Skip to main content

Robust 3D Organ Localization with Dual Learning Architectures and Fusion

  • Conference paper
  • First Online:
Deep Learning and Data Labeling for Medical Applications (DLMIA 2016, LABELS 2016)

Abstract

We present a robust algorithm for organ localization from 3D volumes in the presence of large anatomical and contextual variations. The 3D spatial search space is decomposed into two components: slice and pixel, both are modeled in 2D space. For each component, we adopt different learning architectures to leverage respective modeling power on global and local context at three orthogonal orientations. Unlike conventional patch-based scanning schemes in learning-based object detection algorithms, slice scanning along each orientation is applied, which significantly reduces the number of model evaluations. Object search evidence obtained from three orientations and different learning architectures is consolidated through fusion schemes to lead to the target organ location. Experiments conducted using 499 patient CT body scans show promise and robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)

    Google Scholar 

  2. Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE TPAMI 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  4. Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I.: Multi-organ localization combining global-to-local regression and confidence maps. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 337–344. Springer, Heidelberg (2014)

    Google Scholar 

  5. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE TPAMI 20(3), 226–239 (1998)

    Article  Google Scholar 

  6. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Lippincott Williams & Wilkins, Philadelphia (2009)

    MATH  Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the NIPS (2012)

    Google Scholar 

  8. Lay, N., Birkbeck, N., Zhang, J., Zhou, S.K.: Rapid multi-organ segmentation using context integration and discriminative models. In: Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L., Gee, J.C. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 450–462. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better (2015). arXiv:1506.04579v2

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the CVPR (2015)

    Google Scholar 

  11. Roth, H.R., Lu, L., Farag, A., Shin, H.C., Liu, J., Turkbey, E.B., Summers, R.M.: Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  12. Sharma, A., Tuzel, O., Liu, M.Y.: Recursive context propagation network for semantic scene labeling. In: Proceedings of the NIPS (2014)

    Google Scholar 

  13. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proc. CVPR (2013)

    Google Scholar 

  14. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE TMI 27(11), 1668–1681 (2008)

    Google Scholar 

  15. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. In: Proceedings of the ICLR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lu, X., Xu, D., Liu, D. (2016). Robust 3D Organ Localization with Dual Learning Architectures and Fusion. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics