Skip to main content

BCAA Metabolism and NH3 Homeostasis

  • Chapter
  • First Online:
The Glutamate/GABA-Glutamine Cycle

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 13))

Abstract

The branched chain amino acids (BCAA) are essential amino acids required not only for growth and development, but also as nutrient signals and as nitrogen donors to neurotransmitter synthesis and glutamate/glutamine cycling. Transamination and oxidative decarboxylation of the BCAAs are catalysed by the branched-chain aminotransferase proteins (BCATm, mitochondrial and BCATc, cytosolic) and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), respectively. These proteins show tissue, cell compartmentation, and protein–protein interactions, which call for substrate shuttling or channelling and nitrogen transfer for oxidation to occur. Efficient regulation of these pathways is mediated through the redox environment and phosphorylation in response to dietary and hormonal stimuli. The wide distribution of these proteins allows for effective BCAA utilisation. We discuss how BCAT, BCKDC, and glutamate dehydrogenase operate in supramolecular complexes, allowing for efficient channelling of substrates. The role of BCAAs in brain metabolism is highlighted in rodent and human brain, where differential expression of BCATm indicates differences in nitrogen metabolism between species. Finally, we introduce a new role for BCAT, where a change in function is triggered by oxidation of its redox-active switch. Our understanding of how BCAA metabolism and nitrogen transfer is regulated is important as many studies now point to BCAA metabolic dysregulation in metabolic and neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGC:

Malate/aspartate carrier

ALT:

Alanine aminotransferase

BCAA:

Branched chain amino acids

BCAT:

Branched chain aminotransferase

BCKA:

Branched chain α-keto acid

BCKDC:

Branched-chain α-keto acid dehydrogenase enzyme complex

E1:

Branched chain α-keto acid dehydrogenase

E2:

Dihydrolpoyl transacylase subunits

E3:

Dihydrolipoyl dehydrogenase

GABA:

Îł-Amino butyric acid

GDH:

Glutamate dehydrogenase

GS:

Glutamine synthetase

GSNO:

S-nitrosoglutathione

KG:

α-Ketoglutarate

KIC:

α-Ketoisocaproate

KIV:

α-Ketoisovalerate

KMV:

α-Keto-β-methylvalerate

MDH:

Malate dehydrogenase

ME:

Malic enzyme

MSUD:

Maple syrup urine disease

mTOR:

The mechanistic target of rapamycin

PLP:

Pyridoxal phosphate

PMP:

Pyridoxamine

TPP:

Thiamine pyrophosphate

References

  • Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM (2014) Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 289(27):18793–18804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system, Neurology and neurobiology. Liss, New York, pp 215–217

    Google Scholar 

  • Bixel MG, Hamprecht B (1995) Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65(6):2450–2461

    Article  CAS  PubMed  Google Scholar 

  • Bixel MG, Hutson SM, Hamprecht B (1997) Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45(5):685–694

    Article  CAS  PubMed  Google Scholar 

  • Bixel M, Shimomura Y, Hutson S, Hamprecht B (2001) Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem 49(3):407–418

    Article  CAS  PubMed  Google Scholar 

  • Bledsoe RK, Dawson PA, Hutson SM (1997) Cloning of the rat and human mitochondrial branched chain aminotransferases (BCATm). Biochim Biophys Acta 1339(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Bolaños JP, Almeida A (2010) The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62(1):14–18

    PubMed  Google Scholar 

  • Brand K (1981) Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart muscle, brain and kidney of the rat. Biochim Biophys Acta 677(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Brand K, Hauschildt S (1984) Metabolism of 2-oxo-acid analogues of leucine and valine in isolated rat hepatocytes. Hoppe Seylers Z Physiol Chem 365(4):463–468

    Article  CAS  PubMed  Google Scholar 

  • Brookes N (1993) Interaction between the glutamine cycle and the uptake of large neutral amino acids in astrocytes. J Neurochem 60(5):1923–1928

    Article  CAS  PubMed  Google Scholar 

  • Burrage LC, Nagamani SC, Campeau PM, Lee BH (2014) Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet 23(R1):R1–R8

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellano S, Casarosa S, Sweatt AJ, Hutson SM, Bozzi Y (2007) Expression of cytosolic branched chain aminotransferase (BCATc) mRNA in the developing mouse brain. Gene Expr Patterns 7(4):485–490

    Article  CAS  PubMed  Google Scholar 

  • Chaplin ER, Goldberg AL, Diamond I (1976) Leucine oxidation in brain slices and nerve endings. J Neurochem 26(4):701–707

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15(3):711–720

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Zou Y, Mao D, Sun D, Gao G, Shi J, Liu X, Zhu C, Yang M, Ye W, Hao Q, Li R, Yu L (2014) The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J Cell Biol 206(2):173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang JL, Chuang DT (2000) Diagnosis and mutational analysis of maple syrup urine disease using cell cultures. Methods Enzymol 324:413–423

    Article  CAS  PubMed  Google Scholar 

  • Chuang DT, Chuang JL, Wynn RM (2006) Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr 136(1 Suppl):243S–249S, Review

    CAS  PubMed  Google Scholar 

  • Cole JT, Sweatt AJ, Hutson SM (2012) Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism. Front Neuroanat 6:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles SJ, Easton P, Sharrod H et al (2009) S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation. Biochemistry 48(3):645–656

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Hutson SM (2000) Mammalian branched-chain aminotransferases. Methods Enzymol 324:355–365

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Lee C (2015) The redox switch that regulates molecular chaperones. Biomol Concepts 6(4):269–284

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Yennawar N, Wallin R et al (2002) Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase. Biochemistry 41(29):9070–9078

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Yennawar N, Wallin R, Poole LB, Hutson SM (2003) Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines. Biochim Biophys Acta 1647(1-2):61–65, Review

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Poole LB, Hutson SM (2004) Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme. Biochemistry 43(23):7356–7364

    Article  CAS  PubMed  Google Scholar 

  • Conway ME, Coles SJ, Islam MM et al (2008) Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins. Biochemistry 47(19):5465–5479

    Article  CAS  PubMed  Google Scholar 

  • Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130(4S Suppl):1026S–1031S, Review

    CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105, Review

    Article  CAS  PubMed  Google Scholar 

  • Dancis J, Hutzler J, Rokkones T (1967) Intermittent branched-chain ketonuria. Variant of maple-syrup-urine disease. N Engl J Med 276:84–89

    Article  CAS  PubMed  Google Scholar 

  • Davoodi J, Drown PM, Bledsoe RK et al (1998) Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. J Biol Chem 273(9):4982–4989

    Article  CAS  PubMed  Google Scholar 

  • El Hindy M, Hezwani M, Corry D, Hull J, El Amraoui F, Harris M, Lee C, Forshaw T, Wilson A, Mansbridge A, Hassler M, Patel VB, Kehoe PG, Love S, Conway ME (2014) The branched-chain aminotransferase proteins: novel redox chaperones for protein disulfide isomerase-implications in Alzheimer’s disease. Anti oxid Redox Signal 20(16):2497–2513

    Article  CAS  Google Scholar 

  • Elia M, Livesey G (1983) Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clin Sci (Lond) 64(5):517–526

    Article  CAS  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178(4059):414–416

    Article  CAS  PubMed  Google Scholar 

  • Forslund AH, Hambraeus L, Olsson RM, El-Khoury AE, Yu YM, Young VR (1998) The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults. Am J Physiol 275(2 Pt 1):E310–E320

    CAS  PubMed  Google Scholar 

  • Funchal C, Gottfried C, de Almeida LM, dos Santos AQ, Wajner M, Pessoa-Pureur R (2005) Morphological alterations and cell death provoked by the branched-chain alpha-amino acids accumulating in maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol 25(5):851–867

