 216:1107–1110

    CAS  PubMed  Google Scholar 

  • Jen JC, Wan J, Palos TP, Howard BD, Baloh RW (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65:529–534

    Article  CAS  PubMed  Google Scholar 

  • Jenstad M, Quazi AZ, Zilberter M, Haglerod C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, Hang FM-S, Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19:1092–1106

    Article  PubMed  Google Scholar 

  • Jiang W, Wolfe K, Xiao L, Zhang ZJ, Huang YG, Zhang X (2004) Ionotropic glutamate receptor antagonists inhibit the proliferation of granule cell precursors in the adult brain after seizures induced by pentylenetrazol. Brain Res 1020:154–160

    Article  CAS  PubMed  Google Scholar 

  • Jordan J (2014) Analysis of the role of dysfunctional astrocytes in temporal lobe epilepsy. Bochum University

    Google Scholar 

  • Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, Uneyama H, Edwards RH, Nicoll RA, Moriyama Y (2010) Metabolic control of vesicular glutamate transport and release. Neuron 68:99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori K, Ross BD (2011) Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res 1371:180–191

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem 70:1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 213:89–100

    Article  CAS  PubMed  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589

    Article  CAS  PubMed  Google Scholar 

  • Karlsson RM, Adermark L, Molander A, Perreau-Lenz S, Singley E, Solomon M, Holmes A, Tanaka K, Lovinger DM, Spanagel R, Heilig M (2012) Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST. Neuropharmacology 63:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmen A, Wroblewski F, Ladue JS (1955) Transaminase activity in human blood. J Clin Invest 34:126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsumori H, Minabe Y, Osawa M, Ashby CR Jr (1998) Acute effects of various GABA receptor agonists and glutamate antagonists on focal hippocampal seizures in freely moving rats elicited by low-frequency stimulation. Synapse 28:103–109

    Article  CAS  PubMed  Google Scholar 

  • Kentner R, Rollwagen FM, Prueckner S, Behringer W, Wu X, Stezoski J, Safar P, Tisherman SA (2002) Effects of mild hypothermia on survival and serum cytokines in uncontrolled hemorrhagic shock in rats. Shock 17:521–526

    Article  PubMed  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179:4–29

    Article  CAS  Google Scholar 

  • Kew JN, Koester A, Moreau JL, Jenck F, Ouagazzal AM, Mutel V, Richards JG, Trube G, Fischer G, Montkowski A, Hundt W, Reinscheid RK, Pauly-Evers M, Kemp JA, Bluethmann H (2000) Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci 20:4037–4049

    CAS  PubMed  Google Scholar 

  • Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 37:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kleinrok Z, Turski WA, Czuczwar SJ (1995) Excitatory amino acid antagonists and the anticonvulsive activity of conventional antiepileptic drugs. Pol J Pharmacol 47:247–252

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23:2440–2452

    CAS  PubMed  Google Scholar 

  • Kohler M, Burnashev N, Sakmann B, Seeburg PH (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10:491–500

    Article  CAS  PubMed  Google Scholar 

  • Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol 375:217–228

    Article  CAS  PubMed  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, Wohlleben W, Tateno Y (1993) Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci U S A 90:3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CF, Darnell JE Jr (1989) Mouse glutamine synthetase is encoded by a single gene that can be expressed in a localized fashion. J Mol Biol 208:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300

    Article  CAS  PubMed  Google Scholar 

  • La Spada AR, Paulson HL, Fischbeck KH (1994) Trinucleotide repeat expansion in neurological disease. Ann Neurol 36:814–822

    Article  PubMed  Google Scholar 

  • Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neurosci 88:1137–1151

    Article  CAS  Google Scholar 

  • Lampe JW, Becker LB (2011) State of the art in therapeutic hypothermia. Annu Rev Med 62:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–A14

    Article  CAS  PubMed  Google Scholar 

  • Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, Spencer SS, Spencer DD, de Lanerolle NC (2007) Gene Expression in Temporal Lobe Epilepsy is Consistent with Increased Release of Glutamate by Astrocytes. Mol Med 13:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    CAS  PubMed  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    CAS  PubMed  Google Scholar 

  • Lehre KP, Davanger S, Danbolt NC (1997) Localization of the glutamate transporter protein GLAST in rat retina. Brain Res 744:129–137

    Article  CAS  PubMed  Google Scholar 

  • Lehre AC, Rowley NM, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson AM, Poblete-Naredo I, Rusakov DA, Madsen KK, Clausen RP, Schousboe A, White HS, Danbolt NC (2011) Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 95:70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibowitz A, Boyko M, Shapira Y, Zlotnik A (2012) Blood glutamate scavenging: insight into neuroprotection. Int J Mol Sci 13:10041–10066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leith E, LaNoue KF, Berkich A, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    Article  Google Scholar 

  • Levy LM, Lehre KP, Rolstad B, Danbolt NC (1993) A monoclonal antibody raised against an [Na++K+]coupled l-glutamate transporter purified from rat brain confirms glial cell localization. FEBS Letters 317:79–84

    Article  CAS  PubMed  Google Scholar 

  • Levy RG, Cooper PN, Giri P (2012) Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev 3, CD001903

    Google Scholar 

  • Li D, Herault K, Silm K, Evrard A, Wojcik S, Oheim M, Herzog E, Ropert N (2013) Lack of evidence for vesicular glutamate transporter expression in mouse astrocytes. J Neurosci 33:4434–4455

    Article  CAS  PubMed  Google Scholar 

  • Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26:8537–8548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw SH, Eisenberg D (1994) Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes. Biochemistry 33:675–681

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem 268:2106–2112

    CAS  PubMed  Google Scholar 

  • Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, Wang ZG, Guo L, Fei J (2007a) Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology 32:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Liu S, Cai GQ, Sheng ZJ, Cai YQ, Jiang J, Sun X, Ma SK, Wang L, Wang ZG, Fei J (2007b) Reduced aggression in mice lacking GABA transporter subtype 1. J Neurosci Res 85:649–655

    Article  CAS  PubMed  Google Scholar 

  • Low E, Boylan GB, Mathieson SR, Murray DM, Korotchikova I, Stevenson NJ, Livingstone V, Rennie JM (2012) Cooling and seizure burden in term neonates: an observational study. Arch Dis Child Fetal Neonatal Ed 97:F267–F272

    Article  PubMed  Google Scholar 

  • Lukomskaya NY, Rukoyatkina NI, Gorbunova LV, Gmiro VE, Magazanik LG (2004) Studies of the roles of NMDA and AMPA glutamate receptors in the mechanism of corasole convulsions in mice. Neurosci Behav Physiol 34:783–789

    Article  CAS  PubMed  Google Scholar 

  • Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10:723–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447:784–795

    Article  CAS  PubMed  Google Scholar 

  • Madl JE, Duncan CG, Stanhill JE, Tai PY, Spraker TR, Gulland FM (2014) Oxidative stress and redistribution of glutamine synthetase in California sea lions (Zalophus californianus) with domoic acid toxicosis. J Comp Pathol 150:306–315

    Article  CAS  PubMed  Google Scholar 

  • Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394:683–687

    Article  CAS  PubMed  Google Scholar 

  • Malthankar-Phatak GH, de Lanerolle N, Eid T, Spencer DD, Behar KL, Spencer SS, Kim JH, Lai JC (2006) Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy. Epilepsia 47:1292–1299

    Article  CAS  PubMed  Google Scholar 

  • Manahan-Vaughan D (1997) Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats. J Neurosci 17:3303–3311

    CAS  PubMed  Google Scholar 

  • Marc Rhoads J, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  PubMed  Google Scholar 

  • Mares P, Mikulecka A (2009) Different effects of two N-methyl-D-aspartate receptor antagonists on seizures, spontaneous behavior, and motor performance in immature rats. Epilepsy Behav 14:32–39

    Article  PubMed  Google Scholar 

  • Mares P, Mikulecka A, Ticha K, Lojkova-Janeckova D, Kubova H (2010) Metabotropic glutamate receptors as a target for anticonvulsant and anxiolytic action in immature rats. Epilepsia 51(Suppl 3):24–26

    Article  CAS  PubMed  Google Scholar 

  • Margerison JH, Corsellis JAN (1966) Epilepsy and the temporal lobes. Brain 89:499–530

    Article  CAS  PubMed  Google Scholar 

  • Marliss EB, Aoki TT, Pozefsky T, Most AS, Cahill GF Jr (1971) Muscle and splanchnic glutmine and glutamate metabolism in postabsorptive andstarved man. J Clin Invest 50:814–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  CAS  PubMed  Google Scholar 

  • Massie A, Cnops L, Smolders I, McCullumsmith R, Kooijman R, Kwak S, Arckens L, Michotte Y (2008) High-affinity Na+/K + -dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain. J Comp Neurol 511:155–172

    Article  CAS  PubMed  Google Scholar 

  • Mathern GW, Babb TL, Pretorius JK, Leite JP (1995) Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J Neurosci 15:3990–4004

    CAS  PubMed  Google Scholar 

  • Matsuda K, Kamiya Y, Matsuda S, Yuzaki M (2002) Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability. Brain Res Mol Brain Res 100:43–52

    Article  CAS  PubMed  Google Scholar 

  • McAllister KH (1992) N-methyl-D-aspartate receptor antagonists and channel blockers have different effects upon a spinal seizure model in mice. Eur J Pharmacol 211:105–108

    Article  CAS  PubMed  Google Scholar 

  • McCulloch J (1992) Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br J Clin Pharmacol 34:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane C, Warner DS, Dexter F, Todd MM (1994) Glutamatergic antagonism: effects on lidocaine-induced seizures in the rat. Anesth Analg 79:701–705

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  • Meldrum BS, Nilsson B (1976) Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain 99:523–542

    Article  CAS  PubMed  Google Scholar 

  • Mim C, Balani P, Rauen T, Grewer C (2005) The glutamate transporter subtypes EAAT4 and EAATs 1-3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WR, Ortinski PI, Vicini S, Rogawski MA (2006) Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200–210

    Article  CAS  PubMed  Google Scholar 

  • Motamedi GK, Lesser RP, Vicini S (2013) Therapeutic brain hypothermia, its mechanisms of action, and its prospects as a treatment for epilepsy. Epilepsia 54:959–970

    Article  CAS  PubMed  Google Scholar 

  • Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60

    Article  CAS  PubMed  Google Scholar 

  • Nadler J, Cuthbertson G (1980) Kainic acid neurotoxicity toward the hippocampal formation: dependence on specific excitatory pathways. Brain Res 195:47–56

    Article  CAS  PubMed  Google Scholar 

  • Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677

    Article  CAS  PubMed  Google Scholar 

  • Nagy D, Marosi M, Kis Z, Farkas T, Rakos G, Vecsei L, Teichberg VI, Toldi J (2009) Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex. Cell Mol Neurobiol 29:827–835

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Sugawara M, Huang W, Martindale RG, Leibach FH, Ganapathy ME, Prasad PD, Ganapathy V (2001) Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N. Biochem Biophys Res Commun 281:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Naspolini AP, Cocco AR, Villa Martignoni F, Oliveira MS, Furian AF, Rambo LM, Rubin MA, Barron S, Mello CF (2012) Traxoprodil decreases pentylenetetrazol-induced seizures. Epilepsy Res 100:12–19

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Verkhratsky A (2012) Artifact versus reality--how astrocytes contribute to synaptic events. Glia 60:1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikkuni O, Takayasu Y, Iino M, Tanaka K, Ozawa S (2007) Facilitated activation of metabotropic glutamate receptors in cerebellar Purkinje cells in glutamate transporter EAAT4-deficient mice. Neurosci Res 59:296–303

    Article  CAS  PubMed  Google Scholar 

  • Niquet J, Gezalian M, Baldwin R, Wasterlain CG (2015) Neuroprotective effects of deep hypothermia in refractory status epilepticus. Ann Clin Transl Neurol 2:1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi M, Hinds H, Lu HP, Kawata M, Hayashi Y (2001) Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 21:RC185

    CAS  PubMed  Google Scholar 

  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895

    Article  PubMed  Google Scholar 

  • Olney JW, Sharpe LG, Feigin RD (1972) Glutamate-induced brain damage in infant primates. J Neuropathol Exp Neurol 31:464–488

    Article  CAS  PubMed  Google Scholar 

  • Olney JW, Collins RC, Sloviter RS (1986) Excitotoxic mechanims of epileptic brain damage. In: Delgado-Escueta AV, Ward AA Jr, Woodbury DM, Porter RJ (eds) Advances in neurology. Raven, New York, pp 857–877

