Skip to main content

Drug Resistance Assays for Parasitic Diseases

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Protozoa and helminths have by far the greatest impact in terms of morbidity worldwide. The status of protozoa and helminths control, both in human and veterinary medicine, is challenged as the current medications against these parasites are losing their efficacy due to increasing and even further spreading drug resistance. Despite this alarming statement and the high burden imposed by parasites, research progress in parasitic diseases lags behind many other infectious diseases. Recent innovative technologies may significantly impact parasite diagnostics and their control in the near future, catalyzed by a better knowledge in drug resistance mechanisms. The present chapter review drug resistance assays in major protozoan and helminthic diseases, point-of-care tests and multiplexing assays for drug resistance testing, and opportunities for innovations in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8, e2865.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Taylor SM, Juliano JJ. Artemisinin combination therapies and malaria parasite drug resistance: the game is afoot. J Infect Dis. 2014;210:335–7.

    Article  PubMed  Google Scholar 

  3. Dondorp AM, Nosten F, Yi P, Das D, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrara VI, Zwang J, Ashley EA, Price RN, et al. Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS One. 2009;4, e4551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Denis MB, Tsuyuoka R, Lim P, Lindegardh N, et al. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health. 2006;11:1800–7.

    Article  CAS  PubMed  Google Scholar 

  6. Denis MB, Tsuyuoka R, Poravuth Y, Narann TS, et al. Surveillance of the efficacy of artesunate and mefloquine combination for the treatment of uncomplicated falciparum malaria in Cambodia. Trop Med Int Health. 2006;11:1360–6.

    Article  CAS  PubMed  Google Scholar 

  7. Vijaykadga S, Rojanawatsirivej C, Cholpol S, Phoungmanee D, et al. In vivo sensitivity monitoring of mefloquine monotherapy and artesunate-mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop Med Int Health. 2006;11:211–19.

    Article  CAS  PubMed  Google Scholar 

  8. Pradines B, Bertaux L, Pomares C, Delaunay P, Marty P. Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia. Malar J. 2011;10:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jambou R, Legrand E, Niang M, Khim N, et al. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet. 2005;366:1960–3.

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Liu D, Yang Y, Fan B, et al. Changes in susceptibility of Plasmodium falciparum to artesunate in vitro in Yunnan Province, China. Trans R Soc Trop Med Hyg. 2003;97:226–8.

    Article  CAS  PubMed  Google Scholar 

  11. Blair P, Diemert D. Update on prevention and treatment of intestinal helminth infections. Curr Infect Dis Rep. 2015;17:465.

    Article  PubMed  Google Scholar 

  12. Bennett A, Guyatt H. Reducing intestinal nematode infection: efficacy of albendazole and mebendazole. Parasitol Today. 2000;16:71–4.

    Article  CAS  PubMed  Google Scholar 

  13. Albonico M, Bickle Q, Ramsan M, Montresor A, et al. Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull World Health Organ. 2003;81:343–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Albonico M, Engels D, Savioli L. Monitoring drug efficacy and early detection of drug resistance in human soil-transmitted nematodes: a pressing public health agenda for helminth control. Int J Parasitol. 2004;34:1205–10.

    Article  CAS  PubMed  Google Scholar 

  15. Schwab AE, Boakye DA, Kyelem D, Prichard RK. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am J Trop Med Hyg. 2005;73:234–8.

    CAS  PubMed  Google Scholar 

  16. Flohr C, Tuyen LN, Lewis S, Minh TT, et al. Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials. Am J Trop Med Hyg. 2007;76:732–6.

    CAS  PubMed  Google Scholar 

  17. Vercruysse J, Behnke JM, Albonico M, Ame SM, et al. Assessment of the anthelmintic efficacy of albendazole in school children in seven countries where soil-transmitted helminths are endemic. PLoS Negl Trop Dis. 2011;5, e948.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Osei-Atweneboana MY, Awadzi K, Attah SK, Boakye DA, et al. Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus. PLoS Negl Trop Dis. 2011;5, e998.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mathers CD, Ezzati M, Lopez AD. Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis. 2007;1, e114.

    Article  PubMed  PubMed Central  Google Scholar 

  20. McCall LI, McKerrow JH. Determinants of disease phenotype in trypanosomatid parasites. Trends Parasitol. 2014;30:342–9.

    Article  CAS  PubMed  Google Scholar 

  21. Chagas CJR., Memórias do Instituto Oswaldo Cruz. 1909. p. 159–218.

    Google Scholar 

  22. Zingales B, Miles MA, Campbell DA, Tibayrenc M, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012;12:240–53.

    Article  PubMed  Google Scholar 

  23. Zingales B, Andrade SG, Briones MR, Campbell DA, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–4.

    Article  CAS  PubMed  Google Scholar 

  24. Gorlin J, Rossmann S, Robertson G, Stallone F, et al. Evaluation of a new Trypanosoma cruzi antibody assay for blood donor screening. Transfusion. 2008;48:531–40.

    Article  PubMed  Google Scholar 

  25. Bahia-Oliveira LM, Gomes JA, Cancado JR, Ferrari TC, et al. Immunological and clinical evaluation of chagasic patients subjected to chemotherapy during the acute phase of Trypanosoma cruzi infection 14–30 years ago. J Infect Dis. 2000;182:634–8.

    Article  CAS  PubMed  Google Scholar 

  26. Cancado JR. Long term evaluation of etiological treatment of chagas disease with benznidazole. Rev Inst Med Trop Sao Paulo. 2002;44:29–37.

    Article  PubMed  Google Scholar 

  27. Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987;81:755–9.

    Article  CAS  PubMed  Google Scholar 

  28. Trischmann TM. Natural and acquired resistance to Trypanosoma cruzi. Adv Exp Med Biol. 1983;162:365–82.

    Article  CAS  PubMed  Google Scholar 

  29. Murta SM, Nogueira FB, Dos Santos PF, Campos FM, et al. Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Trop. 2008;107:59–65.

    Article  CAS  PubMed  Google Scholar 

  30. Veloso VM, Carneiro CM, Toledo MJ, Lana M, et al. Variation in susceptibility to benznidazole in isolates derived from Trypanosoma cruzi parental strains. Mem Inst Oswaldo Cruz. 2001;96:1005–11.

    Article  CAS  PubMed  Google Scholar 

  31. Barrett MP, Croft SL. Management of trypanosomiasis and leishmaniasis. Br Med Bull. 2012;104:175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Molina I, Salvador F, Sanchez-Montalva A. Posaconazole versus benznidazole for chronic Chagas’ disease. N Engl J Med. 2014;371:966.

    PubMed  Google Scholar 

  33. Veiga-Santos P, Li K, Lameira L, de Carvalho TM, et al. SQ109, a new drug lead for chagas disease. Antimicrob Agents Chemother. 2015;59:1950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moraes CB, Giardini MA, Kim H, Franco CH, et al. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci Rep. 2014;4:4703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pena I, Pilar Manzano M, Cantizani J, Kessler A, et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep. 2015;5:8771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Mayorga K, Byler KG, Ramirez-Hernandez AI, Terrazas-Alvares DE. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov Today. 2015.

    Google Scholar 

  37. Soeiro Mde N, de Souza EM, da Silva CF, Batista Dda G, et al. In vitro and in vivo studies of the antiparasitic activity of sterol 14alpha-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother. 2013;57:4151–63.

    Article  PubMed  CAS  Google Scholar 

  38. Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci U S A. 2008;105:5022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hall BS, Wilkinson SR. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother. 2012;56:115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hall BS, Bot C, Wilkinson SR. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem. 2011;286:13088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murta SM, Romanha AJ. In vivo selection of a population of Trypanosoma cruzi and clones resistant to benznidazole. Parasitology. 1998;116(Pt 2):165–71.

    Article  CAS  PubMed  Google Scholar 

  42. Murta SM, Gazzinelli RT, Brener Z, Romanha AJ. Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biochem Parasitol. 1998;93:203–14.

    Article  CAS  PubMed  Google Scholar 

  43. Camandaroba EL, Reis EA, Goncalves MS, Reis MG, Andrade SG. Trypanosoma cruzi: susceptibility to chemotherapy with benznidazole of clones isolated from the highly resistant Colombian strain. Rev Soc Bras Med Trop. 2003;36:201–9.

    Article  PubMed  Google Scholar 

  44. Teston AP, Monteiro WM, Reis D, Bossolani GD, et al. In vivo susceptibility to benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013;18:85–95.

    Article  CAS  PubMed  Google Scholar 

  45. Rego JV, Duarte AP, Liarte DB, de Carvalho Sousa F, et al. Molecular characterization of Cyclophilin (TcCyP19) in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Exp Parasitol. 2015;148:73–80.

    Article  CAS  PubMed  Google Scholar 

  46. Mejia-Jaramillo AM, Fernandez GJ, Palacio L, Triana-Chavez O. Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benzonidazole in Trypanosoma cruzi. Parasit Vectors. 2011;4:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buckner FS, Wilson AJ, White TC, Van Voorhis WC. Induction of resistance to azole drugs in Trypanosoma cruzi. Antimicrob Agents Chemother. 1998;42:3245–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dos Santos FM, Caldas S, de Assis Cau SB, Crepalde GP, et al. Trypanosoma cruzi: induction of benznidazole resistance in vivo and its modulation by in vitro culturing and mice infection. Exp Parasitol. 2008;120:385–90.

    Article  PubMed  CAS  Google Scholar 

  49. Murta SM, Krieger MA, Montenegro LR, Campos FF, et al. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol Biochem Parasitol. 2006;146:151–62.

    Article  CAS  PubMed  Google Scholar 

  50. Nogueira FB, Krieger MA, Nirde P, Goldenberg S, et al. Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Trop. 2006;100:119–32.

    Article  CAS  PubMed  Google Scholar 

  51. Rego JV, Murta SM, Nirde P, Nogueira FB, et al. Trypanosoma cruzi: characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Exp Parasitol. 2008;118:111–17.

    Article  CAS  PubMed  Google Scholar 

  52. Campos MC, Leon LL, Taylor MC, Kelly JM. Benznidazole-resistance in Trypanosoma cruzi: evidence that distinct mechanisms can act in concert. Mol Biochem Parasitol. 2014;193:17–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mejia AM, Hall BS, Taylor MC, Gomez-Palacio A, et al. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J Infect Dis. 2012;206:220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015;7:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rice AJ, Park A, Pinkett HW. Diversity in ABC transporters: type I, II and III importers. Crit Rev Biochem Mol Biol. 2014;49:426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Campos MC, Castro-Pinto DB, Ribeiro GA, Berredo-Pinho MM, et al. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitol Res. 2013;112:2341–51.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Franco J, Ferreira RC, Ienne S, Zingales B. ABCG-like transporter of Trypanosoma cruzi involved in benznidazole resistance: gene polymorphisms disclose inter-strain intragenic recombination in hybrid isolates. Infect Genet Evol. 2015;31:198–208.

    Article  CAS  PubMed  Google Scholar 

  58. Saye M, Miranda MR, di Girolamo F, de los Milagros Camara M, Pereira CA. Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS One. 2014;9, e92028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kaul S, Sharma SS, Mehta IK. Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids. 2008;34:315–20.

    Article  CAS  PubMed  Google Scholar 

  60. Vincent IM, Creek D, Watson DG, Kamleh MA, et al. A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog. 2010;6, e1001204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Rajao MA, Furtado C, Alves CL, Passos-Silva DG, et al. Unveiling benznidazole’s mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environ Mol Mutagen. 2014;55:309–21.

    Article  CAS  PubMed  Google Scholar 

  62. Campos FM, Liarte DB, Mortara RA, Romanha AJ, Murta SM. Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and -resistant populations of Trypanosoma cruzi. Acta Trop. 2009;111:56–63.

    Article  CAS  PubMed  Google Scholar 

  63. Muelas-Serrano S, Nogal-Ruiz JJ, Gomez-Barrio A. Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitol Res. 2000;86:999–1002.

    Article  CAS  PubMed  Google Scholar 

  64. Moreno M, D’Avila DA, Silva MN, Galvao LM, et al. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease. Mem Inst Oswaldo Cruz. 2010;105:918–24.

    Article  PubMed  Google Scholar 

  65. Luna KP, Hernandez IP, Rueda CM, Zorro MM, et al. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole. Biomedica. 2009;29:448–55.

    Article  PubMed  Google Scholar 

  66. Bustamante JM, Tarleton RL. Methodological advances in drug discovery for Chagas disease. Expert Opin Drug Discov. 2011;6:653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, et al. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol. 2014;16:1285–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lewis MD, Francisco AF, Taylor MC, Kelly JM. A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. J Biomol Screen. 2015;20:36–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hoare CA. Nagana. Trans R Soc Trop Med Hyg. 1971;65:531–2.

    Article  CAS  PubMed  Google Scholar 

  70. Cook GC. Sir David Bruce’s elucidation of the aetiology of nagana—exactly one hundred years ago. Trans R Soc Trop Med Hyg. 1994;88:257–8.

    Article  CAS  PubMed  Google Scholar 

  71. FIND, FIND Communications. 2013.

    Google Scholar 

  72. Matovu E, Kazibwe AJ, Mugasa CM, Ndungu JM, Njiru ZK. Towards point-of-care diagnostic and staging tools for human african trypanosomiaisis. J Trop Med. 2012;2012:340538.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wery M, Burke J. Human “healthy carriers” of Trypanosoma (brucei type) discovered by immunofluorescence test in the Republique Democratique du Congo. Trans R Soc Trop Med Hyg. 1972;66:332–3.

    Article  CAS  PubMed  Google Scholar 

  74. Jamonneau V, Ilboudo H, Kabore J, Kaba D, et al. Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis. 2012;6, e1691.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bacchi CJ, Garofalo J, Ciminelli M, Rattendi D, et al. Resistance to DL-alpha-difluoromethylornithine by clinical isolates of Trypanosoma brucei rhodesiense. Role of S-adenosylmethionine. Biochem Pharmacol. 1993;46:471–81.

    Article  CAS  PubMed  Google Scholar 

  76. Iten M, Mett H, Evans A, Enyaru JC, et al. Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D, L-alpha-difluoromethylornithine. Antimicrob Agents Chemother. 1997;41:1922–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Phillips MA, Coffino P, Wang CC. Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. J Biol Chem. 1987;262:8721–7.

    CAS  PubMed  Google Scholar 

  78. Torreele E, Bourdin Trunz B, Tweats D, Kaiser M, et al. Fexinidazole—a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis. 2010;4, e923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jacobs RT, Nare B, Wring SA, Orr MD, et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl Trop Dis. 2011;5, e1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wenzler T, Yang S, Braissant O, Boykin DW, et al. Pharmacokinetics, Trypanosoma brucei gambiense efficacy, and time of drug action of DB829, a preclinical candidate for treatment of second-stage human African trypanosomiasis. Antimicrob Agents Chemother. 2013;57:5330–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gilbert IH. Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter. Parasitology. 2014;141:28–36.

    Article  PubMed  Google Scholar 

  82. Barrett MP, Vincent IM, Burchmore RJ, Kazibwe AJ, Matovu E. Drug resistance in human African trypanosomiasis. Future Microbiol. 2011;6:1037–47.

    Article  PubMed  Google Scholar 

  83. Franco JR, Simarro PP, Diarra A, Ruiz-Postigo JA, et al. Research and reports in tropical medicine. 2012. p. 93–101.

    Google Scholar 

  84. Alirol E, Schrumpf D, Amici Heradi J, Riedel A, et al. Nifurtimox-eflornithine combination therapy for second-stage gambiense human African trypanosomiasis: medecins sans frontieres experience in the democratic Republic of the Congo. Clin Infect Dis. 2013;56:195–203.

    Article  CAS  PubMed  Google Scholar 

  85. Carter NS, Fairlamb AH. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993;361:173–6.

    Article  CAS  PubMed  Google Scholar 

  86. Maser P, Sutterlin C, Kralli A, Kaminsky R. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science. 1999;285:242–4.

    Article  CAS  PubMed  Google Scholar 

  87. Munday JC, Tagoe DN, Eze AA, Krezdorn JA, et al. Functional analysis of drug resistance-associated mutations in the Trypanosoma brucei adenosine transporter 1 (TbAT1) and the proposal of a structural model for the protein. Mol Microbiol. 2015.

    Google Scholar 

  88. Matovu E, Geiser F, Schneider V, Maser P, et al. Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy. Mol Biochem Parasitol. 2001;117:73–81.

    Article  CAS  PubMed  Google Scholar 

  89. Stewart ML, Burchmore RJ, Clucas C, Hertz-Fowler C, et al. Multiple genetic mechanisms lead to loss of functional TbAT1 expression in drug-resistant trypanosomes. Eukaryot Cell. 2010;9:336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matovu E, Stewart ML, Geiser F, Brun R, et al. Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryot Cell. 2003;2:1003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shahi SK, Krauth-Siegel RL, Clayton CE. Overexpression of the putative thiol conjugate transporter TbMRPA causes melarsoprol resistance in Trypanosoma brucei. Mol Microbiol. 2002;43:1129–38.

    Article  CAS  PubMed  Google Scholar 

  92. Alibu VP, Richter C, Voncken F, Marti G, et al. The role of Trypanosoma brucei MRPA in melarsoprol susceptibility. Mol Biochem Parasitol. 2006;146:38–44.

    Article  CAS  PubMed  Google Scholar 

  93. Munday JC, Eze AA, Baker N, Glover L, et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother. 2014;69:651–63.

    Article  CAS  PubMed  Google Scholar 

  94. Baker N, Glover L, Munday JC, Aguinaga Andres D, et al. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci U S A. 2012;109:10996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Graf FE, Ludin P, Wenzler T, Kaiser M, et al. Aquaporin 2 mutations in Trypanosoma brucei gambiense field isolates correlate with decreased susceptibility to pentamidine and melarsoprol. PLoS Negl Trop Dis. 2013;7, e2475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Barrett MP, Zhang ZQ, Denise H, Giroud C, Baltz T. A diamidine-resistant Trypanosoma equiperdum clone contains a P2 purine transporter with reduced substrate affinity. Mol Biochem Parasitol. 1995;73:223–9.

    Article  CAS  PubMed  Google Scholar 

  97. Carter NS, Berger BJ, Fairlamb AH. Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. J Biol Chem. 1995;270:28153–7.

    Article  CAS  PubMed  Google Scholar 

  98. de Koning HP, Anderson LF, Stewart M, Burchmore RJ, et al. The trypanocide diminazene aceturate is accumulated predominantly through the TbAT1 purine transporter: additional insights on diamidine resistance in african trypanosomes. Antimicrob Agents Chemother. 2004;48:1515–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. De Koning HP. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by three distinct transporters: implications for cross-resistance with arsenicals. Mol Pharmacol. 2001;59:586–92.

    PubMed  Google Scholar 

  100. de Koning HP. Ever-increasing complexities of diamidine and arsenical crossresistance in African trypanosomes. Trends Parasitol. 2008;24:345–9.

    Article  PubMed  CAS  Google Scholar 

  101. Bridges DJ, Gould MK, Nerima B, Maser P, et al. Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes. Mol Pharmacol. 2007;71:1098–108.

    Article  CAS  PubMed  Google Scholar 

  102. Ortiz D, Sanchez MA, Quecke P, Landfear SM. Two novel nucleobase/pentamidine transporters from Trypanosoma brucei. Mol Biochem Parasitol. 2009;163:67–76.

    Article  CAS  PubMed  Google Scholar 

  103. Bacchi CJ, Garofalo J, Mockenhaupt D, McCann PP, et al. In vivo effects of alpha-DL-difluoromethylornithine on the metabolism and morphology of Trypanosoma brucei brucei. Mol Biochem Parasitol. 1983;7:209–25.

    Article  CAS  PubMed  Google Scholar 

  104. Vincent IM, Creek DJ, Burgess K, Woods DJ, et al. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis. 2012;6, e1618.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Phillips MA, Wang CC. A Trypanosoma brucei mutant resistant to alpha-difluoromethylornithine. Mol Biochem Parasitol. 1987;22:9–17.

    Article  CAS  PubMed  Google Scholar 

  106. Alsford S, Eckert S, Baker N, Glover L, et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature. 2012;482:232–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sokolova AY, Wyllie S, Patterson S, Oza SL, et al. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob Agents Chemother. 2010;54:2893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Likeufack AC, Brun R, Fomena A, Truc P. Comparison of the in vitro drug sensitivity of Trypanosoma brucei gambiense strains from West and Central Africa isolated in the periods 1960–1995 and 1999–2004. Acta Trop. 2006;100:11–6.

    Article  CAS  PubMed  Google Scholar 

  109. Vansterkenburg EL, Coppens I, Wilting J, Bos OJ, et al. The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Trop. 1993;54:237–50.

    Article  CAS  PubMed  Google Scholar 

  110. Pepin J, Milord F. The treatment of human African trypanosomiasis. Adv Parasitol. 1994;33:1–47.

    Article  CAS  PubMed  Google Scholar 

  111. Wang CC. Molecular mechanisms and therapeutic approaches to the treatment of African trypanosomiasis. Annu Rev Pharmacol Toxicol. 1995;35:93–127.

    Article  CAS  PubMed  Google Scholar 

  112. Kazibwe AJ, Nerima B, de Koning HP, Maser P, et al. Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from Northwestern Uganda following melarsoprol withdrawal. PLoS Negl Trop Dis. 2009;3, e523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tran T, Napier G, Rowan T, Cordel C, et al. Development and evaluation of an ITS1 “Touchdown” PCR for assessment of drug efficacy against animal African trypanosomosis. Vet Parasitol. 2014;202:164–70.

    Article  CAS  PubMed  Google Scholar 

  114. Moti Y, De Deken R, Thys E, Van Den Abbeele J, et al. PCR and microsatellite analysis of diminazene aceturate resistance of bovine trypanosomes correlated to knowledge, attitude and practice of livestock keepers in South-Western Ethiopia. Acta Trop. 2015;146:45–52.

    Article  CAS  PubMed  Google Scholar 

  115. Faccio L, Da Silva AS, Gressler LT, Tonin AA, et al. Susceptibility of Brazilian isolates of Trypanosoma evansi to suramin sodium: test in experimentally infected mice. Exp Parasitol. 2013;134:309–12.

    Article  CAS  PubMed  Google Scholar 

  116. Raz B, Iten M, Grether-Buhler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68:139–47.

    Article  CAS  PubMed  Google Scholar 

  117. Gould MK, Vu XL, Seebeck T, de Koning HP. Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: comparison with the Alamar Blue assay. Anal Biochem. 2008;382:87–93.

    Article  CAS  PubMed  Google Scholar 

  118. Stewart ML, Krishna S, Burchmore RJ, Brun R, et al. Detection of arsenical drug resistance in Trypanosoma brucei with a simple fluorescence test. Lancet. 2005;366:486–7.

    Article  CAS  PubMed  Google Scholar 

  119. Wells EA. The importance of mechanical transmission in the epidemiology of nagana: a review. Trop Anim Health Prod. 1972;4:74–88.

    Article  CAS  PubMed  Google Scholar 

  120. Desquesnes M, Dia ML. Mechanical transmission of Trypanosoma congolense in cattle by the African tabanid Atylotus agrestis. Exp Parasitol. 2003;105:226–31.

    Article  PubMed  Google Scholar 

  121. Hoppenheit A, Steuber S, Bauer B, Ouma EM, et al. Host preference of tsetse: an important tool to appraise the Nagana risk of cattle in the cotton zone of Mali. Wien Klin Wochenschr. 2010;122 Suppl 3:81–6.

    Article  PubMed  Google Scholar 

  122. Codjia V, Mulatu W, Majiwa PA, Leak SG, et al. Epidemiology of bovine trypanosomiasis in the Ghibe valley, southwest Ethiopia 3 Occurrence of populations of Trypanosoma congolense resistant to diminazene, isometamidium and homidium. Acta Trop. 1993;53:151–63.

    Article  CAS  PubMed  Google Scholar 

  123. Mulugeta W, Wilkes J, Mulatu W, Majiwa PA, et al. Long-term occurrence of Trypanosoma congolense resistant to diminazene, isometamidium and homidium in cattle at Ghibe. Ethiopia Acta Trop. 1997;64:205–17.

    Article  CAS  PubMed  Google Scholar 

  124. Peregrine AS, Gray MA, Moloo SK. Cross-resistance associated with development of resistance to isometamidium in a clone of Trypanosoma congolense. Antimicrob Agents Chemother. 1997;41:1604–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Van den Bossche P, Chigoma D, Shumba W. The decline of anti-trypanosomal antibody levels in cattle after treatment with trypanocidal drugs and in the absence of tsetse challenge. Acta Trop. 2000;77:263–70.

    Article  PubMed  Google Scholar 

  126. Vitouley HS, Sidibe I, Bengaly Z, Marcotty T, et al. Is trypanocidal drug resistance a threat for livestock health and production in endemic areas? Food for thoughts from Sahelian goats infected by Trypanosoma vivax in Bobo Dioulasso (Burkina Faso). Vet Parasitol. 2012;190:349–54.

    Article  CAS  PubMed  Google Scholar 

  127. Mungube EO, Vitouley HS, Allegye-Cudjoe E, Diall O, et al. Detection of multiple drug-resistant Trypanosoma congolense populations in village cattle of south-east Mali. Parasit Vectors. 2012;5:155.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sow A, Sidibe I, Bengaly Z, Marcotty T, et al. Field detection of resistance to isometamidium chloride and diminazene aceturate in Trypanosoma vivax from the region of the Boucle du Mouhoun in Burkina Faso. Vet Parasitol. 2012;187:105–11.

    Article  CAS  PubMed  Google Scholar 

  129. Wilkes JM, Mulugeta W, Wells C, Peregrine AS. Modulation of mitochondrial electrical potential: a candidate mechanism for drug resistance in African trypanosomes. Biochem J. 1997;326(Pt 3):755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eisler MC, Brandt J, Bauer B, Clausen PH, et al. Standardised tests in mice and cattle for the detection of drug resistance in tsetse-transmitted trypanosomes of African domestic cattle. Vet Parasitol. 2001;97:171–82.

    Article  CAS  PubMed  Google Scholar 

  131. Murray M, Murray PK, McIntyre WI. An improved parasitological technique for the diagnosis of African trypanosomiasis. Trans R Soc Trop Med Hyg. 1977;71:325–6.

    Article  CAS  PubMed  Google Scholar 

  132. Delespaux V, Geysen D, Van den Bossche P, Geerts S. Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol. 2008;24:236–42.

    Article  CAS  PubMed  Google Scholar 

  133. Chitanga S, Marcotty T, Namangala B, Van den Bossche P, et al. High prevalence of drug resistance in animal trypanosomes without a history of drug exposure. PLoS Negl Trop Dis. 2011;5, e1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Munday JC, Rojas Lopez KE, Eze AA, Delespaux V, et al. Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake. Int J Parasitol Drugs Drug Resist. 2013;3:69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Teka IA, Kazibwe AJ, El-Sabbagh N, Al-Salabi MI, et al. The diamidine diminazene aceturate is a substrate for the high-affinity pentamidine transporter: implications for the development of high resistance levels in trypanosomes. Mol Pharmacol. 2011;80:110–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Whitelaw DD, Gault EA, Holmes PH, Sutherland IA, et al. Development of an enzyme-linked immunosorbent assay for the detection and measurement of the trypanocidal drug isometamidium chloride in cattle. Res Vet Sci. 1991;50:185–9.

