Skip to main content

Abstract

For drug administration in anesthesia practice, the goal is to achieve a desired and stable clinical effect, which requires accurate control of blood and brain drug concentrations. For intravenous drugs, commercial medical devices are unavailable to measure the drug concentrations. Instead, pharmacokinetic and pharmacodynamic models are used to estimate plasma and effect-site concentrations of intravenous drugs. In the case that two or more models are available, one model has to be selected. The model applicability should be considered with their internal and external validity. For the evaluation of the pharmacokinetic model performance, metrics derived from percentage performance error are used such as “median performance error” indicating the bias, “median absolute performance error” indicating the inaccuracy, “divergence” showing the shift of performance error or absolute performance error against time, and “wobble” showing the intraindividual variability of the prediction error. Visual inspection of the goodness of fit plots is also applied for the model evaluation. In the prediction of drug concentration in a patient, the background of the model and applied patient such as patient characteristics influences the predictive performance of the model. For the model application for a patient, a model will be selected from available models in the commercial devices or from all published models by the recommendation of someone or the user of the model. For the model selection, variable information such as the results of the model evaluation, the background of the model, the background of the patient and dosing plan, and the data set are used for the external validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takita A, Masui K, Kazama T. On-line monitoring of end-tidal propofol concentration in anesthetized patients. Anesthesiology. 2007;106(4):659–64. doi:10.1097/01.anes.0000264745.63275.59. 00000542-200704000-00006 [pii].

    Article  CAS  PubMed  Google Scholar 

  2. Liu B, Pettigrew DM, Bates S, Laitenberger PG, Troughton G. Performance evaluation of a whole blood propofol analyser. J Clin Monit Comput. 2012;26(1):29–36. doi:10.1007/s10877-011-9330-0.

    Article  CAS  PubMed  Google Scholar 

  3. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sigl JC, Chamoun NG. An introduction to bispectral analysis for the electroencephalogram. J Clin Monit. 1994;10(6):392–404.

    Article  CAS  PubMed  Google Scholar 

  5. Flaishon R, Windsor A, Sigl J, Sebel PS. Recovery of consciousness after thiopental or propofol. Bispectral index and isolated forearm technique. Anesthesiology. 1997;86(3):613–9.

    Article  CAS  PubMed  Google Scholar 

  6. Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res. 1999;16(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  7. Williams PJ, Kim YH, Ette EI. The epistemology of pharmacometrics. In: Ette EI, Williams PJ, editors. Pharmacometrics: the science of quantitative pharmacology. Hoboken: Wiley; 2007. p. 223–44.

    Chapter  Google Scholar 

  8. Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE. A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth. 1994;72(3):302–6.

    Article  CAS  PubMed  Google Scholar 

  9. Sepulveda P, Cortinez LI, Saez C, Penna A, Solari S, Guerra I, Absalom AR. Performance evaluation of paediatric propofol pharmacokinetic models in healthy young children. Br J Anaesth. 2011;107(4):593–600. doi:10.1093/bja/aer198.

    Article  CAS  PubMed  Google Scholar 

  10. Williams PJ, Kim YH. Resampling techniques and their application to pharmacometrics. In: Ette EI, Williams PJ, editors. Pharmacometrics: the science of quantitative pharmacology. Hoboken: Wiley; 2007. p. 401–19.

    Chapter  Google Scholar 

  11. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51. doi:10.1208/s12248-011-9255-z.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28(2):171–92.

    Article  CAS  PubMed  Google Scholar 

  13. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20(1):63–94.

    Article  CAS  PubMed  Google Scholar 

  14. Alvis JM, Reves JG, Govier AV, Menkhaus PG, Henling CE, Spain JA, Bradley E. Computer-assisted continuous infusions of fentanyl during cardiac anesthesia: comparison with a manual method. Anesthesiology. 1985;63(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ausems ME, Stanski DR, Hug CC. An evaluation of the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil. Br J Anaesth. 1985;57(12):1217–25.

    Article  CAS  PubMed  Google Scholar 

  16. Schwilden H. A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol. 1981;20(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  17. Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia. 1998;53 Suppl 1:13–21.

    Article  CAS  PubMed  Google Scholar 

  18. Owen JS, Fiedler-Kelly J. Population model concepts and terminology. In: Introduction to population pharmacokinetic/pharmacokinetic analysis with nonlinear mixed effects models. Hoboken: Wiley; 2014. p. 9–27.

