Skip to main content

Metabolomic Strategies Involving Mass Spectrometry Combined with Liquid and Gas Chromatography

  • Chapter
  • First Online:
Metabolomics: From Fundamentals to Clinical Applications

Abstract

Amongst all omics sciences, there is no doubt that metabolomics is undergoing the most important growth in the last decade. The advances in analytical techniques and data analysis tools are the main factors that make possible the development and establishment of metabolomics as a significant research field in systems biology. As metabolomic analysis demands high sensitivity for detecting metabolites present in low concentrations in biological samples, high-resolution power for identifying the metabolites and wide dynamic range to detect metabolites with variable concentrations in complex matrices, mass spectrometry is being the most extensively used analytical technique for fulfilling these requirements. Mass spectrometry alone can be used in a metabolomic analysis; however, some issues such as ion suppression may difficultate the quantification/identification of metabolites with lower concentrations or some metabolite classes that do not ionise as well as others. The best choice is coupling separation techniques, such as gas or liquid chromatography, to mass spectrometry, in order to improve the sensitivity and resolution power of the analysis, besides obtaining extra information (retention time) that facilitates the identification of the metabolites, especially when considering untargeted metabolomic strategies. In this chapter, the main aspects of mass spectrometry (MS), liquid chromatography (LC) and gas chromatography (GC) are discussed, and recent clinical applications of LC-MS and GC-MS are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMDIS:

Automated Mass Spectra Deconvolution and Identification System

APCI:

Atmospheric pressure chemical ionisation

APPI:

Atmospheric pressure photoionisation

BSTFA:

N,O-bis-(trimethylsilyl)-trifluoroacetamide

CE:

Capillary electrophoresis

CI:

Chemical ionisation

DB-5MS:

Equivalent to a (5 %-phenyl)-methylpolysiloxane

DC:

Direct current

DIMS:

Direct infusion mass spectrometry

EI:

Electron ionisation

ERHILIC:

Electrostatic repulsion hydrophilic interaction chromatography

ESI:

Electrospray ionisation

FTICR:

Fourier transform ion cyclotron resonance

FTMS:

Fourier transform mass spectrometry

FWHM:

Full-width half-maximum

GC:

Gas chromatography

GC-MS:

Gas chromatography mass spectrometry

GCxGC:

Comprehensive two-dimensional gas chromatography

HILIC:

Hydrophilic interaction liquid chromatography

IT:

Ion trap

LC:

Liquid chromatography

LSER:

Linear solvation energy relationship

MS:

Mass spectrometry

MSTFA:

N-methyl-N-(trimethylsilyl)-trifluoroacetamide

MTBSTFA:

N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide

NIST:

National Institute of Standards and Technology

NPLC:

Normal-phase liquid chromatography

OT:

Orbitrap

Q:

Quadrupole

QIT:

Quadrupole ion trap

QqQ:

Triple quadrupole

QTOF:

Quadrupole time of flight

RF:

Radio frequency

RPLC:

Reverse-phase liquid chromatography

RTL:

Runtime library

SIM:

Single-ion monitoring

SRM:

Selected reaction monitoring

THF:

Tetrahydrofuran

TOF:

Time of flight

UPLC:

Ultra-performance liquid chromatography

References

  1. Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B: Analyt Technol Biomed Life Sci. 2012;883–884:68–75.

    Article  CAS  Google Scholar 

  2. Murray KK, Boyd RK, Eberlin MN, Langley GJ, Li L, Naito Y. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl Chem. 2013;85:1515–609.

    Article  CAS  Google Scholar 

  3. De Hoffmann E, Stroobant V. Mass spectrometry – principles and applications. 3rd ed. vol. 29, Mass spectrometry reviews. England: John Wiley & Sons Ltd; 2007. p. 489.

    Google Scholar 

  4. Makarov A, Scigelova M. Coupling liquid chromatography to orbitrap mass spectrometry. J Chromatogr A. 2010;1217:3938–45.

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez-Aller M, Gurny R, Veuthey J-L, Guillarme D. Coupling ultra high-pressure liquid chromatography with mass spectrometry: constraints and possible applications. J Chromatogr A. 2012;1292:2–18.