    Article  CAS  PubMed  Google Scholar 

  137. Eisler MC, Gault EA, Smith HV, Peregrine AS, Holmes PH. Evaluation and improvement of an enzyme-linked immunosorbent assay for the detection of isometamidium in bovine serum. Ther Drug Monit. 1993;15:236–42.

    Article  CAS  PubMed  Google Scholar 

  138. Eisler MC, Elliott CT, Holmes PH. A simple competitive enzyme immunoassay for the detection of the trypanocidal drug isometamidium. Ther Drug Monit. 1996;18:73–9.

    Article  CAS  PubMed  Google Scholar 

  139. Karanja WM, Mdachi RE, Murilla GA. A competitive enzyme-linked immunosorbent assay for diminazene. Acta Trop. 2002;84:75–81.

    Article  CAS  PubMed  Google Scholar 

  140. Salih NA, van Griensven J, Chappuis F, Antierens A, et al. Liposomal amphotericin B for complicated visceral leishmaniasis (kala-azar) in eastern Sudan: how effective is treatment for this neglected disease? Trop Med Int Health. 2014;19:146–52.

    Article  CAS  PubMed  Google Scholar 

  141. Nyakundi PM, Rashid JR, Wasunna KM, Were JB, et al. Problems in the treatment of kala-azar: case report. East Afr Med J. 1995;72:406–8.

    CAS  PubMed  Google Scholar 

  142. Pandey BD, Pandey K, Kaneko O, Yanagi T, Hirayama K. Relapse of visceral leishmaniasis after miltefosine treatment in a Nepalese patient. Am J Trop Med Hyg. 2009;80:580–2.

    PubMed  Google Scholar 

  143. Soni P, Prasad N, Khandelwal K, Ghiya BC, et al. Unresponsive cutaneous leishmaniasis and HIV co-infection: report of three cases. Indian J Dermatol Venereol Leprol. 2011;77:251.

    PubMed  Google Scholar 

  144. Zijlstra EE. PKDL and other dermal lesions in HIV co-infected patients with Leishmaniasis: review of clinical presentation in relation to immune responses. PLoS Negl Trop Dis. 2014;8, e3258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Orsini M, Canela JR, Disch J, Maciel F, et al. High frequency of asymptomatic Leishmania spp. infection among HIV-infected patients living in endemic areas for visceral leishmaniasis in Brazil. Trans R Soc Trop Med Hyg. 2012;106:283–8.

    Article  PubMed  Google Scholar 

  146. Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D. Novel Intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem. 2001;276:3971–6.

    Article  CAS  PubMed  Google Scholar 

  147. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279:31010–17.

    Article  CAS  PubMed  Google Scholar 

  148. Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57:1690–9.

    Article  CAS  PubMed  Google Scholar 

  149. Mukherjee A, Boisvert S, Monte-Neto RL, Coelho AC, et al. Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol. 2013;88:189–202.

    Article  CAS  PubMed  Google Scholar 

  150. Brochu C, Wang J, Roy G, Messier N, et al. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother. 2003;47:3073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Legare D, Richard D, Mukhopadhyay R, Stierhof YD, et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276:26301–7.

    Article  CAS  PubMed  Google Scholar 

  152. Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci U S A. 1996;93:2192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Manzano JI, Garcia-Hernandez R, Castanys S, Gamarro F. A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob Agents Chemother. 2013;57:3719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Garg M, Goyal N. MAPK1 of Leishmania donovani modulates antimony susceptibility by down regulating P-glycoprotein efflux pumps. Antimicrob Agents Chemother. 2015.

    Google Scholar 

  155. Rai Bhaskar S, Goel SK, Nath Dwivedi U, et al. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One. 2013;8, e74862.

    Article  PubMed  CAS  Google Scholar 

  156. Mukherjee A, Padmanabhan PK, Singh S, Roy G, et al. Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother. 2007;59:204–11.

    Article  CAS  PubMed  Google Scholar 

  157. Singh R, Kumar D, Duncan RC, Nakhasi HL, Salotra P. Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. Int J Antimicrob Agents. 2010;36:50–7.

    Article  CAS  PubMed  Google Scholar 

  158. Jeddi F, Mary C, Aoun K, Harrat Z, et al. Heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrob Agents Chemother. 2014;58:4866–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Singh N. Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res. 2006;123:411–22.

    CAS  PubMed  Google Scholar 

  160. Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Hajjaran H, et al. Overexpression of ubiquitin and amino acid permease genes in association with antimony resistance in Leishmania tropica field isolates. Korean J Parasitol. 2013;51:413–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. t’Kindt R, Scheltema RA, Jankevics A, Brunker K, et al. Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis. 2010;4, e904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Mukherjee B, Mukhopadhyay R, Bannerjee B, Chowdhury S, et al. Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci U S A. 2013;110:E575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Urbina JA, Cohen BE, Perozo E, Cornivelli L. Spin-labeled amphotericin B: synthesis, characterization, biological and spectroscopic properties. Biochim Biophys Acta. 1987;897:467–73.

    Article  CAS  PubMed  Google Scholar 

  164. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990;34:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Baginski M, Czub J. Amphotericin B and its new derivatives—mode of action. Curr Drug Metab. 2009;10:459–69.

    Article  CAS  PubMed  Google Scholar 

  166. Escobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop. 2002;81:151–7.

    Article  CAS  PubMed  Google Scholar 

  167. Mbongo N, Loiseau PM, Billion MA, Robert-Gero M. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 1998;42:352–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Srivastava P, Prajapati VK, Rai M, Sundar S. Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. J Clin Microbiol. 2011;49:3088–91.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Purkait B, Kumar A, Nandi N, Sardar AH, et al. Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother. 2012;56:1031–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Purkait B, Singh R, Wasnik K, Das S, et al. Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin B resistance in clinical isolates of Leishmania donovani. J Antimicrob Chemother. 2015;70:1343–56.

    Article  CAS  PubMed  Google Scholar 

  171. Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One. 2011;6, e26660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bhandari V, Sundar S, Dujardin JC, Salotra P. Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2014;58:2580–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Hendrickx S, Boulet G, Mondelaers A, Dujardin JC, et al. Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitol Res. 2014;113:1875–81.

    Article  CAS  PubMed  Google Scholar 

  174. Rijal S, Ostyn B, Uranw S, Rai K, et al. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis. 2013;56:1530–8.

    Article  CAS  PubMed  Google Scholar 

  175. Troya J, Casquero A, Refoyo E, Fernandez-Guerrero ML, Gorgolas M. Long term failure of miltefosine in the treatment of refractory visceral leishmaniasis in AIDS patients. Scand J Infect Dis. 2008;40:78–80.

    Article  CAS  PubMed  Google Scholar 

  176. Obonaga R, Fernandez OL, Valderrama L, Rubiano LC, et al. Treatment failure and miltefosine susceptibility in dermal leishmaniasis caused by Leishmania subgenus Viannia species. Antimicrob Agents Chemother. 2014;58:144–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Imbert L, Ramos RG, Libong D, Abreu S, et al. Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC-ELSD, LC-ESI/MS, and multivariate data analysis. Anal Bioanal Chem. 2012;402:1169–82.

    Article  CAS  PubMed  Google Scholar 

  178. Luque-Ortega JR, Rivas L. Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2007;51:1327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Perez-Victoria FJ, Sanchez-Canete MP, Seifert K, Croft SL, et al. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist Updat. 2006;9:26–39.

    Article  CAS  PubMed  Google Scholar 

  180. Perez-Victoria FJ, Castanys S, Gamarro F. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother. 2003;47:2397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Perez-Victoria FJ, Sanchez-Canete MP, Castanys S, Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem. 2006;281:23766–75.

    Article  CAS  PubMed  Google Scholar 

  182. Cojean S, Houze S, Haouchine D, Huteau F, et al. Leishmania resistance to miltefosine associated with genetic marker. Emerg Infect Dis. 2012;18:704–6.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Perez-Victoria JM, Perez-Victoria FJ, Parodi-Talice A, Jimenez IA, et al. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother. 2001;45:2468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S. Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother. 2008;52:3573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, Castanys S. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol. 2007;64:1141–53.

    Article  CAS  PubMed  Google Scholar 

  186. BoseDasgupta S, Ganguly A, Roy A, Mukherjee T, Majumder HK. A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance of Leishmania. Mol Biochem Parasitol. 2008;158:176–88.

    Article  CAS  PubMed  Google Scholar 

  187. Utaile M, Kassahun A, Abebe T, Hailu A. Susceptibility of clinical isolates of Leishmania aethiopica to miltefosine, paromomycin, amphotericin B and sodium stibogluconate using amastigote-macrophage in vitro model. Exp Parasitol. 2013;134:68–75.

    Article  CAS  PubMed  Google Scholar 

  188. Berman JD, Lee LS. Activity of antileishmanial agents against amastigotes in human monocyte-derived macrophages and in mouse peritoneal macrophages. J Parasitol. 1984;70:220–5.

    Article  CAS  PubMed  Google Scholar 

  189. Looker DL, Martinez S, Horton JM, Marr JJ. Growth of Leishmania donovani amastigotes in the continuous human macrophage cell line U937: studies of drug efficacy and metabolism. J Infect Dis. 1986;154:323–7.

    Article  CAS  PubMed  Google Scholar 

  190. Ogunkolade BW, Colomb-Valet I, Monjour L, Rhodes-Feuillette A, et al. Interactions between the human monocytic leukaemia THP-1 cell line and Old and New World species of Leishmania. Acta Trop. 1990;47:171–6.

    Article  CAS  PubMed  Google Scholar 

  191. Veras PS, Moulia C, Dauguet C, Tunis CT, et al. Entry and survival of Leishmania amazonensis amastigotes within phagolysosome-like vacuoles that shelter Coxiella burnetii in Chinese hamster ovary cells. Infect Immun. 1995;63:3502–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Abdullah SM, Flath B, Presber HW. Comparison of different staining procedures for the flow cytometric analysis of U-937 cells infected with different Leishmania-species. J Microbiol Methods. 1999;37:123–38.

    Article  CAS  PubMed  Google Scholar 

  193. Abdullah SM, Flath B, Presber W. Mixed infection of human U-937 cells by two different species of Leishmania. Am J Trop Med Hyg. 1998;59:182–8.

    Article  CAS  PubMed  Google Scholar 

  194. Bertho AL, Cysne L, Coutinho SG. Flow cytometry in the study of the interaction between murine macrophages and the protozoan parasite Leishmania amazonensis. J Parasitol. 1992;78:666–71.

    Article  CAS  PubMed  Google Scholar 

  195. Di Giorgio C, Ridoux O, Delmas F, Azas N, et al. Flow cytometric detection of Leishmania parasites in human monocyte-derived macrophages: application to antileishmanial-drug testing. Antimicrob Agents Chemother. 2000;44:3074–8.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hansen BD, Webster HK, Hendricks LD, Pappas MG. Leishmania mexicana: purine metabolism in promastigotes, axenic amastigotes, and amastigotes derived from Vero cells. Exp Parasitol. 1984;58:101–9.

    Article  CAS  PubMed  Google Scholar 

  197. Bates PA. Axenic culture of Leishmania amastigotes. Parasitol Today. 1993;9:143–6.

    Article  CAS  PubMed  Google Scholar 

  198. Gupta N, Goyal N, Rastogi AK. In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol. 2001;17:150–3.

    Article  CAS  PubMed  Google Scholar 

  199. Petropolis DB, Rodrigues JC, Viana NB, Pontes B, et al. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions. PeerJ. 2014;2, e317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Gupta S. Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res. 2011;133:27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Adl SM, Leander BS, Simpson AG, Archibald JM, et al. Diversity, nomenclature, and taxonomy of protists. Syst Biol. 2007;56:684–9.

    Article  PubMed  Google Scholar 

  202. Mueller I, Slutsker L, Tanner M. Estimating the burden of malaria: the need for improved surveillance. PLoS Med. 2011;8, e1001144.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Alonso PL, Brown G, Arevalo-Herrera M, Binka F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8, e1000406.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bhaumik S. Malaria funds drying up: World Malaria Report 2012. Natl Med J India. 2013;26:62.

    PubMed  Google Scholar 

  205. Witkowski B, Amaratunga C, Khim N, Sreng S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wangroongsarb P, Satimai W, Khamsiriwatchara A, Thwing J, et al. Respondent-driven sampling on the Thailand-Cambodia border. II. Knowledge, perception, practice and treatment-seeking behaviour of migrants in malaria endemic zones. Malar J. 2011;10:117.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Amaratunga C, Sreng S, Suon S, Phelps ES, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012;12:851–8.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Djimde A, Doumbo OK, Cortese JF, Kayentao K, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–63.

    Article  CAS  PubMed  Google Scholar 

  210. Anderson TJ, Nair S, Qin H, Singlam S, et al. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother. 2005;49:2180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Duraisingh MT, Drakeley CJ, Muller O, Bailey R, et al. Evidence for selection for the tyrosine-86 allele of the pfmdr 1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology. 1997;114(Pt 3):205–11.