    Google Scholar 

  • Orbach SA, Bonifacio SL, Kuzniewicz MW, Glass HC (2014) Lower incidence of seizure among neonates treated with therapeutic hypothermia. J Child Neurol 29:1502–1507

    Article  PubMed  Google Scholar 

  • Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20:2749–2757

    CAS  PubMed  Google Scholar 

  • Palmieri EM, Spera I, Menga A, Infantino V, Iacobazzi V, Castegna A (2014) Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Lett 588:4807–4814

    Article  CAS  PubMed  Google Scholar 

  • Patel AB, de Graaf RA, Rothman DL, Behar KL, Mason GF (2010) Evaluation of cerebral acetate transport and metabolic rates in the rat brain in vivo using 1H-[13C]-NMR. J Cereb Blood Flow Metab 30:1200–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. Embo J 16:3822–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780

    Article  CAS  PubMed  Google Scholar 

  • Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroff OA (2002) GABA and glutamate in the human brain. Neuroscientist 8:562–573

    Article  CAS  PubMed  Google Scholar 

  • Petroff OA, Hyder F, Collins T, Mattson RH, Rothman DL (1999) Acute effects of vigabatrin on brain GABA and homocarnosine in patients with complex partial seizures. Epilepsia 40:958–964

    Article  CAS  PubMed  Google Scholar 

  • Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  CAS  PubMed  Google Scholar 

  • Pisano JJ, Wilson JD, Cohen L, Abraham D, Udenfriend S (1961) Isolation of gamma-aminobutyrylhistidine (homocarnosine) from brain. J Biol Chem 236:499–502

    CAS  PubMed  Google Scholar 

  • Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13:101–112

    Article  CAS  PubMed  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    CAS  PubMed  Google Scholar 

  • Quandt G, Hofner G, Wanner KT (2013) Synthesis and evaluation of N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic residue attached to a vinyl ether spacer as potential GABA uptake inhibitors. Bioorg Med Chem 21:3363–3378

    Article  CAS  PubMed  Google Scholar 

  • Radian R, Bendahan A, Kanner BI (1986) Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261:15437–15441

    CAS  PubMed  Google Scholar 

  • Rasic-Markovic A, Hrncic D, Djuric D, Macut D, Loncar-Stevanovic H, Stanojlovic O (2011) The effect of N-methyl-D-aspartate receptor antagonists on D, L-homocysteine thiolactone induced seizures in adult rats. Acta Physiol Hung 98:17–26

    Article  CAS  PubMed  Google Scholar 

  • Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  • Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619

    Article  CAS  PubMed  Google Scholar 

  • Ritthausen KH (1866) Über die Glutaminsäure. Journal fur praktische Chemie 42:454–462

    Article  Google Scholar 

  • Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980

    Article  CAS  PubMed  Google Scholar 

  • Rogachev B, Ohayon S, Saad A, Vorobiovsky V, Gruenbaum BF, Leibowitz A, Boyko M, Shapira Y, Shnaider A, Zlotnik M, Azab AN, Zlotnik A (2012) The effects of hemodialysis on blood glutamate levels in chronic renal failure: implementation for neuroprotection. J Crit Care 27(743):741–747

    Google Scholar 

  • Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, Shapira Y, Vorobiev M, Zlotnik A (2013) The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol 25:262–266

    Article  PubMed  Google Scholar 

  • Rogawski MA, Kurzman PS, Yamaguchi SI, Li H (2001) Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology 40:28–35

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Gryder D, Castaneda D, Yonekawa W, Banks MK, Lia H (2003) GluR5 kainate receptors, seizures, and the amygdala. Ann N Y Acad Sci 985:150–162

    Article  CAS  PubMed  Google Scholar 

  • Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, Cardona X, Inguaggiato P, Pilotto L, d’Intini V, Bellomo R (2003) Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs 27:792–801

    Article  PubMed  Google Scholar 

  • Rothman DL, De Feyter HM, Maciejewski PK, Behar KL (2012) Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes? Neurochem Res 37:2597–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban A, Berkutzki T, Cooper I, Mohar B, Teichberg VI (2012) Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas. Invest New Drugs 30:2226–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban A, Mohar B, Jona G, Teichberg VI (2013) Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication., J Cereb Blood Flow Metab