    Article  PubMed  Google Scholar 

  • Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69(6):2312–2325

    Article  CAS  PubMed  Google Scholar 

  • GarcĂ­a-Cazorla A, Oyarzabal A, Fort J, Robles C, CastejĂłn E, Ruiz-Sala P, Bodoy S, Merinero B, Lopez-Sala A, Dopazo J, Nunes V, Ugarte M, Artuch R, PalacĂ­n M, RodrĂ­guez-Pombo P, Alcaide P, Navarrete R, Sanz P, Font-LlitjĂłs M, Vilaseca MA, Ormaizabal A, Pristoupilova A, AgullĂł SB (2014) Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat 35(4):470–477

    Article  PubMed  CAS  Google Scholar 

  • GarcĂ­a-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ (2007) Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem 100(6):1458–1468

    PubMed  Google Scholar 

  • Goodwin GW, Zhang B, Paxton R, Harris RA (1988) Determination of activity and activity state of branched-chain alpha-keto acid dehydrogenase in rat tissues. Methods Enzymol 166:189–201

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Miyahara I, Hirotsu K et al (2005) Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J Biol Chem 280(44):37246–37256

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro G, Mescka CP, Sitta A, Donida B, Marchetti D, Hammerschmidt T, Faverzani J, Coelho Dde M, Wajner M, Dutra-Filho CS, Vargas CR (2015) Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role. Int J Dev Neurosci 42:10–14

    Article  CAS  PubMed  Google Scholar 

  • Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O’Connor KL, Gao T, Evers BM (2011) mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 71(9):3246–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TR, Wallin R, Reinhart GD et al (1993) Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268(5):3092–3098

    CAS  PubMed  Google Scholar 

  • Harper AE, Benjamin E (1984) Relationship between intake and rate of oxidation of leucine and alpha-ketoisocaproate in vivo in the rat. J Nutr 114(2):431–440

    CAS  PubMed  Google Scholar 

  • Harris RA, Joshi M, Jeoung NH (2004) Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 313(2):391–396, Review

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Zhang B, Goodwin GW, Kuntz MJ, Shimomura Y, Rougraff P, Dexter P, Zhao Y, Gibson R, Crabb DW (1990) Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Adv Enzyme Regul 30:245–263

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136(1 Suppl):218S–226S, Review

    CAS  PubMed  Google Scholar 

  • Hosoya K, Sugawara M, Asaba H, Terasaki T (1999) Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J Neurochem 73(3):1206–1211

    Article  CAS  PubMed  Google Scholar 

  • Hull J, Hindy ME, Kehoe PG et al (2012) Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J Neurochem 123(6):997–1009

    Article  CAS  PubMed  Google Scholar 

  • Hull J, Patel V, El Hindy M et al (2015) Regional increase in the expression of the BCAT proteins in Alzheimer’s disease brain: Implications in glutamate toxicity. J Alzheimers Disease 45(3):891–905.

    Google Scholar 

  • Hutson SM (1988) Subcellular distribution of branched-chain aminotransferase activity in rat tissues. J Nutr 118(12):1475–1481

    CAS  PubMed  Google Scholar 

  • Hutson SM, Cree TC, Harper AE (1978) Regulation of leucine and alpha-ketoisocaproate metabolism in skeletal muscle. J Biol Chem 253(22):8126–8133

    CAS  PubMed  Google Scholar 

  • Hutson SM, Zapalowski C, Cree TC et al (1980) Regulation of leucine and alpha-ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J Biol Chem 255(6):2418–2426

    CAS  PubMed  Google Scholar 

  • Hutson SM, Bledsoe RK, Hall TR, Dawson PA (1995) Cloning and expression of the mammalian cytosolic branched chain aminotransferase isoenzyme. J Biol Chem 270(51):30344–30352

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Berkich D, Drown P et al (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem 71(2):863–874

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Lieth E, LaNoue KF (2001) Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131(3):846S–850S

    CAS  PubMed  Google Scholar 

  • Hutson SM, Sweatt AJ, Lanoue KF (2005) Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J Nutr 135(6 Suppl):1557S–1564S, Review