    Article  PubMed  CAS  Google Scholar 

  6. March RE. Quadrupole ion traps. Mass Spectrom Rev. 2009;28:961–89.

    Article  CAS  PubMed  Google Scholar 

  7. Hernández F, Sancho JV, Ibáñez M, Abad E, Portolés T, Mattioli L. Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem. 2012;403:1251–64.

    Article  PubMed  CAS  Google Scholar 

  8. Denisov E, Damoc E, Lange O, Makarov A. Orbitrap mass spectrometry with resolving powers above 1,000,000. Int J Mass Spectrom. 2012;325–327:80–5.

    Article  CAS  Google Scholar 

  9. Forcisi S, Moritz F, Kanawati B, Tziotis D, Lehmann R, Schmitt-Kopplin P. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling. J Chromatogr A. 2013;1292:51–65.

    Article  CAS  PubMed  Google Scholar 

  10. Ghaste M, Mistrik R, Shulaev V. Applications of fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci. 2016;17:816.

    Article  PubMed Central  Google Scholar 

  11. Kuehnbaum NL, Britz-Mckibbin P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev. 2013;113:2437–68.

    Article  CAS  PubMed  Google Scholar 

  12. Snyder LR, Kirkland JJ, Glajch JL. Practical HPLC method development. 2nd ed. New York: John Wiley & Sons, Inc; 1997. p. 767.

    Google Scholar 

  13. Rainville PD, Theodoridis G, Plumb RS, Wilson ID. Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. Trends Anal Chem. 2014;61:181–91.

    Article  CAS  Google Scholar 

  14. García-Cañaveras JC, Jiménez N, Gómez-Lechón MJ, Castell JV, Donato MT, Lahoz A. LC-MS untargeted metabolomic analysis of drug-induced hepatotoxicity in HepG2 cells. Electrophoresis. 2015;36:2294–302.

    Article  CAS  Google Scholar 

  15. Sheikh KD, Khanna S, Byers SW, Fornace A, Cheema AK. Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J Biomol Tech. 2011;22:1–4.

    PubMed  PubMed Central  Google Scholar 

  16. Willmann L, Schlimpert M, Hirschfeld M, Erbes T, Neubauer H, Stickeler E, et al. Alterations of the exo- and endometabolite profiles in breast cancer cell lines: a mass spectrometry-based metabolomics approach. Anal Chim Acta. 2016;925:34–42.

    Article  CAS  PubMed  Google Scholar 

  17. Shao X, Gao D, Wang Y, Jin F, Wu Q, Liu H. Application of metabolomics to investigate the antitumor mechanism of flavopiridol in MCF-7 breast cancer cells. J Chromatogr B: Analyt Technol Biomed Life Sci. 2016;1025:40–7.

    Article  CAS  Google Scholar 

  18. Tsutsui H, Maeda T, Min JZ, Inagaki S, Higashi T, Kagawa Y, et al. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin Chim Acta. 2011;412:861–72.

    Article  CAS  PubMed  Google Scholar 

  19. Raju B, Ramesh M, Borkar RM, Srinivas R, Padiya R, Banerjee SK. In vivo metabolic investigation of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry in combination with online hydrogen/deuterium exchange experiments. Rapid Commun Mass Spectrom. 2012;26:1817–31.

    Article  CAS  PubMed  Google Scholar 

  20. Waybright TJ, Van QN, Muschik GM, Conrads TP, Veenstra TD, Issaq HJ. LC-MS in metabonomics: optimization of experimental conditions for the analysis of metabolites in human urine. J Liq Chromatogr Relat Technol. 2006;29:2475–97.

    Article  CAS  Google Scholar 

  21. Zhao L, Xiong Z, Lu X, Zheng S, Wang F, Ge L, et al. Metabonomic evaluation of chronic unpredictable mild stress-induced changes in rats by intervention of fluoxetine by HILIC-UHPLC/MS. PLoS One. 2015;10:e0129146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li S, Lin H, Qu C, Tang Y, Shen J, Li W, et al. Urine and plasma metabonomics coupled with UHPLC- QTOF/MS and multivariate data analysis on potential biomarkers in anemia and hematinic effects of herb pair Gui-hong. J Ethnopharmacol. 2015;170:175–83.

    Article  CAS  PubMed  Google Scholar 

  23. Peng J, Chen YT, Chen CL, Li L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite- biomarker discovery. Anal Chem. 2014;86:6540–7.

    Article  CAS  PubMed  Google Scholar 

  24. Huo T, Xiong Z, Lu X, Cai S. Metabonomic study of biochemical changes in urinary of type 2 diabetes mellitus patients after the treatment of sulfonylurea antidiabetic drugs based on ultra-performance liquid chromatography/mass spectrometry. Biomed Chromatogr. 2015;29:115–22.

    Article  CAS  PubMed  Google Scholar 

  25. Fitian A, Nelson D, Liu C, Xu Y, Ararat M, Cabrera R. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int. 2014;34:1428–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao H, Shi P, Zhang L, Fan X, Shao Q, Cheng Y. Untargeted metabolic profiling reveals potential biomarkers in myocardial infarction and its application. Mol Biosyst. 2010;6:1061–70.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Bowers J, Liu L, Wei S, Gowda GAN, Hammoud Z, et al. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One. 2012;7(1):e30181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang Q, Yin P, Wang J, Chen J, Kong H, Lu X, et al. Method for liver tissue metabolic profiling study and its application in type 2 diabetic rats based on ultra performance liquid chromatography-mass spectrometry. J Chromatogr B: Analyt Technol Biomed Life Sci. 2011;879:961–7.

    Article  CAS  Google Scholar 

  29. Yang Y, Cruickshank C, Armstrong M, Mahaffey S, Reisdorph R, Reisdorph N. New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome. J Chromatogr A. 2013;1300:217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Godzien J, Ciborowski M, Whiley L, Legido-Quigley C, Ruperez FJ, Barbas C. In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J Chromatogr A. 2013;1304:52–60.

    Article  CAS  PubMed  Google Scholar 

  31. Lu X, Bennet B, Mu E, Rabinowitz J, Kang Y. Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. J Biol Chem. 2010;285:9317–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem. 2013;405:5279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibáñez C, Simó C, García-Cañas V, Gómez-Martínez Á, Ferragut JA, Cifuentes A. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis. 2012;33:2328–36.

    Article  PubMed  CAS  Google Scholar 

  34. Lin Y, Si D, Zhang Z, Liu C. An integrated metabonomic method for profiling of metabolic changes in carbon tetrachloride induced rat urine. Toxicology. 2009;256:191–200.

    Article  CAS  PubMed  Google Scholar 

  35. Michopoulos F, Gika H, Palachanis D, Theodoridis G, Wilson ID. Solid phase extraction methodology for UPLC-MS based metabolic profiling of urine samples. Electrophoresis. 2015;36:2170–8.

    Article  CAS  Google Scholar 

  36. Spagou K, Wilson ID, Masson P, Theodoridis G, Raikos N, Coen M, et al. HILIC UPLC MS for exploratory urinary metabolic profiling in toxicological studies. Anal Chem. 2011;83:382–90.

    Article  CAS  PubMed  Google Scholar 

  37. Sen A, Knappy C, Lewis MR, Plumb RS, Wilson ID, Nicholson JK, et al. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry. J Chromatogr A. 2016;1449:141–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, Engström G, et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J. 2013;34:1982–9.

    Article  CAS  PubMed  Google Scholar 

  39. Tang H, Wang X, Xu L, Ran X, Li X, Chen L, et al. Establishment of local searching methods for orbitrap-based high throughput metabolomics analysis. Talanta. 2016;156–157:163–71.

    Article  PubMed  CAS  Google Scholar 

  40. Ebshiana AA, Snowden SG, Thambisetty M, Parsons R, Hye A, Legido-Quigley C. Metabolomic method: UPLC-q-ToF Polar and non-polar metabolites in the healthy rat cerebellum using an in-vial dual extraction. PLoS One. 2015;10:e0122883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Denoroy L, Zimmer L, Renaud B, Parrot S. Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: a review. J Chromatogr B: Analyt Technol Biomed Life Sci. 2013;927:37–53.

    Article  CAS  Google Scholar 

  42. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5:1005–18.

    Article  CAS  PubMed  Google Scholar 

  43. Greco G, Letzel T. Main interactions and influences of the chromatographic parameters in HILIC separations. J Chromatogr Sci. 2013;51:684–93.

    Article  CAS  PubMed  Google Scholar 

  44. Ivanisevic J, Zhu Z, Plate L, Tautenhahn R, Chen S, Johnson CH, et al. Toward omic scale metabolite profiling: a dual separation mass spectrometry approach for coverage of lipids and central carbon metabolism. Anal Chem. 2013;85:6876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramakrishnan P, Nair S, Rangiah K. A method for comparative metabolomics in urine using high resolution mass spectrometry. J Chromatogr A. 2016;1443:83–92.

    Article  CAS  PubMed  Google Scholar 

  46. Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem. 2012;402:231–47.

    Article  CAS  PubMed  Google Scholar 

  47. Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A. 2004;1037:29–47.

    Article  CAS  PubMed  Google Scholar 

  48. Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem. 2008;80:62–76.

    Article  CAS  PubMed  Google Scholar 

  49. Dinh NP, Jonsson T, Irgum K. Probing the interaction mode in hydrophilic interaction chromatography. J Chromatogr A. 2011;1218:5880–91.

    Article  CAS  PubMed  Google Scholar 

  50. Gika HG, Theodoridis GA, Vrhovsek U, Mattivi F. Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2012;1259:121–7.

    Article  CAS  PubMed  Google Scholar 

  51. Spagou K, Tsoukali H, Raikos N, Gika H, Wilson ID, Theodoridis G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J Sep Sci. 2010;33:716–27.

    Article  CAS  PubMed  Google Scholar 

  52. Cubbon S, Antonio C, Wilson J, Thomas-Oates J. Metabolomic applications of HILIC-LC-MS. Mass Spectrom Rev. 2010;29:671–84.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang T, Watson DG. Evaluation of the technical variations and the suitability of a hydrophilic interaction liquid chromatography-high resolution mass spectrometry (ZIC-pHILIC-Exactive orbitrap) for clinical urinary metabolomics study. J Chromatogr B: Analyt Technol Biomed Life Sci. 2016;1022:199–205.

    Article  CAS  Google Scholar 

  54. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.

    Article  CAS  PubMed  Google Scholar 

  55. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8:17–32.

    Article  CAS  PubMed  Google Scholar 

  56. Leung KS, Fong BM. LC-MS/MS in the routine clinical laboratory: has its time come? Anal Bioanal Chem. 2014;406:2289–301.

    Article  CAS  PubMed  Google Scholar 

  57. Iadarola P, Fumagalli M, Bardoni AM, Salvini R, Viglio S. Recent applications of CE- and HPLC-MS in the analysis of human fluids. Electrophoresis. 2016;37:212–30.

    Article  CAS  PubMed  Google Scholar 

  58. Mil’man BL, Zhurkovich IK. Mass spectrometric analysis of medical samples and aspects of clinical diagnostics. J Anal Chem. 2015;70:1179–91.

    Article  CAS  Google Scholar 

  59. Nordstrom A, Want E, Northen T, Lehtio J, Siuzdak G. Multiple ionization mass spectrometry strategy reveals the complexity of metabolomics. Anal Chem. 2008;80:421–9.

    Article  PubMed  CAS  Google Scholar 

  60. Yuan M, Breitkopf S, Yang X, Asara J. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7:872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trivedi DK, Iles RK. Do not just do it, do it right: urinary metabolomics -establishing clinically relevant baselines. Biomed Chromatogr. 2014;28:1491–501.

    Article  CAS  PubMed  Google Scholar 

  62. Pasikanti KK, Ho PC, Chan ECY. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B: Analyt Technol Biomed Life Sci. 2008;871:202–11.

    Article  CAS  Google Scholar 

  63. Qiu Y, Su M, Liu Y, Chen M, Gu J, Zhang J, et al. Application of ethyl chloroformate derivatization for gas chromatography–mass spectrometry based metabonomic profiling. Anal Chim Acta. 2007;583:277–83.

    Article  CAS  PubMed  Google Scholar 

  64. Little JL. Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J Chromatogr A. 1999;844:1–22.

    Article  CAS  PubMed  Google Scholar 

  65. Mastrangelo A, Ferrarini A, Rey-Stolle F, García A, Barbas C. From sample treatment to biomarker discovery: a tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Anal Chim Acta. 2015;900:21–35.

    Article  CAS  PubMed  Google Scholar 

  66. Qiu Y, Reed D. Gas chromatography in metabolomics study. In: Guo X, editor. Advances in gas chromatograph. 2014. p. 83–101. http://www.intechopen.com/books/advances-in-gas-chromatography/gas-chromatography-in-metabolomics-study.

  67. Abbiss H, Rawlinson C, Maker GL, Trengove R. Assessment of automated trimethylsilyl derivatization protocols for GC-MS-based untargeted metabolomic analysis of urine. Metabolomics. 2015;11:1908–21.

    Article  CAS  Google Scholar 

  68. Xiong X, Sheng X, Liu D, Zeng T, Peng Y, Wang Y. A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria. Anal Bioanal Chem. 2015;407:8825–33.

    Article  CAS  PubMed  Google Scholar 

  69. Begley P, Francis-McIntyre S, Dunn WB, Broadhurst DI, Halsall A, Tseng A, et al. Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal Chem. 2009;81:7038–46.

    Article  CAS  PubMed  Google Scholar 

  70. Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics. 2013;9:818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiu HH, Tsai SJ, Tseng YJ, Wu MS, Liao WC, Huang CS, et al. An efficient and robust fatty acid profiling method for plasma metabolomic studies by gas chromatography–mass spectrometry. Clin Chim Acta. 2015;451:183–90.

    Article  CAS  PubMed  Google Scholar 

  72. Kloos D, Lingeman H, Mayboroda OA, Deelder AM, Niessen WMA, Giera M. Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. Trends Anal Chem. 2014;61:17–28.

    Article  CAS  Google Scholar 

  73. Garcia A, Barbas C. Gas chromatography–mass spectrometry (GS-MS)-based metabolomics. In: Metabolic profiling – methods and protocols. New York: Humana Press & Springer Science Business Media; 2011. p. 191–204.

    Chapter  Google Scholar 

  74. Major H, Williams R, Wilson A, Wilson ID. A metabonomic analysis of plasma from zucker rat strains using gas chromatography/mass spectrometry and pattern recognition hilary. Rapid Commun Mass Spectrom. 2006;20:3295–302.

    Article  CAS  PubMed  Google Scholar 

  75. Gao X, Pujos-Guillot E, Sébédio JL. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Anal Chem. 2010;82:6447–56.

    Article  CAS  PubMed  Google Scholar 

  76. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinforma. 2012;7:96–108.

    Article  CAS  Google Scholar 

  77. Katajamaa M, Orešič M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158:318–28.

    Article  CAS  PubMed  Google Scholar 

  78. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peralbo-Molina A, Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, De Luque Castro MD. Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography–mass spectrometry in high resolution mode. Anal Chim Acta. 2015;887:118–26.

    Article  CAS  PubMed  Google Scholar 

  80. Niu W, Knight E, Xia Q, McGarvey BD. Comparative evaluation of eight software programs for alignment of gas chromatography–mass spectrometry chromatograms in metabolomics experiments. J Chromatogr A. 2014;1374:199–206.

    Article  CAS  PubMed  Google Scholar 

  81. Godzien J, Ciborowski M, Angulo S, Barbas C. From numbers to a biological sense: how the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LCMS. Electrophoresis. 2013;34:2812–26.

    CAS  PubMed  Google Scholar 

  82. Che N, Cheng J, Li H, Zhang Z, Zhang X, Ding Z, et al. Decreased serum 5-oxoproline in TB patients is associated with pathological damage of the lung. Clin Chim Acta. 2013;423:5–9.

    Article  CAS  PubMed  Google Scholar 

  83. Christakoudi S, Cowan DA, Taylor NF. Steroids excreted in urine by neonates with 21-hydroxylase deficiency. 3. Characterization, using GC-MS and GC-MS/MS, of androstanes and androstenes. Steroids. 2012;77:1487–501.

    Article  CAS  PubMed  Google Scholar 

  84. Tsakalof AK, Gkagtzis DC, Koukoulis GN, Hadjichristodoulou CS. Development of GC-MS/MS method with programmable temperature vaporization large volume injection for monitoring of 17β-estradiol and 2-methoxyestradiol in plasma. Anal Chim Acta. 2012;709:73–80.

    Article  CAS  PubMed  Google Scholar 

  85. Delgado-Povedano MM, Calderón-Santiago M, Priego-Capote F, De Luque Castro MD. Development of a method for enhancing metabolomics coverage of human sweat by gas chromatography–mass spectrometry in high resolution mode. Anal Chim Acta. 2016;905:115–25.

    Article  CAS  PubMed  Google Scholar 

  86. Kohashi M, Nishiumi S, Ooi M, Yoshie T, Matsubara A, Suzuki M, et al. A novel gas chromatography mass spectrometry-based serum diagnostic and assessment approach to ulcerative colitis. J Crohns Colitis. 2014;8:1010–21.

    Article  PubMed  Google Scholar 

  87. Motsinger-Reif AA, Zhu H, Kling MA, Matson W, Sharma S, Fiehn O, et al. Comparing metabolomic and pathologic biomarkers alone and in combination for discriminating Alzheimer’s disease from normal cognitive aging. Acta Neuropathol Commun. 2013;1:28.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kenny LC, Dunn WB, Ellis DI, Myers J, Baker PN, Kell DB. Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics. 2005;1:227–34.

    Article  CAS  Google Scholar 

  89. Miyamoto S, Taylor S, Barupal D, Taguchi A, Wohlgemuth G, Wikoff W, et al. Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry. Metabolites. 2015;5:192–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mueller DC, Piller M, Niessner R, Scherer M, Scherer G. Untargeted metabolomic profiling in saliva of smokers and nonsmokers by a validated GC-TOF-MS method. J Proteome Res. 2014;13:1602–13.

    Article  CAS  PubMed  Google Scholar 

  91. Budczies J, Denkert C, Müller BM, Brockmöller SF, Klauschen F, Györffy B, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. BMC Genomics. 2012;13:334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Struck-Lewicka W, Kordalewska M, Bujak R, Yumba Mpanga A, Markuszewski M, Jacyna J, et al. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: a pilot study. J Pharm Biomed Anal. 2015;111(2015):351–61.

    Article  CAS  PubMed  Google Scholar 

  93. Monteleone M, Naccarato A, Sindona G, Tagarelli A. A reliable and simple method for the assay of neuroendocrine tumor markers in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal Chim Acta. 2013;759:66–73.

    Article  CAS  PubMed  Google Scholar 

  94. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GAN, Owusu-Sarfo K, Ballas RA, et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010;70:8309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kouremenos KA, Pitt J, Marriott PJ. Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: application to the diagnosis of organic acidurias and biomarker discovery. J Chromatogr A. 2010;1217:104–11.

    Article  CAS  PubMed  Google Scholar 

  96. Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, et al. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal Chim Acta. 2009;633:257–62.

    Article  CAS  PubMed  Google Scholar 

  97. Ranjbar MRN, Luo Y, DiPoto C, Varghese RS, Ferrarini A, Zhang C, et al. GC-MS based plasma metabolomics for identification of candidate biomarkers for hepatocellular carcinoma in Egyptian cohort. PLoS One. 2015;10:e0127299.

    Article  CAS  Google Scholar 

  98. Xie GX, Chen TL, Qiu YP, Shi P, Zheng XJ, Su MM, et al. Urine metabolite profiling offers potential early diagnosis of oral cancer. Metabolomics. 2012;8:220–31.

    Article  CAS  Google Scholar 

  99. Wu H, Xue R, Lu C, Deng C, Liu T, Zeng H, et al. Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry. J Chromatogr B: Analyt Technol Biomed Life Sci. 2009;877:3111–7.

    Article  CAS  Google Scholar 

  100. Dunn WB, Broadhurst DI, Deepak SM, Buch MH, McDowell G, Spasic I, et al. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics. 2007;3:413–26.

    Article  CAS  Google Scholar 

  101. Jia W, Jia W, Lu J, Zhou J, Bao Y, Chen T, et al. Serum metabolic signatures of fulminant type 1 diabetes. J Proteome Res. 2012;11:4705–11.

    Article  PubMed  CAS  Google Scholar 

  102. Vallejo M, García A, Tuñón J, García-Martínez D, Angulo S, Martin-Ventura JL, et al. Plasma fingerprinting with GC-MS in acute coronary syndrome. Anal Bioanal Chem. 2009;394:1517–24.

    Article  CAS  PubMed  Google Scholar 

  103. Kuhara T, Ohse M, Inoue Y, Shinka T. Five cases of β-ureidopropionase deficiency detected by GC/MS analysis of urine metabolome. J Mass Spectrom. 2009;44:214–21.

    Article  CAS  PubMed  Google Scholar 

  104. Smuts I, van der Westhuizen FH, Louw R, Mienie LJ, Engelke UFH, Wevers RA, et al. Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics. 2013;9:379–91.

    Article  CAS  Google Scholar 

  105. Tian JS, Peng GJ, Wu YF, Zhou JJ, Xiang H, Gao XX, et al. A GC-MS urinary quantitative metabolomics analysis in depressed patients treated with TCM formula of Xiaoyaosan. J Chromatogr B: Anal Technol Biomed Life Sci [Internet]. 2015. Available from: http://dx.doi.org/10.1016/j.jchromb.2015.12.026.

  106. Peterson AC, Hauschild JP, Quarmby ST, Krumwiede D, Lange O, Lemke RAS, et al. Development of a GC/quadrupole-orbitrap mass spectrometer, part I: design and characterization. Anal Chem. 2014;86:10036–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peterson AC, Balloon AJ, Westphall MS, Coon JJ. Development of a GC/quadrupole-orbitrap mass spectrometer, part II: new approaches for discovery metabolomics. Anal Chem. 2014;86:10044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Almstetter MF, Oefner PJ, Dettmer K. Comprehensive two-dimensional gas chromatography in metabolomics. Anal Bioanal Chem. 2012;402:1993–2013.

    Article  CAS  PubMed  Google Scholar 

  109. Bertsch W. Two-dimensional gas chromatography. Concepts, instrumentation, and applications – part 2: comprehensive two-dimensional gas chromatography. J High Resolut Chromatogr. 2000;23:167–81.

    Article  CAS  Google Scholar 

  110. Tranchida PQ, Costa R, Donato P, Sciarrone D, Ragonese C, Dugo P, et al. Acquisition of deeper knowledge on the human plasma fatty acid profile exploiting comprehensive 2-D GC. J Sep Sci. 2008;31:3347–51.

    Article  CAS  PubMed  Google Scholar 

  111. Dettmer K, Almstetter MF, Appel IJ, Nürnberger N, Schlamberger G, Gronwald W, et al. Comparison of serum versus plasma collection in gas chromatography - mass spectrometry-based metabolomics. Electrophoresis. 2010;31:2365–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Klassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lopes, A.S., Cruz, E.C.S., Sussulini, A., Klassen, A. (2017). Metabolomic Strategies Involving Mass Spectrometry Combined with Liquid and Gas Chromatography. In: Sussulini, A. (eds) Metabolomics: From Fundamentals to Clinical Applications. Advances in Experimental Medicine and Biology(), vol 965. Springer, Cham. https://doi.org/10.1007/978-3-319-47656-8_4

Download citation

Publish with us

Policies and ethics