    Article  CAS  PubMed  Google Scholar 

  212. Duraisingh MT, Cowman AF. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop. 2005;94:181–90.

    Article  CAS  PubMed  Google Scholar 

  213. Rungsihirunrat K, Muhamad P, Chaijaroenkul W, Kuesap J, Na-Bangchang K. Plasmodium vivax drug resistance genes; Pvmdr1 and Pvcrt-o polymorphisms in relation to chloroquine sensitivity from a malaria endemic area of Thailand. Korean J Parasitol. 2015;53:43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Klokouzas A, Tiffert T, van Schalkwyk D, Wu CP, et al. Plasmodium falciparum expresses a multidrug resistance-associated protein. Biochem Biophys Res Commun. 2004;321:197–201.

    Article  CAS  PubMed  Google Scholar 

  215. Ferdig MT, Cooper RA, Mu J, Deng B, et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol. 2004;52:985–97.

    Article  CAS  PubMed  Google Scholar 

  216. Wendler JP, Okombo J, Amato R, Miotto O, et al. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya. PLoS One. 2014;9, e96486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Veiga MI, Osorio NS, Ferreira PE, Franzen O, et al. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response. Antimicrob Agents Chemother. 2014;58:7390–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. van der Velden M, Rijpma SR, Russel FG, Sauerwein RW, Koenderink JB. PfMDR2 and PfMDR5 are dispensable for Plasmodium falciparum asexual parasite multiplication but change in vitro susceptibility to anti-malarial drugs. Malar J. 2015;14:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, et al. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science. 1989;244:1184–6.

    Article  CAS  PubMed  Google Scholar 

  220. Price RN, Uhlemann AC, Brockman A, McGready R, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364:438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Preechapornkul P, Imwong M, Chotivanich K, Pongtavornpinyo W, et al. Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother. 2009;53:1509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Gupta B, Xu S, Wang Z, Sun L, et al. Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) gene and its association with in vitro drug susceptibility of parasite isolates from north-east Myanmar. J Antimicrob Chemother. 2014;69:2110–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Heinberg A, Kirkman L. The molecular basis of antifolate resistance in Plasmodium falciparum: looking beyond point mutations. Ann N Y Acad Sci. 2015;1342:10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fisher N, Abd Majid R, Antoine T, Al-Helal M, et al. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J Biol Chem. 2012;287:9731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Akhoon BA, Singh KP, Varshney M, Gupta SK, Shukla Y. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods. PLoS One. 2014;9, e110041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Antoine T, Fisher N, Amewu R, O’Neill PM, et al. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother. 2014;69:1005–16.

    Article  CAS  PubMed  Google Scholar 

  227. O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin--the debate continues. Molecules. 2010;15:1705–21.

    Article  PubMed  CAS  Google Scholar 

  228. White NJ. Malaria: a molecular marker of artemisinin resistance. Lancet. 2014;383:1439–40.

    Article  PubMed  Google Scholar 

  229. Ariey F, Witkowski B, Amaratunga C, Beghain J, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.

    Article  PubMed  CAS  Google Scholar 

  230. Wang Z, Shrestha S, Li X, Miao J, et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007–2012. Malar J. 2015;14:168.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Serebrennikova YM, Patel J, Milhous WK, Garcia-Rubio LH, et al. Spectrophotometric detection of susceptibility to anti-malarial drugs. Malar J. 2013;12:305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Chaorattanakawee S, Tyner SD, Lon C, Yingyuen K, et al. Direct comparison of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR green I fluorescence (MSF) drug sensitivity tests in Plasmodium falciparum reference clones and fresh ex vivo field isolates from Cambodia. Malar J. 2013;12:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rason MA, Randriantsoa T, Andrianantenaina H, Ratsimbasoa A, Menard D. Performance and reliability of the SYBR Green I based assay for the routine monitoring of susceptibility of Plasmodium falciparum clinical isolates. Trans R Soc Trop Med Hyg. 2008;102:346–51.

    Article  PubMed  Google Scholar 

  235. Kaddouri H, Nakache S, Houze S, Mentre F, Le Bras J. Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother. 2006;50:3343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Noedl H, Attlmayr B, Wernsdorfer WH, Kollaritsch H, Miller RS. A histidine-rich protein 2-based malaria drug sensitivity assay for field use. Am J Trop Med Hyg. 2004;71:711–14.

    CAS  PubMed  Google Scholar 

  237. Cerutti Junior C, Marques C, Alencar FE, Durlacher RR, et al. Antimalarial drug susceptibility testing of Plasmodium falciparum in Brazil using a radioisotope method. Mem Inst Oswaldo Cruz. 1999;94:803–9.

    Article  CAS  PubMed  Google Scholar 

  238. Webster HK, Boudreau EF, Pavanand K, Yongvanitchit K, Pang LW. Antimalarial drug susceptibility testing of Plasmodium falciparum in Thailand using a microdilution radioisotope method. Am J Trop Med Hyg. 1985;34:228–35.

    Article  CAS  PubMed  Google Scholar 

  239. Basco LK, Report of the World Health Organization (WHO). 2007.

    Google Scholar 

  240. Gamboa D, Ho MF, Bendezu J, Torres K, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One. 2010;5, e8091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Akinyi S, Hayden T, Gamboa D, Torres K, et al. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru. Sci Rep. 2013;3:2797.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Brasseur P, Agnamey P, Moreno A, Druilhe P. Evaluation of in vitro drug sensitivity of antimalarials for Plasmodium falciparum using a colorimetric assay (DELI-microtest). Med Trop (Mars). 2001;61:545–7.

    CAS  Google Scholar 

  243. Dieng T, Bah IB, Ndiaye PM, Diallo I, et al. [In vitro evaluation of the sensitivity of Plasmodium falciparum to chloroquine using the deli-microtest in region of Dakar, Senegal]. Med Trop (Mars). 2005;65:580–3.

    CAS  Google Scholar 

  244. Tun KM, Imwong M, Lwin KM, Win AA, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Talundzic E, Okoth SA, Congpuong K, Plucinski MM, et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog. 2015;11, e1004789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Mishra N, Prajapati SK, Kaitholia K, Bharti RS, et al. Surveillance of Artemisinin Resistance in Plasmodium falciparum in India Using the kelch13 Molecular Marker. Antimicrob Agents Chemother. 2015;59:2548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Flegr J, Prandota J, Sovickova M, Israili ZH. Toxoplasmosis--a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One. 2014;9, e90203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Remington JS, Thulliez P, Montoya JG. Recent developments for diagnosis of toxoplasmosis. J Clin Microbiol. 2004;42:941–5.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Allinson J, Topping W, Edwards SG, Miller RF. Sulphadiazine-induced obstructive renal failure complicating treatment of HIV-associated toxoplasmosis. Int J STD AIDS. 2012;23:210–12.

    Article  CAS  PubMed  Google Scholar 

  250. Faucher B, Moreau J, Zaegel O, Franck J, Piarroux R. Failure of conventional treatment with pyrimethamine and sulfadiazine for secondary prophylaxis of cerebral toxoplasmosis in a patient with AIDS. J Antimicrob Chemother. 2011;66:1654–6.

    Article  CAS  PubMed  Google Scholar 

  251. Durand JM, Cretel E, Bagneres D, Guillemot E, et al. Failure of atovaquone in the treatment of cerebral toxoplasmosis. AIDS. 1995;9:812–13.

    Article  CAS  PubMed  Google Scholar 

  252. Doliwa C, Escotte-Binet S, Aubert D, Sauvage V, et al. Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters. Parasite. 2013;20:19.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Pashley TV, Volpe F, Pudney M, Hyde JE, et al. Isolation and molecular characterization of the bifunctional hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase gene from Toxoplasma gondii. Mol Biochem Parasitol. 1997;86:37–47.

    CAS  PubMed  Google Scholar 

  254. McFadden DC, Tomavo S, Berry EA, Boothroyd JC. Characterization of cytochrome b from Toxoplasma gondii and Q(o) domain mutations as a mechanism of atovaquone-resistance. Mol Biochem Parasitol. 2000;108:1–12.

    Article  CAS  PubMed  Google Scholar 

  255. Doliwa C, Escotte-Binet S, Aubert D, Velard F, et al. Induction of sulfadiazine resistance in vitro in Toxoplasma gondii. Exp Parasitol. 2013;133:131–6.

    Article  CAS  PubMed  Google Scholar 

  256. Derouin F, Chastang C. Enzyme immunoassay to assess effect of antimicrobial agents on Toxoplasma gondii in tissue culture. Antimicrob Agents Chemother. 1988;32:303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Slapeta J. Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? Int J Parasitol. 2013;43:957–70.

    Article  PubMed  Google Scholar 

  258. Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013;26:115–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Checkley W, White Jr AC, Jaganath D, Arrowood MJ, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15:85–94.

    Article  PubMed  Google Scholar 

  260. Benitez AJ, McNair N, Mead J. Modulation of gene expression of three Cryptosporidium parvum ATP-binding cassette transporters in response to drug treatment. Parasitol Res. 2007;101:1611–16.

    Article  PubMed  Google Scholar 

  261. Castellanos-Gonzalez A, Cabada MM, Nichols J, Gomez G, White Jr AC. Human primary intestinal epithelial cells as an improved in vitro model for Cryptosporidium parvum infection. Infect Immun. 2013;81:1996–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Woods KM, Upton SJ. Efficacy of select antivirals against Cryptosporidium parvum in vitro. FEMS Microbiol Lett. 1998;168:59–63.

    Article  CAS  PubMed  Google Scholar 

  263. Castro-Hermida JA, Ares-Mazas ME. In vitro and in vivo efficacy of alpha-cyclodextrin for treatment of experimental cryptosporidiosis. Vet Parasitol. 2003;114:237–45.

    Article  CAS  PubMed  Google Scholar 

  264. Jenkins MB, Anguish LJ, Bowman DD, Walker MJ, Ghiorse WC. Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 1997;63:3844–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Sharman PA, Smith NC, Wallach MG, Katrib M. Chasing the golden egg: vaccination against poultry coccidiosis. Parasite Immunol. 2010;32:590–8.

    CAS  PubMed  Google Scholar 

  266. Morris GM, Gasser RB. Biotechnological advances in the diagnosis of avian coccidiosis and the analysis of genetic variation in Eimeria. Biotechnol Adv. 2006;24:590–603.

    Article  CAS  PubMed  Google Scholar 

  267. Morgan JA, Morris GM, Wlodek BM, Byrnes R, et al. Real-time polymerase chain reaction (PCR) assays for the specific detection and quantification of seven Eimeria species that cause coccidiosis in chickens. Mol Cell Probes. 2009;23:83–9.

    Article  CAS  PubMed  Google Scholar 

  268. Li GQ, Kanu S, Xiao SM, Xiang FY. Responses of chickens vaccinated with a live attenuated multi-valent ionophore-tolerant Eimeria vaccine. Vet Parasitol. 2005;129:179–86.

    Article  CAS  PubMed  Google Scholar 

  269. Chapman HD. Drug resistance in avian coccidia (a review). Vet Parasitol. 1984;15:11–27.

    Article  CAS  PubMed  Google Scholar 

  270. Holdsworth PA, Conway DP, McKenzie ME, Dayton AD, et al. World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines for evaluating the efficacy of anticoccidial drugs in chickens and turkeys. Vet Parasitol. 2004;121:189–212.

    Article  CAS  PubMed  Google Scholar 

  271. Johnson J, Reid WM. Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Exp Parasitol. 1970;28:30–6.

    Article  CAS  PubMed  Google Scholar 

  272. Arabkhazaeli F, Modrisanei M, Nabian S, Mansoori B, Madani A. Evaluating the resistance of eimeria spp. Field isolates to anticoccidial drugs using three different indices. Iran J Parasitol. 2013;8:234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Verdier RI, Fitzgerald DW, Johnson Jr WD, Pape JW. Trimethoprim-sulfamethoxazole compared with ciprofloxacin for treatment and prophylaxis of Isospora belli and Cyclospora cayetanensis infection in HIV-infected patients. A randomized, controlled trial. Ann Intern Med. 2000;132:885–8.

    Article  CAS  PubMed  Google Scholar 

  274. Boyles TH, Black J, Meintjes G, Mendelson M. Failure to eradicate Isospora belli diarrhoea despite immune reconstitution in adults with HIV—a case series. PLoS One. 2012;7, e42844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Gorricho Mendivil J, Torres Sopena L, Paradineiro Somoza JC, Moles Calandre B. Treatment of recurrent Isospora belli diarrhea. Rev Esp Enferm Dig. 1995;87:612–13.

    CAS  PubMed  Google Scholar 

  276. Bialek R, Overkamp D, Rettig I, Knobloch J. Case report: nitazoxanide treatment failure in chronic isosporiasis. Am J Trop Med Hyg. 2001;65:94–5.

    Article  CAS  PubMed  Google Scholar 

  277. Smith J, Garber GE. Current status and prospects for development of a vaccine against Trichomonas vaginalis infections. Vaccine. 2014;32:1588–94.

    Article  CAS  PubMed  Google Scholar 

  278. Hrdy I, Cammack R, Stopka P, Kulda J, Tachezy J. Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother. 2005;49:5033–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Leitsch D, Kolarich D, Binder M, Stadlmann J, et al. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol Microbiol. 2009;72:518–36.

    Article  CAS  PubMed  Google Scholar 

  280. Dunne RL, Dunn LA, Upcroft P, O’Donoghue PJ, Upcroft JA. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res. 2003;13:239–49.

    Article  CAS  PubMed  Google Scholar 

  281. Kirkcaldy RD, Augostini P, Asbel LE, Bernstein KT, et al. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerg Infect Dis. 2012;18:939–43.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Krashin JW, Koumans EH, Bradshaw-Sydnor AC, Braxton JR, et al. Trichomonas vaginalis prevalence, incidence, risk factors and antibiotic-resistance in an adolescent population. Sex Transm Dis. 2010;37:440–4.

    PubMed  Google Scholar 

  283. Schwebke JR, Barrientes FJ. Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother. 2006;50:4209–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Upcroft JA, Upcroft P. Drug susceptibility testing of anaerobic protozoa. Antimicrob Agents Chemother. 2001;45:1810–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Upcroft P, Upcroft JA. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev. 2001;14:150–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Townson SM, Boreham PF, Upcroft P, Upcroft JA. Resistance to the nitroheterocyclic drugs. Acta Trop. 1994;56:173–94.

    Article  CAS  PubMed  Google Scholar 

  287. Yarlett N, Gorrell TE, Marczak R, Muller M. Reduction of nitroimidazole derivatives by hydrogenosomal extracts of Trichomonas vaginalis. Mol Biochem Parasitol. 1985;14:29–40.

    Article  CAS  PubMed  Google Scholar 

  288. Kulda J, Kabíçková H, Tachezy J, Çerkasovová A, Çerkasov J. Metronidazole resistant trichomonads: mechanisms of in vitro developed anaerobic resistance. In: Lloyd D, Coombs GH, Paget TAP, editors. Biochemistry and molecular biology of ‘Anaerobic’ protozoa. Chur: Harwood Academic Publishers; 1989. p. 137–60.

    Google Scholar 

  289. Muller M, Gorrell TE. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrob Agents Chemother. 1983;24:667–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Wright JM, Webb RI, O’Donoghue P, Upcroft P, Upcroft JA. Hydrogenosomes of laboratory-induced metronidazole-resistant Trichomonas vaginalis lines are downsized while those from clinically metronidazole-resistant isolates are not. J Eukaryot Microbiol. 2010;57:171–6.

    Article  CAS  PubMed  Google Scholar 

  291. Leitsch D, Kolarich D, Duchene M. The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways. Mol Biochem Parasitol. 2010;171:17–24.

    Article  CAS  PubMed  Google Scholar 

  292. Leitsch D, Drinic M, Kolarich D, Duchene M. Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis. Mol Biochem Parasitol. 2012;183:177–83.

    Article  CAS  PubMed  Google Scholar 

  293. Leitsch D, Janssen BD, Kolarich D, Johnson PJ, Duchene M. Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance. Mol Microbiol. 2014;91:198–208.

    Article  CAS  PubMed  Google Scholar 

  294. Paulish-Miller TE, Augostini P, Schuyler JA, Smith WL, et al. Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob Agents Chemother. 2014;58:2938–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Meri T, Jokiranta TS, Suhonen L, Meri S. Resistance of Trichomonas vaginalis to metronidazole: report of the first three cases from Finland and optimization of in vitro susceptibility testing under various oxygen concentrations. J Clin Microbiol. 2000;38:763–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Brown DM, Upcroft JA, Dodd HN, Chen N, Upcroft P. Alternative 2-keto acid oxidoreductase activities in Trichomonas vaginalis. Mol Biochem Parasitol. 1999;98:203–14.

    Article  CAS  PubMed  Google Scholar 

  297. Kulda J, Tachezy J, Cerkasovova A. In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J Eukaryot Microbiol. 1993;40:262–9.

    Article  CAS  PubMed  Google Scholar 

  298. Lossick JG, Muller M, Gorrell TE. In vitro drug susceptibility and doses of metronidazole required for cure in cases of refractory vaginal trichomoniasis. J Infect Dis. 1986;153:948–55.

    Article  CAS  PubMed  Google Scholar 

  299. Meingassner JG, Thurner J. Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrob Agents Chemother. 1979;15:254–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Thurner J, Meingassner JG. Isolation of Trichomonas vaginalis resistant to metronidazole. Lancet. 1978;2:738.

    Article  CAS  PubMed  Google Scholar 

  301. Boreham PF, Phillips RE, Shepherd RW. The sensitivity of Giardia intestinalis to drugs in vitro. J Antimicrob Chemother. 1984;14:449–61.

    Article  CAS  PubMed  Google Scholar 

  302. Gero AM, Kang EW, Harvey JE, Schofield PJ, et al. Trichomonas vaginalis: detection of nucleoside hydrolase activity as a potential screening procedure. Exp Parasitol. 2000;94:125–8.

    Article  CAS  PubMed  Google Scholar 

  303. Kang EW, Clinch K, Furneaux RH, Harvey JE, et al. A novel and simple colorimetric method for screening Giardia intestinalis and anti-giardial activity in vitro. Parasitology. 1998;117(Pt 3):229–34.

    Article  CAS  PubMed  Google Scholar 

  304. Abraham MC, Desjardins M, Filion LG, Garber GE. Inducible immunity to Trichomonas vaginalis in a mouse model of vaginal infection. Infect Immun. 1996;64:3571–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Kulda J. Employment of experimental animals in studies of Trichomonas vaginalis infection. In: Honigberg BM, editor. Trichomonads parasitic in humans. New York: Springer; 1990. p. 112–54.

    Chapter  Google Scholar 

  306. Patton DL, Sweeney YT, Agnew KJ, Balkus JE, et al. Development of a nonhuman primate model for Trichomonas vaginalis infection. Sex Transm Dis. 2006;33:743–6.

    Article  PubMed  Google Scholar 

  307. Henning T, Fakile Y, Phillips C, Sweeney E, et al. Development of a pigtail macaque model of sexually transmitted infection/HIV coinfection using Chlamydia trachomatis, Trichomonas vaginalis, and SHIV(SF162P3). J Med Primatol. 2011;40:214–23.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Escobedo AA, Cimerman S. Giardiasis: a pharmacotherapy review. Expert Opin Pharmacother. 2007;8:1885–902.

    Article  CAS  PubMed  Google Scholar 

  309. Gardner TB, Hill DR. Treatment of giardiasis. Clin Microbiol Rev. 2001;14:114–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Rosenthal P, Liebman WM. Comparative study of stool examinations, duodenal aspiration, and pediatric Entero-Test for giardiasis in children. J Pediatr. 1980;96:278–9.

    Article  CAS  PubMed  Google Scholar 

  311. Lemee V, Zaharia I, Nevez G, Rabodonirina M, et al. Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. J Antimicrob Chemother. 2000;46:819–21.

    Article  CAS  PubMed  Google Scholar 

  312. Upcroft JA, Upcroft P, Boreham PF. Drug resistance in Giardia intestinalis. Int J Parasitol. 1990;20:489–96.

    Article  CAS  PubMed  Google Scholar 

  313. Leitsch D, Burgess AG, Dunn LA, Krauer KG, et al. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J Antimicrob Chemother. 2011;66:1756–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Smith NC, Bryant C, Boreham PF. Possible roles for pyruvate:ferredoxin oxidoreductase and thiol-dependent peroxidase and reductase activities in resistance to nitroheterocyclic drugs in Giardia intestinalis. Int J Parasitol. 1988;18:991–7.

    Article  PubMed  Google Scholar 

  315. Muller J, Schildknecht P, Muller N. Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GlNR2). J Antimicrob Chemother. 2013;68:1781–9.

    Article  PubMed  CAS  Google Scholar 

  316. Nillius D, Muller J, Muller N. Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and Escherichia coli to nitro drugs. J Antimicrob Chemother. 2011;66:1029–35.

    Article  CAS  PubMed  Google Scholar 

  317. Muller J, Sterk M, Hemphill A, Muller N. Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole. J Antimicrob Chemother. 2007;60:280–7.

    Article  PubMed  CAS  Google Scholar 

  318. Upcroft JA, Upcroft P. Drug resistance and Giardia. Parasitol Today. 1993;9:187–90.

    Article  CAS  PubMed  Google Scholar 

  319. Upcroft P. Drug resistance in Giardia: clinical versus laboratory isolates. Drug Resist Updat. 1998;1:166–8.

    Article  CAS  PubMed  Google Scholar 

  320. Lindquist HD. Induction of albendazole resistance in Giardia lamblia. Microb Drug Resist. 1996;2:433–4.

    Article  CAS  PubMed  Google Scholar 

  321. Upcroft J, Mitchell R, Chen N, Upcroft P. Albendazole resistance in Giardia is correlated with cytoskeletal changes but not with a mutation at amino acid 200 in beta-tubulin. Microb Drug Resist. 1996;2:303–8.

    Article  CAS  PubMed  Google Scholar 

  322. Arguello-Garcia R, Cruz-Soto M, Gonzalez-Trejo R, Paz-Maldonado LM, et al. An antioxidant response is involved in resistance of Giardia duodenalis to albendazole. Front Microbiol. 2015;6:286.

    Article  PubMed  PubMed Central  Google Scholar 

  323. Ansell BR, McConville MJ, Ma’ayeh SY, Dagley MJ, et al. Drug resistance in Giardia duodenalis. Biotechnol Adv. 2015;33(6 Pt 1):888–901.

    Article  CAS  PubMed  Google Scholar 

  324. Cruz A, Sousa MI, Azeredo Z, Leite E, et al. Isolation, excystation and axenization of Giardia lamblia isolates: in vitro susceptibility to metronidazole and albendazole. J Antimicrob Chemother. 2003;51:1017–20.

    Article  CAS  PubMed  Google Scholar 

  325. Vargas-Villarreal J, Mata-Cardenas BD, Hernandez-Garcia ME, Garza-Gonzalez JN, et al. Modified PEHPS medium as an alternative for the in vitro culture of Giardia lamblia. Biomed Res Int. 2014;2014:714173.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Schupp DG, Januschka MM, Sherlock LA, Stibbs HH, et al. Production of viable Giardia cysts in vitro: determination by fluorogenic dye staining, excystation, and animal infectivity in the mouse and Mongolian gerbil. Gastroenterology. 1988;95:1–10.

    Article  CAS  PubMed  Google Scholar 

  327. Manna D, Dutta PK, Achari B, Lohia A. A novel galacto-glycerolipid from Oxalis corniculata kills Entamoeba histolytica and Giardia lamblia. Antimicrob Agents Chemother. 2010;54:4825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Mata-Cardenas BD, Vargas-Villarreal J, Gonzalez-Salazar F, Palacios-Corona R, Said-Fernandez S. Pharmacologyonline. 2008. p. 529–537.

    Google Scholar 

  329. Busatti HG, Vieira AE, Viana JC, Silva HE, et al. Effect of metronidazole analogues on Giardia lamblia cultures. Parasitol Res. 2007;102:145–9.

    Article  PubMed  Google Scholar 

  330. Benere E, da Luz RA, Vermeersch M, Cos P, Maes L. A new quantitative in vitro microculture method for Giardia duodenalis trophozoites. J Microbiol Methods. 2007;71:101–6.

    Article  CAS  PubMed  Google Scholar 

  331. Faghiri Z, Santiago RB, Wu Z, Widmer G. High-throughput screening in suboptimal growth conditions identifies agonists of Giardia lamblia proliferation. Parasitology. 2011;138:194–200.

    Article  CAS  PubMed  Google Scholar 

  332. Adagu IS, Nolder D, Warhurst DC, Rossignol JF. In vitro activity of nitazoxanide and related compounds against isolates of Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. J Antimicrob Chemother. 2002;49:103–11.

    Article  CAS  PubMed  Google Scholar 

  333. McIntyre P, Boreham PF, Phillips RE, Shepherd RW. Chemotherapy in giardiasis: clinical responses and in vitro drug sensitivity of human isolates in axenic culture. J Pediatr. 1986;108:1005–10.

    Article  CAS  PubMed  Google Scholar 

  334. Hill DR, Pohl R, Pearson RD. Giardia lamblia: a culture method for determining parasite viability. Am J Trop Med Hyg. 1986;35:1129–33.

    Article  CAS  PubMed  Google Scholar 

  335. Favennec L, Chochillon C, Magne D, Meillet D, et al. A new screening assay for antigiardial compounds: effects of various drugs on the adherence of Giardia duodenalis to Caco2 cells. Parasitol Res. 1992;78:80–1.

    Article  CAS  PubMed  Google Scholar 

  336. Farbey MD, Reynoldson JA, Thompson RC. In vitro drug susceptibility of 29 isolates of Giardia duodenalis from humans as assessed by an adhesion assay. Int J Parasitol. 1995;25:593–9.

    Article  CAS  PubMed  Google Scholar 

  337. Meloni BP, Thompson RC, Reynoldson JA, Seville P. Albendazole: a more effective antigiardial agent in vitro than metronidazole or tinidazole. Trans R Soc Trop Med Hyg. 1990;84:375–9.

    Article  CAS  PubMed  Google Scholar 

  338. Wright CW, Melwani SI, Phillipson JD, Warhurst DC. Determination of anti-giardial activity in vitro by means of soluble formazan production. Trans R Soc Trop Med Hyg. 1992;86:517–19.

    Article  CAS  PubMed  Google Scholar 

  339. Ponce-Macotela M, Gomez-Garduno J, Gonzalez-Maciel A, Reynoso-Robles R, et al. In vitro measurement of nitazoxanide sensitivity of 4 Giardia duodenalis isolates obtained from different hosts. Rev Invest Clin. 2001;53:41–5.

    CAS  PubMed  Google Scholar 

  340. Muller J, Ruhle G, Muller N, Rossignol JF, Hemphill A. In vitro effects of thiazolides on Giardia lamblia WB clone C6 cultured axenically and in coculture with Caco2 cells. Antimicrob Agents Chemother. 2006;50:162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Barbosa J, Rodrigues AG, Perez MJ, Pina-Vaz C. Evaluation of Giardia duodenalis viability after metronidazole treatment by flow cytometry. Mem Inst Oswaldo Cruz. 2014;109:1078–80.

    Article  PubMed  PubMed Central  Google Scholar 

  342. Zheng GX, Zhang XM, Yang YS, Zeng SR, et al. An integrated microfludic device for culturing and screening of Giardia lamblia. Exp Parasitol. 2014;137:1–7.

    Article  CAS  PubMed  Google Scholar 

  343. Benere E, VAN Assche T, Cos P, Maes L. Variation in growth and drug susceptibility among Giardia duodenalis assemblages A, B and E in axenic in vitro culture and in the gerbil model. Parasitology. 2011;138:1354–61.

    Article  CAS  PubMed  Google Scholar 

  344. Deyab FA, El-Nouby KA, Shoheib ZS, El-Fadl AA. Effect of organochlorine (DDT) exposure on experimental giardiasis. J Egypt Soc Parasitol. 2008;38:225–41.

    PubMed  Google Scholar 

  345. Bansal D, Sehgal R, Chawla Y, Mahajan RC, Malla N. In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba dispar. Ann Clin Microbiol Antimicrob. 2004;3:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  346. Pehrson PO, Bengtsson E. A long-term follow up study of amoebiasis treated with metronidazole. Scand J Infect Dis. 1984;16:195–8.

    Article  CAS  PubMed  Google Scholar 

  347. Agrawal P, Gandhi V, Nagral A, Nagral S. An unusual cause of acute liver failure. BMJ Case Rep. 2010. doi:10.1136/bcr.03.2010.2837.

    Google Scholar 

  348. Wassmann C, Hellberg A, Tannich E, Bruchhaus I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem. 1999;274:26051–6.

    Article  CAS  PubMed  Google Scholar 

  349. Samarawickrema NA, Brown DM, Upcroft JA, Thammapalerd N, Upcroft P. Involvement of superoxide dismutase and pyruvate:ferredoxin oxidoreductase in mechanisms of metronidazole resistance in Entamoeba histolytica. J Antimicrob Chemother. 1997;40:833–40.

    Article  CAS  PubMed  Google Scholar 

  350. Jervis HR, Takeuchi A. Amebic dysentery Animal model: experimental Entamoeba histolytica infection in the germfree guinea pig. Am J Pathol. 1979;94:197–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  351. Anaya-Velazquez F, Martinez-Palomo A, Tsutsumi V, Gonzalez-Robles A. Intestinal invasive amebiasis: an experimental model in rodents using axenic or monoxenic strains of Entamoeba histolytica. Am J Trop Med Hyg. 1985;34:723–30.

    Article  CAS  PubMed  Google Scholar 

  352. Arisue N, Hashimoto T, Yoshikawa H, Nakamura Y, et al. Phylogenetic position of Blastocystis hominis and of stramenopiles inferred from multiple molecular sequence data. J Eukaryot Microbiol. 2002;49:42–53.

    Article  CAS  PubMed  Google Scholar 

  353. Elghareeb AS, Younis MS, El Fakahany AF, Nagaty IM, Nagib MM. Laboratory diagnosis of Blastocystis spp. in diarrheic patients. Trop Parasitol. 2015;5:36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  354. Silberman JD, Sogin ML, Leipe DD, Clark CG. Human parasite finds taxonomic home. Nature. 1996;380:398.

    Article  CAS  PubMed  Google Scholar 

  355. Sekar U, Shanthi M. Blastocystis: consensus of treatment and controversies. Trop Parasitol. 2013;3:35–9.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Zaman V, Zaki M. Resistance of Blastocystis hominis cysts to metronidazole. Trop Med Int Health. 1996;1:677–8.

    Article  CAS  PubMed  Google Scholar 

  357. Nasirudeen AM, Hian YE, Singh M, Tan KS. Metronidazole induces programmed cell death in the protozoan parasite Blastocystis hominis. Microbiology. 2004;150:33–43.

    Article  CAS  PubMed  Google Scholar 

  358. Lantsman Y, Tan KS, Morada M, Yarlett N. Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology. 2008;154:2757–66.

    Article  CAS  PubMed  Google Scholar 

  359. Mirza H, Wu Z, Kidwai F, Tan KS. A metronidazole-resistant isolate of Blastocystis spp. is susceptible to nitric oxide and downregulates intestinal epithelial inducible nitric oxide synthase by a novel parasite survival mechanism. Infect Immun. 2011;79:5019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Mirza H, Teo JD, Upcroft J, Tan KS. A rapid, high-throughput viability assay for Blastocystis spp. reveals metronidazole resistance and extensive subtype-dependent variations in drug susceptibilities. Antimicrob Agents Chemother. 2011;55:637–48.

    Article  CAS  PubMed  Google Scholar 

  361. Chai JY. Praziquantel treatment in trematode and cestode infections: an update. Infect Chemother. 2013;45:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Kyung SY, Cho YK, Kim YJ, Park JW, et al. A paragonimiasis patient with allergic reaction to praziquantel and resistance to triclabendazole: successful treatment after desensitization to praziquantel. Korean J Parasitol. 2011;49:73–7.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Bhargava P. Indian Acad Clin Med. 2001. p. 1–2.

    Google Scholar 

  364. Kwa MS, Veenstra JG, Roos MH. Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in beta-tubulin isotype 1. Mol Biochem Parasitol. 1994;63:299–303.

    Article  CAS  PubMed  Google Scholar 

  365. Silvestre A, Cabaret J. Mutation in position 167 of isotype 1 beta-tubulin gene of Trichostrongylid nematodes: role in benzimidazole resistance? Mol Biochem Parasitol. 2002;120:297–300.

    Article  CAS  PubMed  Google Scholar 

  366. Ghisi M, Kaminsky R, Maser P. Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet Parasitol. 2007;144:313–20.

    Article  CAS  PubMed  Google Scholar 

  367. Blackhall WJ, Prichard RK, Beech RN. P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles. Vet Parasitol. 2008;152:101–7.

    Article  CAS  PubMed  Google Scholar 

  368. Kerboeuf D, Guegnard F, Le Vern Y. Analysis and partial reversal of multidrug resistance to anthelmintics due to P-glycoprotein in Haemonchus contortus eggs using Lens culinaris lectin. Parasitol Res. 2002;88:816–21.

    Article  CAS  PubMed  Google Scholar 

  369. Kopp SR, Coleman GT, Traub RJ, McCarthy JS, Kotze AC. Acetylcholine receptor subunit genes from Ancylostoma caninum: altered transcription patterns associated with pyrantel resistance. Int J Parasitol. 2009;39:435–41.

    Article  CAS  PubMed  Google Scholar 

  370. Boulin T, Fauvin A, Charvet CL, Cortet J, et al. Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance. Br J Pharmacol. 2011;164:1421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Barrere V, Beech RN, Charvet CL, Prichard RK. Novel assay for the detection and monitoring of levamisole resistance in Haemonchus contortus. Int J Parasitol. 2014;44:235–41.

    Article  CAS  PubMed  Google Scholar 

  372. Blackhall WJ, Pouliot JF, Prichard RK, Beech RN. Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Exp Parasitol. 1998;90:42–8.

    Article  CAS  PubMed  Google Scholar 

  373. Nana-Djeunga H, Bourguinat C, Pion SD, Kamgno J, et al. Single nucleotide polymorphisms in beta-tubulin selected in Onchocerca volvulus following repeated ivermectin treatment: possible indication of resistance selection. Mol Biochem Parasitol. 2012;185:10–8.

    Article  CAS  PubMed  Google Scholar 

  374. Xu M, Molento M, Blackhall W, Ribeiro P, et al. Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol Biochem Parasitol. 1998;91:327–35.

    Article  CAS  PubMed  Google Scholar 

  375. Pohl PC, Carvalho DD, Daffre S, Vaz Ida Jr S, Masuda A. In vitro establishment of ivermectin-resistant Rhipicephalus microplus cell line and the contribution of ABC transporters on the resistance mechanism. Vet Parasitol. 2014;204:316–22.

    Article  CAS  PubMed  Google Scholar 

  376. Prichard RK. Ivermectin resistance and overview of the consortium for anthelmintic resistance SNPs. Expert Opin Drug Discov. 2007;2:S41–52.

    Article  CAS  PubMed  Google Scholar 

  377. Wang W, Wang L, Liang YS. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol Res. 2012;111:1871–7.

    Article  PubMed  Google Scholar 

  378. Coles GC, Bauer C, Borgsteede FH, Geerts S, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 1992;44:35–44.

    Article  CAS  PubMed  Google Scholar 

  379. Taylor MA, Hunt KR, Goodyear KL. Anthelmintic resistance detection methods. Vet Parasitol. 2002;103:183–94.

    Article  CAS  PubMed  Google Scholar 

  380. Coles GC, Jackson F, Pomroy WE, Prichard RK, et al. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 2006;136:167–85.

    Article  CAS  PubMed  Google Scholar 

  381. Chandra S, Prasad A, Yadav N, Latchumikanthan A, et al. Status of benzimidazole resistance in Haemonchus contortus of goats from different geographic regions of Uttar Pradesh. India Vet Parasitol. 2015;208:263–7.

    Article  CAS  PubMed  Google Scholar 

  382. Martin PJ, Anderson N, Jarrett RG. Detecting benzimidazole resistance with faecal egg count reduction tests and in vitro assays. Aust Vet J. 1989;66:236–40.

    Article  CAS  PubMed  Google Scholar 

  383. Levecke B, Speybroeck N, Dobson RJ, Vercruysse J, Charlier J. Novel insights in the fecal egg count reduction test for monitoring drug efficacy against soil-transmitted helminths in large-scale treatment programs. PLoS Negl Trop Dis. 2011;5, e1427.

    Article  PubMed  PubMed Central  Google Scholar 

  384. Barda B, Cajal P, Villagran E, Cimino R, et al. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasit Vectors. 2014;7:271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Utzinger J, Rinaldi L, Lohourignon LK, Rohner F, et al. FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Trans R Soc Trop Med Hyg. 2008;102:84–90.

    Article  PubMed  Google Scholar 

  386. Levecke B, Behnke JM, Ajjampur SS, Albonico M, et al. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl Trop Dis. 2011;5, e1201.

    Article  PubMed  PubMed Central  Google Scholar 

  387. Le Jambre LF. Relationship of blood loss to worm numbers, biomass and egg production in Haemonchus infected sheep. Int J Parasitol. 1995;25:269–73.

    Article  PubMed  Google Scholar 

  388. Kumba FF, Katjivena H, Kauta G, Lutaaya E. Seasonal evolution of faecal egg output by gastrointestinal worms in goats on communal farms in eastern Namibia. Onderstepoort J Vet Res. 2003;70:265–71.

    Article  CAS  PubMed  Google Scholar 

  389. Johansen MV. An evaluation of techniques used for the detection of anthelmintic resistance in nematode parasites of domestic livestock. Vet Res Commun. 1989;13:455–66.

    Article  CAS  PubMed  Google Scholar 

  390. Chintoan-Uta C, Morgan ER, Skuce PJ, Coles GC. Wild deer as potential vectors of anthelmintic-resistant abomasal nematodes between cattle and sheep farms. Proc Biol Sci. 2014;281:20132985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Albonico M, Wright V, Ramsan M, Haji HJ, et al. Development of the egg hatch assay for detection of anthelminthic resistance in human hookworms. Int J Parasitol. 2005;35:803–11.

    Article  CAS  PubMed  Google Scholar 

  392. De Clercq D, Sacko M, Behnke J, Gilbert F, et al. Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. Am J Trop Med Hyg. 1997;57:25–30.

    Article  PubMed  Google Scholar 

  393. Hubert J, Kerboeuf D. A microlarval development assay for the detection of anthelmintic resistance in sheep nematodes. Vet Rec. 1992;130:442–6.

    Article  CAS  PubMed  Google Scholar 

  394. Gill JH, Redwin JM, van Wyk JA, Lacey E. Avermectin inhibition of larval development in Haemonchus contortus—effects of ivermectin resistance. Int J Parasitol. 1995;25:463–70.

    Article  CAS  PubMed  Google Scholar 

  395. Dolinska M, Konigova A, Letkova V, Molnar L, Varady M. Detection of ivermectin resistance by a larval development test—back to the past or a step forward? Vet Parasitol. 2013;198:154–8.

    Article  CAS  PubMed  Google Scholar 

  396. Martin PJ, Le Jambre LF. Larval paralysis as an in vitro assay of levamisole and morantel tartrate resistance inOstertagia. Vet Sci Comm. 1979;3(1):159–64.

    Article  Google Scholar 

  397. Sutherland IA, Lee DL. A larval paralysis assay for the detection of thiabendazole resistance in trichostrongyles. Parasitology. 1990;100(Pt 1):131–5.

    Article  CAS  PubMed  Google Scholar 

  398. Bennett JL, Pax RA. Micromotility meter: an instrument designed to evaluate the action of drugs on motility of larval and adult nematodes. Parasitology. 1986;93(Pt 2):341–6.

    Article  CAS  PubMed  Google Scholar 

  399. Rothwell JT, Sangster NC. An in vitro assay utilising parasitic larval Haemonchus contortus to detect resistance to closantel and other anthelmintics. Int J Parasitol. 1993;23:573–8.

    Article  CAS  PubMed  Google Scholar 

  400. Gill JH, Redwin JM, van Wyk JA, Lacey E. Detection of resistance to ivermectin in Haemonchus contortus. Int J Parasitol. 1991;21:771–6.

    Article  CAS  PubMed  Google Scholar 

  401. Douch PG, Morum PE. The effects of anthelmintics on ovine larval nematode parasite migration in vitro. Int J Parasitol. 1994;24:321–6.

    Article  CAS  PubMed  Google Scholar 

  402. Gatongi PM, Njoroge JM, Scott ME, Ranjan S, et al. Susceptibility to IVM in a field strain of Haemonchus contortus subjected to four treatments in a closed sheep-goat flock in Kenya. Vet Parasitol. 2003;110:235–40.

    Article  CAS  PubMed  Google Scholar 

  403. Kimambo AE, MacRae JC. Measurement in vitro of a larval migration inhibitory factor in gastrointestinal mucus of sheep made resistant to the roundworm Trichostrongylus colubriformis. Vet Parasitol. 1988;28:213–22.

    Article  CAS  PubMed  Google Scholar 

  404. Rabel B, McGregor R, Douch PG. Improved bioassay for estimation of inhibitory effects of ovine gastrointestinal mucus and anthelmintics on nematode larval migration. Int J Parasitol. 1994;24:671–6.

    Article  CAS  PubMed  Google Scholar 

  405. Wagland BM, Jones WO, Hribar L, Bendixsen T, Emery DL. A new simplified assay for larval migration inhibition. Int J Parasitol. 1992;22:1183–5.

    Article  CAS  PubMed  Google Scholar 

  406. Smout MJ, Kotze AC, McCarthy JS, Loukas A. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis. 2010;4, e885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  407. Alvarez-Sanchez MA, Perez Garcia J, Bartley D, Jackson F, Rojo-Vazquez FA. The larval feeding inhibition assay for the diagnosis of nematode anthelmintic resistance. Exp Parasitol. 2005;110:56–61.

    Article  CAS  PubMed  Google Scholar 

  408. Tritten L, Braissant O, Keiser J. Comparison of novel and existing tools for studying drug sensitivity against the hookworm Ancylostoma ceylanicum in vitro. Parasitology. 2012;139:348–57.

    Article  CAS  PubMed  Google Scholar 

  409. Schaeffer JM, Stiffey JH, Mrozik H. A chemiluminescent assay for measuring avermectin binding sites. Anal Biochem. 1989;177:291–5.

    Article  CAS  PubMed  Google Scholar 

  410. Lacey E, Snowdon KL. A routine diagnostic assay for the detection of benzimidazole resistance in parasitic nematodes using tritiated benzimidazole carbamates. Vet Parasitol. 1988;27:309–24.

    Article  CAS  PubMed  Google Scholar 

  411. Hulme SE, Shevkoplyas SS, McGuigan AP, Apfeld J, et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip. 2010;10:589–97.

    Article  CAS  PubMed  Google Scholar 

  412. Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci U S A. 2007;104:13891–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Rohde C, Gilleland C, Samara C, Zeng F, Yanik MF. High-throughput in vivo genetic and drug screening using femtosecond laser nano-surgery, and microfluidics. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2642.

    PubMed  Google Scholar 

  414. Diawara A, Halpenny CM, Churcher TS, Mwandawiro C, et al. Association between response to albendazole treatment and beta-tubulin genotype frequencies in soil-transmitted helminths. PLoS Negl Trop Dis. 2013;7, e2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Diawara A, Drake LJ, Suswillo RR, Kihara J, et al. Assays to detect beta-tubulin codon 200 polymorphism in Trichuris trichiura and Ascaris lumbricoides. PLoS Negl Trop Dis. 2009;3, e397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  416. Schwenkenbecher JM, Albonico M, Bickle Q, Kaplan RM. Characterization of beta-tubulin genes in hookworms and investigation of resistance-associated mutations using real-time PCR. Mol Biochem Parasitol. 2007;156:167–74.

    Article  CAS  PubMed  Google Scholar 

  417. Phosuk I, Intapan PM, Thanchomnang T, Sanpool O, et al. Molecular detection of Ancylostoma duodenale, Ancylostoma ceylanicum, and Necator americanus in humans in northeastern and southern Thailand. Korean J Parasitol. 2013;51:747–9.

    Article  PubMed  PubMed Central  Google Scholar 

  418. Phuphisut O, Yoonuan T, Sanguankiat S, Chaisiri K, et al. Triplex polymerase chain reaction assay for detection of major soil-transmitted helminths, Ascaris lumbricoides, Trichuris trichiura, Necator americanus, in fecal samples. Southeast Asian J Trop Med Public Health. 2014;45:267–75.

    CAS  PubMed  Google Scholar 

  419. Staudacher O, Heimer J, Steiner F, Kayonga Y, et al. Soil-transmitted helminths in southern highland Rwanda: associated factors and effectiveness of school-based preventive chemotherapy. Trop Med Int Health. 2014;19:812–24.

    Article  CAS  PubMed  Google Scholar 

  420. van Mens SP, Aryeetey Y, Yazdanbakhsh M, van Lieshout L, et al. Comparison of real-time PCR and Kato smear microscopy for the detection of hookworm infections in three consecutive faecal samples from schoolchildren in Ghana. Trans R Soc Trop Med Hyg. 2013;107:269–71.

    Article  PubMed  CAS  Google Scholar 

  421. Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist. 2014;4:164–84.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Sangster NC, Prichard RK, Lacey E. Tubulin and benzimidazole-resistance in Trichostrongylus colubriformis (Nematoda). J Parasitol. 1985;71:645–51.

    Article  CAS  PubMed  Google Scholar 

  423. Lacey E, Prichard RK. Interactions of benzimidazoles (BZ) with tubulin from BZ-sensitive and BZ-resistant isolates of Haemonchus contortus. Mol Biochem Parasitol. 1986;19:171–81.

    Article  CAS  PubMed  Google Scholar 

  424. Lacey E, Snowdon KL, Eagleson GK, Smith EF. Further investigation of the primary mechanism of benzimidazole resistance in Haemonchus contortus. Int J Parasitol. 1987;17:1421–9.

    Article  CAS  PubMed  Google Scholar 

  425. WHO. Schistosomiasis: number of people treated worldwide in 2013. Wkly Epidemiol Rec. 2015;90:25–32.

    Google Scholar 

  426. Kasinathan RS, Morgan WM, Greenberg RM. Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol. 2010;173:25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Couto FF, Coelho PM, Araujo N, Kusel JR, et al. Schistosoma mansoni: a method for inducing resistance to praziquantel using infected Biomphalaria glabrata snails. Mem Inst Oswaldo Cruz. 2011;106:153–7.

    Article  CAS  PubMed  Google Scholar 

  428. Lotfy WM, Hishmat MG, El Nashar AS, Abu El Einin HM. Evaluation of a method for induction of praziquantel resistance in Schistosoma mansoni. Pharm Biol. 2015;53(8):1214–19.

    Article  CAS  PubMed  Google Scholar 

  429. Zelia OP. Laboratory animal infection in modeling intestinal schistosomiasis. Parazitologiia. 1984;18:368–73.

    CAS  PubMed  Google Scholar 

  430. Stitt LE, Tompkins JB, Dooley LA, Ardelli BF. ABC transporters influence sensitivity of Brugia malayi to moxidectin and have potential roles in drug resistance. Exp Parasitol. 2011;129:137–44.

    Article  CAS  PubMed  Google Scholar 

  431. Eberhard ML, Lammie PJ, Dickinson CM, Roberts JM. Evidence of nonsusceptibility to diethylcarbamazine in Wuchereria bancrofti. J Infect Dis. 1991;163:1157–60.

    Article  CAS  PubMed  Google Scholar 

  432. Hoti SL, Dhamodharan R, Subramaniyan K, Das PK. An allele specific PCR assay for screening for drug resistance among Wuchereria bancrofti populations in India. Indian J Med Res. 2009;130:193–9.

    CAS  PubMed  Google Scholar 

  433. Hoti SL, Subramaniyan K, Das PK. Detection of codon for amino acid 200 in isotype 1 beta-tubulin gene of Wuchereria bancrofti isolates, implicated in resistance to benzimidazoles in other nematodes. Acta Trop. 2003;88:77–81.

    Article  CAS  PubMed  Google Scholar 

  434. Pechgit P, Intarapuk A, Pinyoowong D, Bhumiratana A. Touchdown-touchup nested PCR for low-copy gene detection of benzimidazole-susceptible Wuchereria bancrofti with a Wolbachia endosymbiont imported by migrant carriers. Exp Parasitol. 2011;127:559–68.

    Article  CAS  PubMed  Google Scholar 

  435. Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet. 2007;369:2021–9.

    Article  PubMed  Google Scholar 

  436. Awadzi K, Attah SK, Addy ET, Opoku NO, et al. Thirty-month follow-up of sub-optimal responders to multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol. 2004;98:359–70.

    Article  CAS  PubMed  Google Scholar 

  437. Awadzi K, Boakye DA, Edwards G, Opoku NO, et al. An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol. 2004;98:231–49.

    Article  CAS  PubMed  Google Scholar 

  438. Roberts LS, Schmidt G, Janovy Jr J. Foundations of parasitology. 6th ed. Boston: McGraw-Hill; 2000. p. 670.

    Google Scholar 

  439. Marquez-Navarro A, Cornejo-Coria Mdel C, Cebada-Lopez F, Sanchez-Manzano RM, et al. Taenia saginata: failure treatment in a child with 5-year long-lasting infection. Gastroenterol Nurs. 2012;35:125–7.

    Article  PubMed  Google Scholar 

  440. Pretell EJ, Garcia HH, Gilman RH, Saavedra H, Martinez M. Failure of one-day praziquantel treatment in patients with multiple neurocysticercosis lesions. Clin Neurol Neurosurg. 2001;103:175–7.

    Article  CAS  PubMed  Google Scholar 

  441. Matos-Silva H, Reciputti BP, Paula EC, Oliveira AL, et al. Experimental encephalitis caused by Taenia crassiceps cysticerci in mice. Arq Neuropsiquiatr. 2012;70:287–92.

    Article  PubMed  Google Scholar 

  442. Garcia MB, Lledias JP, Perez IG, Tirado VV, et al. Primary super-infection of hydatid cyst—clinical setting and microbiology in 37 cases. Am J Trop Med Hyg. 2010;82:376–8.

    Article  PubMed  PubMed Central  Google Scholar 

  443. Kocer NE, Kibar Y, Guldur ME, Deniz H, Bakir K. A retrospective study on the coexistence of hydatid cyst and aspergillosis. Int J Infect Dis. 2008;12:248–51.

    Article  PubMed  Google Scholar 

  444. Nazligul Y, Kucukazman M, Akbulut S. Role of chemotherapeutic agents in the management of cystic echinococcosis. Int Surg. 2015;100:112–14.

    Article  PubMed  PubMed Central  Google Scholar 

  445. Pan D, Das S, Bera AK, Bandyopadhyay S, et al. Molecular and biochemical mining of heat-shock and 14-3-3 proteins in drug-induced protoscolices of Echinococcus granulosus and the detection of a candidate gene for anthelmintic resistance. J Helminthol. 2011;85:196–203.

    Article  CAS  PubMed  Google Scholar 

  446. Kotze AC, Lowe A, O’Grady J, Kopp SR, Behnke JM. Dose-response assay templates for in vitro assessment of resistance to benzimidazole and nicotinic acetylcholine receptor agonist drugs in human hookworms. Am J Trop Med Hyg. 2009;81:163–70.

    CAS  PubMed  Google Scholar 

  447. Kopp SR, Coleman GT, McCarthy JS, Kotze AC. Phenotypic characterization of two Ancylostoma caninum isolates with different susceptibilities to the anthelmintic pyrantel. Antimicrob Agents Chemother. 2008;52:3980–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Kotze AC, Stein PA, Dobson RJ. Investigation of intestinal nematode responses to naphthalophos and pyrantel using a larval development assay. Int J Parasitol. 1999;29:1093–9.

    Article  CAS  PubMed  Google Scholar 

  449. Puthiyakunnon S, Boddu S, Li Y, Zhou X, et al. Strongyloidiasis—an insight into its global prevalence and management. PLoS Negl Trop Dis. 2014;8, e3018.

    Article  PubMed  PubMed Central  Google Scholar 

  450. Ashraf M, Gue CL, Baddour LM. Case report: strongyloidiasis refractory to treatment with ivermectin. Am J Med Sci. 1996;311:178–9.

    CAS  PubMed  Google Scholar 

  451. Shikiya K, Kinjo N, Uehara T, Uechi H, et al. Efficacy of ivermectin against Strongyloides stercoralis in humans. Intern Med. 1992;31:310–12.

    Article  CAS  PubMed  Google Scholar 

  452. Bisoffi Z, Buonfrate D, Angheben A, Boscolo M, et al. Randomized clinical trial on ivermectin versus thiabendazole for the treatment of strongyloidiasis. PLoS Negl Trop Dis. 2011;5, e1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Suputtamongkol Y, Premasathian N, Bhumimuang K, Waywa D, et al. Efficacy and safety of single and double doses of ivermectin versus 7-day high dose albendazole for chronic strongyloidiasis. PLoS Negl Trop Dis. 2011;5, e1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Kotze AC, Clifford S, O’Grady J, Behnke JM, McCarthy JS. An in vitro larval motility assay to determine anthelmintic sensitivity for human hookworm and Strongyloides species. Am J Trop Med Hyg. 2004;71:608–16.

    CAS  PubMed  Google Scholar 

  455. Intapan PM, Prasongdee TK, Laummaunwai P, Sawanyawisuth K, et al. A modified filter paper culture technique for screening of Strongyloides stercoralis ivermectin sensitivity in clinical specimens. Am J Trop Med Hyg. 2006;75:563–4.

    CAS  PubMed  Google Scholar 

  456. Schneider B, Jariwala AR, Periago MV, Gazzinelli MF, et al. A history of hookworm vaccine development. Hum Vaccin. 2011;7:1234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Hawdon JM. Controlling soil-transmitted helminths: time to think inside the box? J Parasitol. 2014;100:166–88.

    Article  CAS  PubMed  Google Scholar 

  458. Keiser J, Utzinger J. Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA. 2008;299:1937–48.

    Article  CAS  PubMed  Google Scholar 

  459. Silbereisen A, Tritten L, Keiser J. Exploration of novel in vitro assays to study drugs against Trichuris spp. J Microbiol Methods. 2011;87:169–75.

    Article  CAS  PubMed  Google Scholar 

  460. Wimmersberger D, Tritten L, Keiser J. Development of an in vitro drug sensitivity assay for Trichuris muris first-stage larvae. Parasit Vectors. 2013;6:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Diawara A, Schwenkenbecher JM, Kaplan RM, Prichard RK. Molecular and biological diagnostic tests for monitoring benzimidazole resistance in human soil-transmitted helminths. Am J Trop Med Hyg. 2013;88:1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Patrick DM, Isaac-Renton J. Praziquantel failure in the treatment of Fasciola hepatica. Can J Infect Dis. 1992;3:33–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Schubert S, Phetsouvanh R. Praziquantel is mostly ineffective: treatment of fasciola hepatica infection (large liver fluke). Z Arztl Fortbild (Jena). 1990;84:705–7.

    CAS  Google Scholar 

  464. Valero MA, Periago MV, Perez-Crespo I, Angles R, et al. Field evaluation of a coproantigen detection test for fascioliasis diagnosis and surveillance in human hyperendemic areas of Andean countries. PLoS Negl Trop Dis. 2012;6, e1812.

    Article  PubMed  PubMed Central  Google Scholar 

  465. Zumaquero-Rios JL, Sarracent-Perez J, Rojas-Garcia R, Rojas-Rivero L, et al. Fascioliasis and intestinal parasitoses affecting schoolchildren in Atlixco, Puebla State, Mexico: epidemiology and treatment with nitazoxanide. PLoS Negl Trop Dis. 2013;7, e2553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  466. Dalchow W, Horchner F. Experimental infection with Fasciola hepatica in various animal species. Berl Munch Tierarztl Wochenschr. 1972;85:271–4.

    CAS  PubMed  Google Scholar 

  467. Urdea M, Penny LA, Olmsted SS, Giovanni MY, et al. Requirements for high impact diagnostics in the developing world. Nature. 2006;444 Suppl 1:73–9.

    Article  PubMed  Google Scholar 

  468. Mabey D, Peeling RW, Ustianowski A, Perkins MD. Diagnostics for the developing world. Nat Rev Microbiol. 2004;2:231–40.

    Article  CAS  PubMed  Google Scholar 

  469. Thekisoe OM, Inoue N, Kuboki N, Tuntasuvan D, et al. Evaluation of loop-mediated isothermal amplification (LAMP), PCR and parasitological tests for detection of Trypanosoma evansi in experimentally infected pigs. Vet Parasitol. 2005;130:327–30.

    Article  CAS  PubMed  Google Scholar 

  470. Kuboki N, Inoue N, Sakurai T, Di Cello F, et al. Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol. 2003;41:5517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Poole CB, Tanner NA, Zhang Y, Evans Jr TC, Carlow CK. Diagnosis of brugian filariasis by loop-mediated isothermal amplification. PLoS Negl Trop Dis. 2012;6, e1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Polley SD, Gonzalez IJ, Mohamed D, Daly R, et al. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. J Infect Dis. 2013;208:637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Poon LL, Wong BW, Ma EH, Chan KH, et al. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006;52:303–6.

    Article  CAS  PubMed  Google Scholar 

  474. Buates S, Bantuchai S, Sattabongkot J, Han ET, et al. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for clinical detection of Plasmodium falciparum gametocytes. Parasitol Int. 2010;59:414–20.

    Article  CAS  PubMed  Google Scholar 

  475. Dinzouna-Boutamba SD, Yang HW, Joo SY, Jeong S, et al. The development of loop-mediated isothermal amplification targeting alpha-tubulin DNA for the rapid detection of Plasmodium vivax. Malar J. 2014;13:248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  476. Hsiang MS, Greenhouse B, Rosenthal PJ. Point of care testing for malaria using LAMP, loop mediated isothermal amplification. J Infect Dis. 2014;210:1167–9.

    Article  PubMed  Google Scholar 

  477. Takagi H, Itoh M, Kasai S, Yahathugoda TC, et al. Development of loop-mediated isothermal amplification method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes. Parasitol Int. 2011;60:493–7.

    Article  CAS  PubMed  Google Scholar 

  478. Chaouch M, Mhadhbi M, Adams ER, Schoone GJ, et al. Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Leishmania infantum in canine leishmaniasis based on cysteine protease B genes. Vet Parasitol. 2013;198:78–84.

    Article  CAS  PubMed  Google Scholar 

  479. Takagi H, Itoh M, Islam MZ, Razzaque A, et al. Sensitive, specific, and rapid detection of Leishmania donovani DNA by loop-mediated isothermal amplification. Am J Trop Med Hyg. 2009;81:578–82.

    Article  CAS  PubMed  Google Scholar 

  480. Verma S, Avishek K, Sharma V, Negi NS, et al. Application of loop-mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Diagn Microbiol Infect Dis. 2013;75:390–5.

    Article  CAS  PubMed  Google Scholar 

  481. Adams ER, Schoone GJ, Ageed AF, Safi SE, Schallig HD. Development of a reverse transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Leishmania parasites in clinical samples. Am J Trop Med Hyg. 2010;82:591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Khan MG, Bhaskar KR, Salam MA, Akther T, et al. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for detection of Leishmania DNA in buffy coat from visceral leishmaniasis patients. Parasit Vectors. 2012;5:280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  483. Abdul-Ghani R. Towards rapid genotyping of resistant malaria parasites: could loop-mediated isothermal amplification be the solution? Malar J. 2014;13:237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  484. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl. 2007;46:1318–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  485. Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81:7091–5.

    Article  CAS  PubMed  Google Scholar 

  486. Costa MN, Veigas B, Jacob JM, Santos DS, et al. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology. 2014;25:094006.

    Article  CAS  PubMed  Google Scholar 

  487. WHO. The World Health Organization, World health report. Geneva: WHO; 2010.

    Google Scholar 

  488. Mejia R, Vicuna Y, Broncano N, Sandoval C, et al. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am J Trop Med Hyg. 2013;88:1041–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Bavarva JH, Bavarva MJ, Karunasena E. Next in line in next-generation sequencing: are we there yet? Pharmacogenomics. 2015;16:1–4.

    Article  CAS  PubMed  Google Scholar 

  490. Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem. 2015;61:124–35.

    Article  CAS  PubMed  Google Scholar 

  491. Barzon L, Lavezzo E, Costanzi G, Franchin E, et al. Next-generation sequencing technologies in diagnostic virology. J Clin Virol. 2013;58:346–50.

    Article  CAS  PubMed  Google Scholar 

  492. Capobianchi MR, Giombini E, Rozera G. Next-generation sequencing technology in clinical virology. Clin Microbiol Infect. 2013;19:15–22.

    Article  CAS  PubMed  Google Scholar 

  493. Wain J, Mavrogiorgou E. Next-generation sequencing in clinical microbiology. Expert Rev Mol Diagn. 2013;13:225–7.

    Article  CAS  PubMed  Google Scholar 

  494. Neafsey DE. Genome sequencing sheds light on emerging drug resistance in malaria parasites. Nat Genet. 2013;45:589–90.

    Article  CAS  PubMed  Google Scholar 

  495. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363–5.

    Article  CAS  PubMed  Google Scholar 

  496. Wasson J, Skolnick G, Love-Gregory L, Permutt MA. Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology. Biotechniques. 2002;32:1144–6, 1148, 1150 passim.

    CAS  PubMed  Google Scholar 

  497. Cheesman S, Creasey A, Degnan K, Kooij T, et al. Validation of Pyrosequencing for accurate and high throughput estimation of allele frequencies in malaria parasites. Mol Biochem Parasitol. 2007;152:213–19.

    Article  CAS  PubMed  Google Scholar 

  498. Edvinsson B, Darde ML, Pelloux H, Evengard B. Rapid genotyping of Toxoplasma gondii by pyrosequencing. Clin Microbiol Infect. 2007;13:424–9.

    Article  CAS  PubMed  Google Scholar 

  499. Geiger C, Compaore G, Coulibaly B, Sie A, et al. Substantial increase in mutations in the genes pfdhfr and pfdhps puts sulphadoxine-pyrimethamine-based intermittent preventive treatment for malaria at risk in Burkina Faso. Trop Med Int Health. 2014;19:690–7.

    Article  CAS  PubMed  Google Scholar 

  500. Stensvold CR, Traub RJ, von Samson-Himmelstjerna G, Jespersgaard C, et al. Blastocystis: subtyping isolates using pyrosequencing technology. Exp Parasitol. 2007;116:111–19.

    Article  CAS  PubMed  Google Scholar 

  501. Zhang H, Ehrenkaufer GM, Hall N, Singh U. Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics. 2013;14:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  502. Cantacessi C, Giacomin P, Croese J, Zakrzewski M, et al. Impact of experimental hookworm infection on the human gut microbiota. J Infect Dis. 2014;210:1431–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  503. Demeler J, Kruger N, Krucken J, von der Heyden VC, et al. Phylogenetic characterization of beta-tubulins and development of pyrosequencing assays for benzimidazole resistance in cattle nematodes. PLoS One. 2013;8, e70212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. von Samson-Himmelstjerna G, Walsh TK, Donnan AA, Carriere S, et al. Molecular detection of benzimidazole resistance in Haemonchus contortus using real-time PCR and pyrosequencing. Parasitology. 2009;136:349–58.

    Article  CAS  Google Scholar 

  505. McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, et al. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay. Am J Trop Med Hyg. 2006;74:413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  506. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, et al. High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am J Trop Med Hyg. 2011;84:332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  507. Beckmann C, Heininger U, Marti H, Hirsch HH. Gastrointestinal pathogens detected by multiplex nucleic acid amplification testing in stools of pediatric patients and patients returning from the tropics. Infection. 2014;42:961–70.

    Article  CAS  PubMed  Google Scholar 

  508. Wessels E, Rusman LG, van Bussel MJ, Claas EC. Added value of multiplex Luminex Gastrointestinal Pathogen Panel (xTAG(R) GPP) testing in the diagnosis of infectious gastroenteritis. Clin Microbiol Infect. 2014;20:O182–7.

    Article  CAS  PubMed  Google Scholar 

  509. Mikhailovich V, Gryadunov D, Kolchinsky A, Makarov AA, Zasedatelev A. DNA microarrays in the clinic: infectious diseases. Bioessays. 2008;30:673–82.

    Article  CAS  PubMed  Google Scholar 

  510. Zhang G, Cai F, Zhou Z, DeVos J, et al. Simultaneous detection of major drug resistance mutations in the protease and reverse transcriptase genes for HIV-1 subtype C by use of a multiplex allele-specific assay. J Clin Microbiol. 2013;51:3666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  511. Masimba P, Gare J, Klimkait T, Tanner M, Felger I. Development of a simple microarray for genotyping HIV-1 drug resistance mutations in the reverse transcriptase gene in rural Tanzania. Trop Med Int Health. 2014;19:664–71.

    Article  CAS  PubMed  Google Scholar 

  512. Linger Y, Kukhtin A, Golova J, Perov A, et al. Simplified microarray system for simultaneously detecting rifampin, isoniazid, ethambutol, and streptomycin resistance markers in Mycobacterium tuberculosis. J Clin Microbiol. 2014;52:2100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Moure R, Espanol M, Tudo G, Vicente E, et al. Characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array. J Antimicrob Chemother. 2014;69:947–54.

    Article  CAS  PubMed  Google Scholar 

  514. Guimond C, Trudel N, Brochu C, Marquis N, et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res. 2003;31:5886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Leprohon P, Legare D, Girard I, Papadopoulou B, Ouellette M. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. Eukaryot Cell. 2006;5:1713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. do Monte-Neto RL, Coelho AC, Raymond F, Legare D, et al. Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis. 2011;5, e1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Ornatsky O, Bandura D, Baranov V, Nitz M, et al. Highly multiparametric analysis by mass cytometry. J Immunol Methods. 2010;361:1–20.

    Article  CAS  PubMed  Google Scholar 

  518. Krutzik PO, Clutter MR, Trejo A, Nolan GP. Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom. 2011; Chapter 6, Unit 6 31.

    Google Scholar 

  519. Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods. 2006;3:361–8.

    Article  CAS  PubMed  Google Scholar 

  520. Bodenmiller B, Zunder ER, Finck R, Chen TJ, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012;30:858–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.

    Article  CAS  PubMed  Google Scholar 

  522. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.

    Article  CAS  PubMed  Google Scholar 

  523. Nahid P, Bliven-Sizemore E, Jarlsberg LG, De Groote MA, et al. Aptamer-based proteomic signature of intensive phase treatment response in pulmonary tuberculosis. Tuberculosis (Edinb). 2014;94:187–96.

    Article  CAS  Google Scholar 

  524. Gold L, Ayers D, Bertino J, Bock C, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5, e15004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Li N, Wang Y, Pothukuchy A, Syrett A, et al. Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res. 2008;36:6739–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  526. Turek D, Van Simaeys D, Johnson J, Ocsoy I, Tan W. Molecular recognition of live cells using DNA aptamers. World J Transl Med. 2013;2:67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  527. Bruno JG, Richarte AM, Phillips T, Savage AA, et al. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid leishmania detection in sandflies. J Fluoresc. 2014;24:267–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ouellette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Légaré, D., Ouellette, M. (2017). Drug Resistance Assays for Parasitic Diseases. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_36

Download citation

Publish with us

Policies and ethics