    CAS  PubMed  Google Scholar 

  • Hutson SM, Islam MM, Zaganas I (2011) Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways. Neurochem Int 59(4):518–524

    Article  CAS  PubMed  Google Scholar 

  • Ichihara A (1975) Isozyme patterns of branched-chain amino acid transaminase during cellular differentiation and carcinogenesis. Ann N Y Acad Sci 259:347–354

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, Chuang DT, Hutson SM (2007) A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. J Biol Chem 282(16):11893–11903

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Nautiyal M, Wynn RM et al (2010) Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem 285(1):265–276

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, RĂĽegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8(6):759–769

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem 70(3):1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Klee D, Thimm E, Wittsack HJ, Schubert D, Primke R, Pentang G, Schaper J, Mödder U, Antoch A, Wendel U, Cohnen M (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36(6):945–953

    Article  CAS  PubMed  Google Scholar 

  • Korein J, Sansaricq C, Kalmijn M, Honig J, Lange B (1994) Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. Int J Neurosci 79:21–45

    Article  CAS  PubMed  Google Scholar 

  • Lai JC, Sheu KF, Kim YT, Clarke DD, Blass JP (1986) The subcellular localization of glutamate dehydrogenase (GDH): is GDH a marker for mitochondria in brain? Neurochem Res 11(5):733–744

    Article  CAS  PubMed  Google Scholar 

  • LaNoue KF, Berkich DA, Conway M, Barber AJ, Hu LY, Taylor C, Hutson S (2001) Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina. J Neurosci Res 66(5):914–922

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Hawkins RA, Viña JR, Peterson DR (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Physiol 274(4 Pt 1):C1101–C1107

    CAS  PubMed  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853

    CAS  PubMed  Google Scholar 

  • Li H, Zhang B, Liu Y, Yin C (2014) EBP50 inhibits the migration and invasion of human breast cancer cells via LIMK/cofilin and the PI3K/Akt/mTOR/MMP signalling pathway. Med Oncol 31(9):162

    Article  PubMed  CAS  Google Scholar 

  • Lieth E, LaNoue KF, Berkich DA et al (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76(6):1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Lin HM, Kaneshige M, Zhao L, Zhang X, Hanover JA, Cheng SY (2001) An isoform of branched-chain aminotransferase is a novel co-repressor for thyroid hormone nuclear receptors. J Biol Chem 276(51):48196–48205

    CAS  PubMed  Google Scholar 

  • Mac M, Nehlig A, NaĹ‚ecz MJ, NaĹ‚ecz KA (2000) Transport of alpha-ketoisocaproate in rat cerebral cortical neurons. Arch Biochem Biophys 376(2):347–353

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15(3–5):320–329

    CAS  PubMed  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996a) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66(1):386–393

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Huang X (1996b) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18(5–6):380–390

    CAS  PubMed  Google Scholar 

  • Mehta PK, Christen P (2000) The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 74:129–184, Review

    CAS  PubMed  Google Scholar 

  • Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI (2002) Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics 109:999–1008

    Article  PubMed  Google Scholar 

  • Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA (2013) Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest 123(4):1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novarino G, El-Fishawy P, Kayserili H, Meguid NA, Scott EM, Schroth J, Silhavy JL, Kara M, Khalil RO, Ben-Omran T, Ercan-Sencicek AG, Hashish AF, Sanders SJ, Gupta AR, Hashem HS, Matern D, Gabriel S, Sweetman L, Rahimi Y, Harris RA, State MW, Gleeson JG (2012) Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338(6105):394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Kane RL, Hawkins RA (2003) Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am J Physiol Endocrinol Metab 285(6):E1167–E1173

    Article  PubMed  Google Scholar 

  • O’Kane RL, Viña JR, Simpson I, Hawkins RA (2004) Na+-dependent neutral amino acid transporters A, ASC, and N of the blood-brain barrier: mechanisms for neutral amino acid removal. Am J Physiol Endocrinol Metab 287(4):E622–E629

    Article  PubMed  Google Scholar 

  • Odessey R, Goldberg AL (1979) Leucine degradation in cell-free extracts of skeletal muscle. Biochem J 178(2):475–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldendorf WH (1973) Stereospecificity of blood-brain barrier permeability to amino acids. Am J Physiol 224(4):967–969

    CAS  PubMed  Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1(5):409–417

    Article  CAS  PubMed  Google Scholar 

  • PĂ©rez-Villaseñor G, Tovar AR, Moranchel AH, Hernández-Pando R, Hutson SM, Torres N (2005) Mitochondrial branched chain aminotransferase gene expression in AS-30D hepatoma rat cells and during liver regeneration after partial hepatectomy in rat. Life Sci 78(4):334–339

    Article  PubMed  CAS  Google Scholar 

  • Popov KM, Zhao Y, Shimomura Y, Kuntz MJ, Harris RA (1992) Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases. J Biol Chem 267(19):13127–13130

    CAS  PubMed  Google Scholar 

  • Reed LJ, Damuni Z, Merryfield ML (1985) Regulation of mammalian pyruvate and branched-chain alpha-keto acid dehydrogenase complexes by phosphorylation-dephosphorylation. Curr Top Cell Regul 27:41–49

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CA, Sgaravatti AM, Rosa RB, Schuck PF, Grando V, Schmidt AL, Ferreira GC, Perry ML, Dutra-Filho CS, Wajner M (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33(1):114–124

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    Article  CAS  PubMed  Google Scholar 

  • Sakai R, Cohen DM, Henry JF, Burrin DG, Reeds PJ (2004) Leucine-nitrogen metabolism in the brain of conscious rats: its role as a nitrogen carrier in glutamate synthesis in glial and neuronal metabolic compartments. J Neurochem 88(3):612–622

    Article  CAS  PubMed  Google Scholar 

  • Salzmann D, Christen P, Mehta PK, Sandmeier E (2000) Rates of evolution of pyridoxal-5′-phosphate-dependent enzymes. Biochem Biophys Res Commun 270(2):576–580

    Article  CAS  PubMed  Google Scholar 

  • Schmitt A, Kugler P (1999) Cellular and regional expression of glutamate dehydrogenase in the rat nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 92(1):293–308

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Käck H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8(1):R1–R6, Review

    Article  CAS  PubMed  Google Scholar 

  • Schulman JD, Lustberg TJ, Kennedy JL, Museles M, Seegmiller JE (1970) A new variant of maple syrup urine disease (branched chain ketoaciduria). Clinical and biochemical evaluation. Am J Med 49:118–124

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367

    Article  CAS  PubMed  Google Scholar 

  • She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM (2007) Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 6(3):181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinnick FL, Harper AE (1976) Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta 437(2):477–486

    Article  CAS  PubMed  Google Scholar 

  • Simon E, Schwarz M, Wendel U (2007) Social outcome in adults with maple syrup urine disease (MSUD). J Inherit Metab Dis 30:264

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR (2014) Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol 34(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49(5):1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, UnsgĂĄrd G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61(3):1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Spanaki C, Zaganas I, Kleopa KA, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J Biol Chem 285(22):16748–16756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2014) Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem Res 39(3):500–515

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA et al (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68(1):72–81

    CAS  PubMed  Google Scholar 

  • Sweatt AJ, Garcia-Espinosa MA, Wallin R et al (2004a) Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neuro 477(4):360–370

    Article  CAS  Google Scholar 

  • Sweatt AJ, Wood M, Suryawan A et al (2004b) Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol Endocrinol Metab 286(1):E64–E76

    Article  CAS  PubMed  Google Scholar 

  • Teller JK, Fahien LA, Valdivia E (1990) Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver. J Biol Chem 265(32):19486–19494

    CAS  PubMed  Google Scholar 

  • Than NG, SĂĽmegi B, Than GN, Bellyei S, Bohn H (2001) Molecular cloning and characterization of placental tissue protein 18 (PP18a)/human mitochondrial branched-chain aminotransferase (BCATm) and its novel alternatively spliced PP18b variant. Placenta 22(2–3):235–243

    Article  CAS  PubMed  Google Scholar 

  • van Hall G, Raaymakers JS, Saris WH, Wagenmakers AJ (1995a) Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance. J Physiol 486(Pt 3):789–794

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hall G, van der Vusse GJ, Söderlund K, Wagenmakers AJ (1995b) Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol 489(Pt 1):251–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallin R, Hall TR, Hutson SM (1990) Purification of branched chain aminotransferase from rat heart mitochondria. J Biol Chem 265(11):6019–6024

    CAS  PubMed  Google Scholar 

  • Wang XL, Li CJ, Xing Y, Yang YH, Jia JP (2015a) Hypervalinemia and hyperleucine-isoleucinemia caused by mutations in the branched-chain-amino-acid aminotransferase gene. J Inherit Metab Dis 38(5):855–861

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM (2015b) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn RM, Kato M, Machius M, Chuang JL, Li J, Tomchick DR, Chuang DT (2004) Molecular mechanism for regulation of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase complex by phosphorylation. Structure 12(12):2185–2196

    Article  CAS  PubMed  Google Scholar 

  • Yennawar NH, Conway ME, Yennawar HP et al (2002) Crystal structures of human mitochondrial branched chain aminotransferase reaction intermediates: ketimine and pyridoxamine phosphate forms. Biochemistry 41(39):11592–11601

    Article  CAS  PubMed  Google Scholar 

  • Yennawar NH, Islam MM, Conway M et al (2006) Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis. J Biol Chem 281(51):39660–39671

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Jhee KH, Soda K (1996) Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes. Biosci Biotechnol Biochem 60(2):181–187, Review

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21(1):92–98, Review

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Hertz L (1990) Precursors of glutamic acid nitrogen in primary neuronal cultures: studies with 15N. Neurochem Res 15(12):1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Kim S, Pleasure D, Hummeler K, Segal S (1983) [15N] leucine as a source of [15N] glutamate in organotypic cerebellar explants. Biochem Biophys Res Commun 115(1):174–179

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Daikhin Y, Lin ZP, Nelson D, Pleasure D, Erecinska M (1993) Brain glutamate metabolism: neuronal-astroglial relationships. Dev Neurosci 15(3–5):343–350, Review

    CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Pleasure D, Stern J, Nissim I (1994) Inhibition of astrocyte glutamine production by alpha-ketoisocaproic acid. J Neurochem 63(4):1508–1515

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Grunstein L, Nissim I, Stern J, Pleasure D, Nissim I (1996a) Astrocyte leucine metabolism: significance of branched-chain amino acid transamination. J Neurochem 66(1):378–385

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nelson D, Nissim I, EreciĹ„ska M (1996b) Neuronal metabolism of branched-chain amino acids: flux through the aminotransferase pathway in synaptosomes. J Neurochem 66(5):2136–2145

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2005) Brain amino acid requirements and toxicity: the example of leucine. J Nutr 135(6 Suppl):1531S–1538S, Review

    CAS  PubMed  Google Scholar 

  • Zaganas I, Kanavouras K, Mastorodemos V, Latsoudis H, Spanaki C, Plaitakis A (2009) The human GLUD2 glutamate dehydrogenase: localization and functional aspects. Neurochem Int 55(1–3):52–63

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Jetton TL, Goshorn S, Lynch CJ, She P (2010) Transamination is required for {alpha}-ketoisocaproate but not leucine to stimulate insulin secretion. J Biol Chem 285(44):33718–33726. doi:10.1074/jbc.M110.136846, Epub 2010 Aug 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Conway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conway, M.E., Hutson, S.M. (2016). BCAA Metabolism and NH3 Homeostasis. In: Schousboe, A., Sonnewald, U. (eds) The Glutamate/GABA-Glutamine Cycle. Advances in Neurobiology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-45096-4_5

Download citation

Publish with us

Policies and ethics