    Google Scholar 

  • Ruban A, Biton IE, Markovich A, Mirelman D (2015) MRS of brain metabolite levels demonstrates the ability of scavenging of excess brain glutamate to protect against nerve agent induced seizures. Int J Mol Sci 16:3226–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano C (2009) History of glutamate production. International Glutamate Information Service, pp 728S–732S

    Google Scholar 

  • Scalise M, Pochini L, Galluccio M, Indiveri C (2016) Glutamine transport. From energy supply to sensing and beyond, Biochim Biophys Acta

    Google Scholar 

  • Schneider N, Cordeiro S, Machtens JP, Braams S, Rauen T, Fahlke C (2014) Functional properties of the retinal glutamate transporters GLT-1c and EAAT5. J Biol Chem 289:1815–1824

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    Article  CAS  PubMed  Google Scholar 

  • Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW (2015) Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry 78:441–451

    Article  CAS  PubMed  Google Scholar 

  • Seifert G, Huttmann K, Schramm J, Steinhauser C (2004) Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon’s horn sclerosis. J Neurosci 24:1996–2003

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (1980) On the role of GABA in vertebrate polyamine metabolism. Physiol Chem Phys 12:411–429

    CAS  PubMed  Google Scholar 

  • Serdyuk SE, Gmiro VE, Veselkina OS (2014) Combined blockade of NMDA and AMPA receptors prevents acute kainate seizures and chronic kainate lethality in rats. Bull Exp Biol Med 157:15–17

    Article  CAS  PubMed  Google Scholar 

  • Shakarjian MP, Ali MS, Veliskova J, Stanton PK, Heck DE, Velisek L (2015) Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice. Neurotoxicology 48:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    Article  CAS  PubMed  Google Scholar 

  • Shorvon SD (1996) The epidemiology and treatment of chronic and refractory epilepsy. Epilepsia 37(Suppl 2):S1–S3

    Article  PubMed  Google Scholar 

  • Simpson NE, Tryndyak VP, Pogribna M, Beland FA, Pogribny IP (2012) Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics 7:1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solbu TT, Bjorkmo M, Berghuis P, Harkany T, Chaudhry FA (2010) SAT1, a glutamine transporter, is preferentially expressed in GABAergic neurons. Front Neuroanat 4:1

    PubMed  PubMed Central  Google Scholar 

  • Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10:631–675

    Article  Google Scholar 

  • Steffens M, Huppertz HJ, Zentner J, Chauzit E, Feuerstein TJ (2005) Unchanged glutamine synthetase activity and increased NMDA receptor density in epileptic human neocortex: implications for the pathophysiology of epilepsy. Neurochem Int 47:379–384

    Article  CAS  PubMed  Google Scholar 

  • Stern JR, Eggleston LV, Hems R, Krebs HA (1949) Accumulation of glutamic acid in isolated brain tissue. Biochem J 44:410–418

    Article  CAS  PubMed Central  Google Scholar 

  • Stoffel W, Korner R, Wachtmann D, Keller BU (2004) Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice. Brain Res Mol Brain Res 128:170–181

    Article  CAS  PubMed  Google Scholar 

  • Sun HL, Zhang SH, Zhong K, Xu ZH, Feng B, Yu J, Fang Q, Wang S, Wu DC, Zhang JM, Chen Z (2013) A transient upregulation of glutamine synthetase in the dentate gyrus is involved in epileptogenesis induced by amygdala kindling in the rat. PLoS One 8, e66885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szepietowska B, Zhu W, Czyzyk J, Eid T, Sherwin RS (2012) EphA5-EphrinA5 interactions within the ventromedial hypothalamus influence counterregulatory hormone release and local glutamine/glutamate balance during hypoglycemia., Diabetes

    Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Tellez-Zenteno JF, Patten SB, Jette N, Williams J, Wiebe S (2007) Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia 48:2336–2344

    PubMed  Google Scholar 

  • Thoeringer CK, Ripke S, Unschuld PG, Lucae S, Ising M, Bettecken T, Uhr M, Keck ME, Mueller-Myhsok B, Holsboer F, Binder EB, Erhardt A (2009) The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders. J Neural Transm (Vienna) 116:649–657