    Google Scholar 

  19. Glen JB, Servin F. Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth. 2009;102(5):626–32. doi:10.1093/bja/aep043.

    Article  CAS  PubMed  Google Scholar 

  20. Glass PS, Shafer S, Reves JG. Intravenous drug delivery systems. In: Miller RD, editor. Miller’s anesthesia. 6th ed. Philadelphia: Elsevier (Churchill Livinstone); 2004, p. 439–80.

    Google Scholar 

  21. Schuttler J, Kloos S, Schwilden H, Stoeckel H. Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia. 1988;43(Suppl):2–7.

    Article  PubMed  Google Scholar 

  22. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, Struys MM. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111(2):368–79. doi:10.1213/ANE.0b013e3181bdcf5b.

    Article  CAS  PubMed  Google Scholar 

  23. Coppens M, Van Limmen JG, Schnider T, Wyler B, Bonte S, Dewaele F, Struys MM, Vereecke HE. Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: performance of three pharmacokinetic-dynamic models. Br J Anaesth. 2010;104(4):452–8. doi:10.1093/bja/aeq028.

    Article  CAS  PubMed  Google Scholar 

  24. Struys MMRF, Absalom AR, Shafer SL. Intravenous drug delivery system. In: Miller RD, editor. Miller’s anesthesia, vol. 1. Philadelphia: Elsevier Saunders; 2015. p. 919–57.

    Google Scholar 

  25. Kurita T, Kazama T, Morita K, Fujii S, Uraoka M, Takata K, Sato S. Influence of fluid infusion associated with high-volume blood loss on plasma propofol concentrations. Anesthesiology. 2004;100(4):871–8. discussion 875A-876A.

    Article  CAS  PubMed  Google Scholar 

  26. Kurita T, Morita K, Kazama T, Sato S. Influence of cardiac output on plasma propofol concentrations during constant infusion in swine. Anesthesiology. 2002;96(6):1498–503.

    Article  CAS  PubMed  Google Scholar 

  27. Kurita T, Uraoka M, Jiang Q, Suzuki M, Morishima Y, Morita K, Sato S. Influence of cardiac output on the pseudo-steady state remifentanil and propofol concentrations in swine. Acta Anaesthesiol Scand. 2013;57(6):754–60. doi:10.1111/aas.12076.

    Article  CAS  PubMed  Google Scholar 

  28. Coetzee JF, Glen JB, Wium CA, Boshoff L. Pharmacokinetic model selection for target controlled infusions of propofol. Assessment of three parameter sets. Anesthesiology. 1995;82(6):1328–45.

    Article  CAS  PubMed  Google Scholar 

  29. Coppens MJ, Eleveld DJ, Proost JH, Marks LA, Van Bocxlaer JF, Vereecke H, Absalom AR, Struys MM. An evaluation of using population pharmacokinetic models to estimate pharmacodynamic parameters for propofol and bispectral index in children. Anesthesiology. 2011;115(1):83–93. doi:10.1097/ALN.0b013e31821a8d80.

    Article  CAS  PubMed  Google Scholar 

  30. Masui K, Kira M, Kazama T, Hagihira S, Mortier EP, Struys MM. Early phase pharmacokinetics but not pharmacodynamics are influenced by propofol infusion rate. Anesthesiology. 2009;111(4):805–17. doi:10.1097/ALN.0b013e3181b799c1.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman JH. A variable span scatterplot smoother. Laboratory for Computational Statistics, Stanford University Technical Report No. 5; 1984.

    Google Scholar 

  32. Greenblatt DJ, Sellers EM, Shader RI. Drug therapy: drug disposition in old age. N Engl J Med. 1982;306(18):1081–8. doi:10.1056/NEJM198205063061804.

    Article  CAS  PubMed  Google Scholar 

  33. Vuyk J. Pharmacodynamics in the elderly. Best Pract Res Clin Anaesthesiol. 2003;17(2):207–18.

    Article  CAS  PubMed  Google Scholar 

  34. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. doi:10.1056/NEJMra035092.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson K. Sex-related differences in drug disposition in man. Clin Pharmacokinet. 1984;9(3):189–202. doi:10.2165/00003088-198409030-00001.

    Article  CAS  PubMed  Google Scholar 

  36. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;2011:187103. doi:10.1155/2011/187103.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86(1):10–23.