    Article  CAS  Google Scholar 

  • Thomsen C, Dalby NO (1998) Roles of metabotropic glutamate receptor subtypes in modulation of pentylenetetrazole-induced seizure activity in mice. Neuropharmacology 37:1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Suzuki T, Misawa M (1997) Role of the NMDA receptor complex in DMCM-induced seizure in mice. Neuroreport 8:603–606

    Article  CAS  PubMed  Google Scholar 

  • Tumani H, Shen G, Peter JB, Bruck W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S, Campbell E, Fricker G, Jenner P, Lemaire M, McAllister KH, Neijt HC, Park CK, Perkins M, Rudin M, Sauter A, Smith L, Wiederhold KH, Muller W (1996) Biphenyl-derivatives of 2-amino-7-phosphono-heptanoic acid, a novel class of potent competitive N-methyl-D-aspartate receptor antagonists--II. Pharmacological characterization in vivoA mechanism for glutamate removal. Neuropharmacology 35:655–669

    CAS  PubMed  Google Scholar 

  • van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    Article  PubMed  Google Scholar 

  • van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    Article  PubMed  CAS  Google Scholar 

  • van der Hel WS, Hessel EV, Bos IW, Mulder S, Verlinde SA, van Eijsden P, de Graan PN (2014) Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats., Eur J Neurosci

    Google Scholar 

  • van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147

    Article  PubMed  CAS  Google Scholar 

  • van Gassen KL, van der Hel WS, Hakvoort TB, Lamers WH, de Graan PN (2009) Haploinsufficiency of glutamine synthetase increases susceptibility to experimental febrile seizures. Genes Brain Behav 8:290–295

    Article  PubMed  CAS  Google Scholar 

  • van Rooyen JM, Abratt VR, Sewell BT (2006) Three-dimensional structure of a type III glutamine synthetase by single-particle reconstruction. J Mol Biol 361:796–810

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  • Varoqui H, Erickson JD (2002) Selective up-regulation of system a transporter mRNA in diabetic liver. Biochem Biophys Res Commun 290:903–908

    Article  CAS  PubMed  Google Scholar 

  • Veruki ML, Morkve SH, Hartveit E (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9:1388–1396

    Article  CAS  PubMed  Google Scholar 

  • Volgushev M, Vidyasagar TR, Chistiakova M, Yousef T, Eysel UT (2000) Membrane properties and spike generation in rat visual cortical cells during reversible cooling. J Physiol 522(Pt 1):59–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vossler DG, Morris GL 3rd, Harden CL, Montouris G, Faught E, Kanner AM, Fix A, French JA, Postmarketing Antiepileptic Drug Survey Group study (2013) Tiagabine in clinical practice: effects on seizure control and behavior. Epilepsy Behav 28:211–216

    Article  PubMed  Google Scholar 

  • Wafford KA, Kathoria M, Bain CJ, Marshall G, Le Bourdelles B, Kemp JA, Whiting PJ (1995) Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47:374–380

    CAS  PubMed  Google Scholar 

  • Walitza S, Wendland JR, Gruenblatt E, Warnke A, Sontag TA, Tucha O, Lange KW (2010) Genetics of early-onset obsessive-compulsive disorder. Eur Child Adolesc Psychiatry 19:227–235

    Article  PubMed  Google Scholar 

  • Wang Y, Zaveri HP, Lee TS, Eid T (2009) The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study. Exp Neurol 220:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Morimoto K, Hirao T, Suwaki H, Watase K, Tanaka K (1999) Amygdala-kindled and pentylenetetrazole-induced seizures in glutamate transporter GLAST-deficient mice. Brain Res 845:92–96

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Kaida Y, Takechi K, Kamei C (2010) Anticonvulsant effect of (RS)-1-aminoindan-1,5-dicarboxylic acid on pentetrazol-induced kindled seizures in mice. Biol Pharm Bull 33:647–652

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Kaida Y, Fukuhara S, Takechi K, Uehara T, Kamei C (2011) Participation of metabotropic glutamate receptors in pentetrazol-induced kindled seizure. Epilepsia 52:140–150

    Article  PubMed  Google Scholar 

  • Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  CAS  PubMed  Google Scholar 

  • White HS, McCabe RT, Armstrong H, Donevan SD, Cruz LJ, Abogadie FC, Torres J, Rivier JE, Paarmann I, Hollmann M, Olivera BM (2000) In vitro and in vivo characterization of conantokin-R, a selective NMDA receptor antagonist isolated from the venom of the fish-hunting snail Conus radiatus. J Pharmacol Exp Ther 292:425–432

    CAS  PubMed  Google Scholar 

  • Winfree CJ, Baker CJ, Connolly ES Jr, Fiore AJ, Solomon RA (1996) Mild hypothermia reduces penumbral glutamate levels in the rat permanent focal cerebral ischemia model. Neurosurgery 38:1216–1222

    CAS  PubMed  Google Scholar 

  • Xu YF, Cai YQ, Cai GQ, Jiang J, Sheng ZJ, Wang ZG, Fei J (2008) Hypoalgesia in mice lacking GABA transporter subtype 1. J Neurosci Res 86:465–470

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB, Handler JS (1992) Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem 267:649–652

    CAS  PubMed  Google Scholar 

  • Yang XF, Ouyang Y, Kennedy BR, Rothman SM (2005) Cooling blocks rat hippocampal neurotransmission by a presynaptic mechanism: observations using 2-photon microscopy. J Physiol 567:215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen W, Williamson J, Bertram EH, Kapur J (2004) A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 59:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yourick DL, Repasi RT, Rittase WB, Staten LD, Meyerhoff JL (1999) Ifenprodil and arcaine alter amygdala-kindling development. Eur J Pharmacol 371:147–152

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21:92–98

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I (2004) Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot Essent Fatty Acids 70:277–285

    Article  CAS  PubMed  Google Scholar 

  • Zarnowski T, Kleinrok Z, Turski WA, Czuczwar SJ (1994) The NMDA antagonist procyclidine, but not ifenprodil, enhances the protective efficacy of common antiepileptics against maximal electroshock-induced seizures in mice. J Neural Transm Gen Sect 97:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zeiler FA (2015) Early use of the NMDA receptor antagonist ketamine in refractory and superrefractory status epilepticus. Crit Care Res Pract 2015:831260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiler FA, Zeiler KJ, Teitelbaum J, Gillman LM, West M (2015) Therapeutic hypothermia for refractory status epilepticus. Can J Neurol Sci 42:221–229

    Article  PubMed  Google Scholar 

  • Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol (Lausanne) 4:165

    Google Scholar 

  • Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121:799–817

    Article  CAS  Google Scholar 

  • Zhou Y, Holmseth S, Guo C, Hassel B, Hofner G, Huitfeldt HS, Wanner KT, Danbolt NC (2012a) Deletion of the gamma-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J Biol Chem 287:35733–35746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC (2012b) The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 302:F316–F328

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP, Danbolt NC (2014) Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem 289:1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Zhumadilov A, Boyko M, Gruenbaum SE, Brotfain E, Bilotta F, Zlotnik A (2015) Extracorporeal methods of blood glutamate scavenging: a novel therapeutic modality. Expert Rev Neurother 15:501–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203:213–220

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Matuzani-Ruban A, Leon A, Shapira Y, Teichberg VI (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33:1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, Brotfain E, Klin Y, Shapira Y, Teichberg VI (2009) The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol 21:235–241

    Article  PubMed  Google Scholar 

  • Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, Leibowitz A, Ohayon S, Regev A, Boyko M, Shapira Y, Teichberg VI (2012) Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology 116:73–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TE and RD are supported by grants from the National Institutes of Health (NIH): NINDS K08 NS058674 and R01 NS070824. SG is supported by a grant from the NIH: T32 GM086287. This work was also made possible by a grant from the National Center for Advancing Translational Sciences (NCATS; UL1 TR000142), a component of the NIH and the NIH roadmap for Medical Research. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore Eid M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eid, T., Gruenbaum, S.E., Dhaher, R., Lee, TS.W., Zhou, Y., Danbolt, N.C. (2016). The Glutamate–Glutamine Cycle in Epilepsy. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_14

Download citation

Publish with us

Policies and ethics