    Article  CAS  PubMed  Google Scholar 

  38. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004;58(2):119–33. doi:10.1111/j.1365-2125.2004.02157.x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coetzee JF. Dose scaling for the morbidly obese. South Afr J Anaesth Analg. 2011;20(1):67–72.

    Google Scholar 

  40. Cortinez LI, De la Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepulveda P, Ibacache M, Solari S. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119(2):302–10. doi:10.1213/ANE.0000000000000317.

    Article  CAS  PubMed  Google Scholar 

  41. Struys MM, De Smet T, Mortier EP. Simulated drug administration: an emerging tool for teaching clinical pharmacology during anesthesiology training. Clin Pharmacol Ther. 2008;84(1):170–4. doi:10.1038/clpt.2008.76.

    Article  CAS  PubMed  Google Scholar 

  42. Ducharme J, Varin F, Bevan DR, Donati F. Importance of early blood sampling on vecuronium pharmacokinetic and pharmacodynamic parameters. Clin Pharmacokinet. 1993;24(6):507–18. doi:10.2165/00003088-199324060-00006.

    Article  CAS  PubMed  Google Scholar 

  43. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88(5):1170–82.

    Article  CAS  PubMed  Google Scholar 

  44. Murat I, Billard V, Vernois J, Zaouter M, Marsol P, Souron R, Farinotti R. Pharmacokinetics of propofol after a single dose in children aged 1-3 years with minor burns. Comparison of three data analysis approaches. Anesthesiology. 1996;84(3):526–32.

    Article  CAS  PubMed  Google Scholar 

  45. Saint-Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth. 1989;63(6):667–70.

    Article  CAS  PubMed  Google Scholar 

  46. Tuk B, Herben VM, Mandema JW, Danhof M. Relevance of arteriovenous concentration differences in pharmacokinetic-pharmacodynamic modeling of midazolam. J Pharmacol Exp Ther. 1998;284(1):202–7.

    CAS  PubMed  Google Scholar 

  47. Stanski DR, Hudson RJ, Homer TD, Saidman LJ, Meathe E. Pharmacodynamic modeling of thiopental anesthesia. J Pharmacokinet Biopharm. 1984;12(2):223–40.

    Article  CAS  PubMed  Google Scholar 

  48. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66(12):1256–63.

    Article  CAS  PubMed  Google Scholar 

  49. Miyabe-Nishiwaki T, Masui K, Kaneko A, Nishiwaki K, Nishio T, Kanazawa H. Evaluation of the predictive performance of a pharmacokinetic model for propofol in Japanese macaques (Macaca fuscata fuscata). J Veterinary Pharmacol Ther. 2013;36(2):169–73. doi:10.1111/j.1365-2885.2012.01404.x.

    Article  CAS  Google Scholar 

  50. Upton RN. The two-compartment recirculatory pharmacokinetic model--an introduction to recirculatory pharmacokinetic concepts. Br J Anaesth. 2004;92(4):475–84.

    Article  CAS  PubMed  Google Scholar 

  51. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, Mandema JW, Shafer SL. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80(1):104–22.

    Article  CAS  PubMed  Google Scholar 

  52. Fisher DM. Propofol in pediatrics. Lessons in pharmacokinetic modeling. Anesthesiology. 1994;80(1):2–5.

    Article  CAS  PubMed  Google Scholar 

  53. Ette EI, Williams PJ, Ahmad A. Population pharmacokinetic estimation methods. In: Ette EI, Williams PJ, editors. Pharmacometrics: the science of quantitative pharmacology. Hoboken: Wiley; 2007. p. 265–85.

    Chapter  Google Scholar 

  54. Eleveld DJ, Proost JH, Cortinez LI, Absalom AR, Struys MM. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221–37. doi:10.1213/ANE.0000000000000165.

    Article  CAS  PubMed  Google Scholar 

  55. Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003;99(2):324–33.

    Article  PubMed  Google Scholar 

  56. Thomson AJ, Nimmo AF, Engbers FH, Glen JB. A novel technique to determine an ‘apparent ke0’ value for use with the Marsh pharmacokinetic model for propofol. Anaesthesia. 2014;69(5):420–8. doi:10.1111/anae.12596.

    Article  CAS  PubMed  Google Scholar 

  57. Absalom AR, Mani V, De Smet T, Struys MM. Pharmacokinetic models for propofol--defining and illuminating the devil in the detail. Br J Anaesth. 2009;103(1):26–37. doi:10.1093/bja/aep143.

    Article  CAS  PubMed  Google Scholar 

  58. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92(3):727–38.

    Article  CAS  PubMed  Google Scholar 

  59. Upton RN, Ludbrook G. A physiologically based, recirculatory model of the kinetics and dynamics of propofol in man. Anesthesiology. 2005;103(2):344–52.

    Article  CAS  PubMed  Google Scholar 

  60. Tackley RM, Lewis GT, Prys-Roberts C, Boaden RW, Dixon J, Harvey JT. Computer controlled infusion of propofol. Br J Anaesth. 1989;62(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  61. Avram MJ, Sanghvi R, Henthorn TK, Krejcie TC, Shanks CA, Fragen RJ, Howard KA, Kaczynski DA. Determinants of thiopental induction dose requirements [see comments]. Anesth Analg. 1993;76(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  62. Avram MJ, Krejcie TC, Niemann CU, Klein C, Gentry WB, Shanks CA, Henthorn TK. The effect of halothane on the recirculatory pharmacokinetics of physiologic markers [see comments]. Anesthesiology. 1997;87(6):1381–93.

    Article  CAS  PubMed  Google Scholar 

  63. Absalom A, Kenny G. ‘Paedfusor’ pharmacokinetic data set. Br J Anaesth. 2005;95(1):110. doi:10.1093/bja/aei567.

    Article  CAS  PubMed  Google Scholar 

  64. Seo JH, Goo EK, Song IA, Park SH, Park HP, Jeon YT, Hwang JW. Influence of a modified propofol equilibration rate constant (k(e0)) on the effect-site concentration at loss and recovery of consciousness with the Marsh model. Anaesthesia. 2013;68(12):1232–8. doi:10.1111/anae.12419.

    Article  CAS  PubMed  Google Scholar 

  65. Cortinez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NH, Struys MM, Sepulveda P. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105(4):448–56. doi:10.1093/bja/aeq195.

    Article  CAS  PubMed  Google Scholar 

  66. van Kralingen S, Diepstraten J, Peeters MY, Deneer VH, van Ramshorst B, Wiezer RJ, van Dongen EP, Danhof M, Knibbe CA. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin Pharmacokinet. 2011;50(11):739–50. doi:10.2165/11592890-000000000-00000.

    Article  PubMed  Google Scholar 

  67. Research DMGoO, Waterlow JC, James WPT, Security GBDoHaS, Council MR. Research on obesity: a report of the DHSS/MRC group. London; 1976.

    Google Scholar 

  68. La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, Gigli F. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49(2):131–9. doi:10.2165/11317690-000000000-00000.

    Article  PubMed  Google Scholar 

  69. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65. doi:10.2165/00003088-200544100-00004.

    Article  PubMed  Google Scholar 

  70. La Colla L, Albertin A, La Colla G. Pharmacokinetic model-driven remifentanil administration in the morbidly obese: the ‘critical weight’ and the ‘fictitious height’, a possible solution to an unsolved problem? Clin Pharmacokinet. 2009;48(6):397–8. doi:10.2165/00003088-200948060-00005.

    Article  PubMed  Google Scholar 

  71. Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm. 1992;20(2):147–69.

    Article  CAS  PubMed  Google Scholar 

  72. Struys MM, Coppens MJ, De Neve N, Mortier EP, Doufas AG, Van Bocxlaer JF, Shafer SL. Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology. 2007;107(3):386–96.

    Article  CAS  PubMed  Google Scholar 

  73. Engbers F. Basic pharmacokinetic principles for intravenous anaesthesia. In: Vuyk J, Schraag S, editors. Advances in modelling and clinical application of intravenous anaesthesia. New York: Springer; 2003.

    Google Scholar 

  74. Masui K. http://www.masuinet.com.

  75. Lim TA. A novel method of deriving the effect compartment equilibrium rate constant for propofol. Br J Anaesth. 2003;91(5):730–2.

    Article  CAS  PubMed  Google Scholar 

  76. Schnider T, Minto C. Pharmacokinetic models of propofol for TCI. Anaesthesia. 2008;63(2):206. doi:10.1111/j.1365-2044.2007.05419_1.x. author reply 206–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Masui MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masui, K. (2017). How to Select a PK/PD Model. In: Absalom, A., Mason, K. (eds) Total Intravenous Anesthesia and Target Controlled Infusions. Springer, Cham. https://doi.org/10.1007/978-3-319-47609-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47609-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47607-0

  • Online ISBN: 978-3-319-47609-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics