Skip to main content

Age-Related Changes in the Neural Control of Standing Balance

  • Chapter
  • First Online:
Locomotion and Posture in Older Adults

Abstract

Controlling body sway while standing is an active process involving lower as well as higher neural centers. This chapter examines how the central nervous system controls undisturbed standing balance and summarizes the current knowledge concerning the effects of task difficulty and old age on postural control of standing. There is an age-related reorganization of neural control of standing, with decreased efficacy of Ia afferents to activate spinal motor neurons, increased cortical activation and corticospinal excitability, and reduced intracortical inhibition. Age does not affect the motor control strategy of reducing intracortical inhibition with increasing postural challenge. However, the threshold for down-modulation decreases with aging. It thus seems that motor cortical involvement in the control of standing balance becomes more prominent with age and postural task difficulty. Future studies will determine if it is beneficial and necessary through interventions to reduce the cortical involvement in the control of standing balance in healthy old adults especially if this involvement should increase in old adults with a history of falls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckley JP, Hedge A, Yates T, Copeland RJ, Loosemore M, Hamer M, et al. The sedentary office: an expert statement on the growing case for change towards better health and productivity. Br J Sports Med. 2015;49(21):1357–62.

    Article  PubMed  Google Scholar 

  2. Hortobágyi T. The positives of physical activity and the negatives of sedentariness in successful aging. In: Rutgers H, editor. The future of health and fitness. A plan for getting Europe active by 2025. Nijmegen: BlackBox Publishers; 2014. p. 54–62.

    Google Scholar 

  3. Papegaaij S, Taube W, Baudry S, Otten E, Hortobagyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci. 2014;6:28.

    PubMed  PubMed Central  Google Scholar 

  4. Taube W, Gollhofer A. Postural control and balance training. In: Gollhofer A, Taube W, Nielsen JB, editors. Routledge handbook of motor control and motor learning. London: Routledge; 2014. p. 252–80.

    Google Scholar 

  5. Hsu YS, Kuan CC, Young YH. Assessing the development of balance function in children using stabilometry. Int J Pediatr Otorhinolaryngol. 2009;73(5):737–40.

    Article  PubMed  Google Scholar 

  6. Peterka RJ, Black FO. Age-related changes in human posture control: sensory organization tests. J Vestib Res. 1990;1(1):73–85.

    PubMed  Google Scholar 

  7. Peterson ML, Christou E, Rosengren KS. Children achieve adult-like sensory integration during stance at 12-years-old. Gait Posture. 2006;23(4):455–63.

    Article  PubMed  Google Scholar 

  8. Oba N, Sasagawa S, Yamamoto A, Nakazawa K. Difference in postural control during quiet standing between young children and adults: assessment with center of mass acceleration. PLoS One. 2015;10(10):e0140235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hytonen M, Pyykko I, Aalto H, Starck J. Postural control and age. Acta Otolaryngol. 1993;113(2):119–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kirshenbaum N, Riach CL, Starkes JL. Non-linear development of postural control and strategy use in young children: a longitudinal study. Exp Brain Res. 2001;140(4):420–31.

    Article  CAS  PubMed  Google Scholar 

  11. Riach CL, Starkes JL. Visual fixation and postural sway in children. J Mot Behav. 1989;21(3):265–76.

    Article  CAS  PubMed  Google Scholar 

  12. Riach CL, Hayes KC. Maturation of postural sway in young children. Dev Med Child Neurol. 1987;29(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rival C, Ceyte H, Olivier I. Developmental changes of static standing balance in children. Neurosci Lett. 2005;376(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  14. Ruffieux J, Keller M, Lauber B, Taube W. Changes in standing and walking performance under dual-task conditions across the lifespan. Sports Med. 2015;45(12):1739–58.

    Google Scholar 

  15. Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):1097–118.

    CAS  PubMed  Google Scholar 

  16. Sveistrup H, Woollacott MH. Longitudinal development of the automatic postural response in infants. J Mot Behav. 1996;28(1):58–70.

    Article  PubMed  Google Scholar 

  17. Papegaaij S, Taube W, Hogenhout M, Baudry S, Hortobagyi T. Age-related decrease in motor cortical inhibition during standing under different sensory conditions. Front Aging Neurosci. 2014;6:126.

    PubMed  PubMed Central  Google Scholar 

  18. Baudry S, Collignon S, Duchateau J. Influence of age and posture on spinal and corticospinal excitability. Exp Gerontol. 2015;69:62–9.

    Article  PubMed  Google Scholar 

  19. Kuznetsov NA, Riley MA. The role of task constraints in relating laboratory and clinical measures of balance. Gait Posture. 2015;42(3):275–9.

    Article  PubMed  Google Scholar 

  20. Penzer F, Duchateau J, Baudry S. Effects of short-term training combining strength and balance exercises on maximal strength and upright standing steadiness in elderly adults. Exp Gerontol. 2015;61:38–46.

    Article  PubMed  Google Scholar 

  21. Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114(10):1339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Woollacott MH, Shumway-Cook A. Changes in posture control across the life span – a systems approach. Phys Ther. 1990;70(12):799–807.

    Article  CAS  PubMed  Google Scholar 

  23. Bugnariu N, Fung J. Aging and selective sensorimotor strategies in the regulation of upright balance. J Neuroeng Rehabil. 2007;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Granacher U, Bridenbaugh SA, Muehlbauer T, Wehrle A, Kressig RW. Age-related effects on postural control under multi-task conditions. Gerontology. 2011;57(3):247–55.

    Article  PubMed  Google Scholar 

  25. Lamoth CJ, van Heuvelen MJ. Sports activities are reflected in the local stability and regularity of body sway: older ice-skaters have better postural control than inactive elderly. Gait Posture. 2012;35(3):489–93.

    Article  PubMed  Google Scholar 

  26. Makizako H, Furuna T, Ihira H, Shimada H. Age-related differences in the influence of cognitive task performance on postural control under unstable balance conditions. Int J Gerontol. 2013;7(4):199–204.

    Article  Google Scholar 

  27. Sturnieks DL, St George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin. 2008;38(6):467–78.

    Article  CAS  PubMed  Google Scholar 

  28. Cofre Lizama LE, Pijnappels M, Faber GH, Reeves PN, Verschueren SM, van Dieen JH. Age effects on mediolateral balance control. PLoS One. 2014;9(10), e110757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Plagenhoef S, Evans FG, Abdelnour T. Anatomical data for analyzing human motion. Res Q Exerc Sport. 1983;54(2):169–78.

    Article  Google Scholar 

  30. Almeida CWL, Castro CHM, Pedreira PG, Heymann RE, Szejnfeld VL. Percentage height of center of mass is associated with the risk of falls among elderly women: a case–control study. Gait Posture. 2011;34(2):208–12.

    Article  PubMed  Google Scholar 

  31. Morasso PG, Sanguineti V. Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J Neurophysiol. 2002;88(4):2157–62.

    PubMed  Google Scholar 

  32. Suzuki Y, Nomura T, Casadio M, Morasso P. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model. J Theor Biol. 2012;310:55–79.

    Article  PubMed  Google Scholar 

  33. Casadio M, Morasso PG, Sanguineti V. Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application. Gait Posture. 2005;21(4):410–24.

    Article  PubMed  Google Scholar 

  34. Loram ID, Lakie M. Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol (Lond). 2002;545:1041–53.

    Article  CAS  PubMed Central  Google Scholar 

  35. Sasagawa S, Shinya M, Nakazawa K. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis. J Neurophysiol. 2014;111(2):313–22.

    Article  PubMed  Google Scholar 

  36. van Soest AJ, Rozendaal LA. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness. Biol Cybern. 2008;99(1):29–41.

    Article  PubMed  Google Scholar 

  37. Asai Y, Tasaka Y, Nomura K, Nomura T, Casadio M, Morasso P. A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One. 2009;4(7):e6169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fitzpatrick RC, Taylor JL, McCloskey DI. Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and task-dependent components. J Physiol (Lond). 1992;454:533–47.

    Article  CAS  PubMed Central  Google Scholar 

  39. Loram ID, Maganaris CN, Lakie M. Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced? J Physiol (Lond). 2005;564:281–93.

    Article  CAS  Google Scholar 

  40. Masani K, Popovic MR, Nakazawa K, Kouzaki M, Nozaki D. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J Neurophysiol. 2003;90(6):3774–82.

    Article  PubMed  Google Scholar 

  41. Morasso PG, Schieppati M. Can muscle stiffness alone stabilize upright standing? J Neurophysiol. 1999;82(3):1622–6.

    CAS  PubMed  Google Scholar 

  42. Peterka RJ. Postural control model interpretation of stabilogram diffusion analysis. Biol Cybern. 2000;82(4):335–43.

    Article  CAS  PubMed  Google Scholar 

  43. Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol. 1998;80(3):1211–21.

    CAS  PubMed  Google Scholar 

  44. Sasagawa S, Ushiyama J, Masani K, Kouzaki M, Kanehisa H. Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces. Exp Brain Res. 2009;196(4):537–44.

    Article  PubMed  Google Scholar 

  45. Accornero N, Capozza M, Rinalduzzi S, Manfredi GW. Clinical multisegmental posturography: age-related changes in stance control. Electroencephalogr Clin Neurophysiol. 1997;105(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  46. Aramaki Y, Nozaki D, Masani K, Sato T, Nakazawa K, Yano H. Reciprocal angular acceleration of the ankle and hip joints during quiet standing in humans. Exp Brain Res. 2001;136(4):463–73.

    Article  CAS  PubMed  Google Scholar 

  47. Creath R, Kiemel T, Horak F, Peterka R, Jeka J. A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes. Neurosci Lett. 2005;377(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  48. Gunther M, Grimmer S, Siebert T, Blickhan R. All leg joints contribute to quiet human stance: a mechanical analysis. J Biomech. 2009;42(16):2739–46.

    Article  PubMed  Google Scholar 

  49. Gunther M, Putsche P, Leistritz L, Grimmer S. Phase synchronisation of the three leg joints in quiet human stance. Gait Posture. 2011;33(3):412–7.

    Article  PubMed  Google Scholar 

  50. Pinter IJ, van Swigchem R, van Soest AJ, Rozendaal LA. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance. J Neurophysiol. 2008;100(6):3197–208.

    Article  PubMed  Google Scholar 

  51. Sasagawa S, Ushiyama J, Kouzaki M, Kanehisa H. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing. Neurosci Lett. 2009;450(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Kiemel T, Jeka J. The influence of sensory information on two-component coordination during quiet stance. Gait Posture. 2007;26(2):263–71.

    Article  CAS  PubMed  Google Scholar 

  53. Baudry S, Duchateau J. Independent modulation of corticospinal and group I afferents pathways during upright standing. Neuroscience. 2014;275:162–9.

    Article  CAS  PubMed  Google Scholar 

  54. Baudry S, Penzer F, Duchateau J. Input–output characteristics of soleus homonymous Ia afferents and corticospinal pathways during upright standing differ between young and elderly adults. Acta Physiol (Oxf). 2014;210(3):667–77.

    Article  CAS  Google Scholar 

  55. Klass M, Baudry S, Duchateau J. Modulation of reflex responses in activated ankle dorsiflexors differs in healthy young and elderly subjects. Eur J Appl Physiol. 2011;111(8):1909–16.

    Article  PubMed  Google Scholar 

  56. Papegaaij S, Baudry S, Négyesi J, Taube W, Hortobágyi T. Intracortical inhibition in the soleus muscle is reduced during the control of upright standing in both young and old adults. Eur J Appl Physiol. 2016;116:959–67.

    Google Scholar 

  57. Papegaaij S, Taube W, van Keeken HG, Otten E, Baudry S, Hortobagyi T. Postural challenge affects motor cortical activity in young and old adults. Exp Gerontol. 2016;73:78–85.

    Article  PubMed  Google Scholar 

  58. Taube W, Gruber M, Beck S, Faist M, Gollhofer A, Schubert M. Cortical and spinal adaptations induced by balance training: correlation between stance stability and corticospinal activation. Acta Physiol (Oxf). 2007;189(4):347–58.

    Article  CAS  Google Scholar 

  59. Tokuno CD, Taube W, Cresswell AG. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol (Oxf). 2009;195(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  60. Hsu WL, Scholz JP, Schoner G, Jeka JJ, Kiemel T. Control and estimation of posture during quiet stance depends on multijoint coordination. J Neurophysiol. 2007;97(4):3024–35.

    Article  PubMed  Google Scholar 

  61. de Lima AC, de Azevedo Neto RM, Teixeira LA. On the functional integration between postural and supra-postural tasks on the basis of contextual cues and task constraint. Gait Posture. 2010;32(4):615–8.

    Article  PubMed  Google Scholar 

  62. Andersson G, Hagman J, Talianzadeh R, Svedberg A, Larsen HC. Effect of cognitive load on postural control. Brain Res Bull. 2002;58(1):135–9.

    Article  PubMed  Google Scholar 

  63. Bottaro A, Yasutake Y, Nomura T, Casadio M, Morasso P. Bounded stability of the quiet standing posture: an intermittent control model. Hum Mov Sci. 2008;27(3):473–95.

    Article  PubMed  Google Scholar 

  64. Kiemel T, Zhang Y, Jeka JJ. Identification of neural feedback for upright stance in humans: stabilization rather than sway minimization. J Neurosci. 2011;31(42):15144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van dK, de Vlugt E. Postural responses evoked by platform pertubations are dominated by continuous feedback. J Neurophysiol. 2007;98(2):730–43.

    Google Scholar 

  66. Eurich CW, Milton JG. Noise-induced transitions in human postural sway. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6681–4.

    CAS  PubMed  Google Scholar 

  67. Loram ID, van dK, Lakie M, Gollee H, Gawthrop PJ. Does the motor system need intermittent control? Exerc Sport Sci Rev. 2014;42(3):117–25.

    Google Scholar 

  68. Milton J, Townsend JL, King MA, Ohira T. Balancing with positive feedback: the case for discontinuous control. Philos Trans A Math Phys Eng Sci. 2009;367(1891):1181–93.

    Article  PubMed  Google Scholar 

  69. Kiemel T, Elahi AJ, Jeka JJ. Identification of the plant for upright stance in humans: multiple movement patterns from a single neural strategy. J Neurophysiol. 2008;100(6):3394–406.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rozendaal LA, van Soest AK. Multi-segment stance can be stable with zero local ankle stiffness. J Biomech. 2007;40:S364

    Google Scholar 

  71. Kuo AD. An optimal state estimation model of sensory integration in human postural balance. J Neural Eng. 2005;2(3):S235–49.

    Article  PubMed  Google Scholar 

  72. Taube W, Mouthon M, Leukel C, Hoogewoud HM, Annoni JM, Keller M. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex. 2015;64:102–14.

    Article  PubMed  Google Scholar 

  73. Scott SH. Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm? Can J Physiol Pharmacol. 2000;78(11):923–33.

    Article  CAS  PubMed  Google Scholar 

  74. Gribble PL, Scott SH. Overlap of internal models in motor cortex for mechanical loads during reaching. Nature. 2002;417(6892):938–41.

    Article  CAS  PubMed  Google Scholar 

  75. Ting LH, Chiel HJ, Trumbower RD, Allen JL, McKay JL, Hackney ME, et al. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron. 2015;86(1):38–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, editors. Handbook of physiology, Sec 12, exercise: regulation and integration of multiple systems. New York: Oxford University Press; 1996. p. 255‚ Äì292.

    Google Scholar 

  77. Rana M, Yani MS, Asavasopon S, Fisher BE, Kutch JJ. Brain connectivity associated with muscle synergies in humans. J Neurosci. 2015;35(44):14708–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Magnus R. Physiology of posture. Lancet. 1926;11:531‚ Äì585.

    Google Scholar 

  79. Sherrington CS. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol. 1910;40(1–2):28–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Edgerton VR, Roy RR. A new age for rehabilitation. Eur J Phys Rehabil Med. 2012;48(1):99–109.

    CAS  PubMed  Google Scholar 

  81. Deliagina TG, Beloozerova IN, Orlovsky GN, Zelenin PV. Contribution of supraspinal systems to generation of automatic postural responses. Front Integr Neurosci. 2014;8:76.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Solopova IA, Kazennikov OV, Deniskina NB, Levik YS, Ivanenko YP. Postural instability enhances motor responses to transcranial magnetic stimulation in humans. Neurosci Lett. 2003;337(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  83. Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol. 2006;101(2):420–9.

    Article  PubMed  Google Scholar 

  84. Soto O, Valls-Sole J, Shanahan P, Rothwell J. Reduction of intracortical inhibition in soleus muscle during postural activity. J Neurophysiol. 2006;96(4):1711–7.

    Article  PubMed  Google Scholar 

  85. Lavoie BA, Cody FW, Capaday C. Cortical control of human soleus muscle during volitional and postural activities studied using focal magnetic stimulation. Exp Brain Res. 1995;103(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  86. Obata H, Sekiguchi H, Ohtsuki T, Nakazawa K. Posture-related modulation of cortical excitability in the tibialis anterior muscle in humans. Brain Res. 2014;1577:29–35.

    Article  CAS  PubMed  Google Scholar 

  87. McGinnis SM, Brickhouse M, Pascual B, Dickerson BC. Age-related changes in the thickness of cortical zones in humans. Brain Topogr. 2011;24(3–4):279–91.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol. 2002;23(8):1327–33.

    PubMed  Google Scholar 

  89. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30(6):749–61.

    Article  PubMed  Google Scholar 

  90. Angulo-Kinzler RM, Mynark RG, Koceja DM. Soleus H-reflex gain in elderly and young adults: modulation due to body position. J Gerontol A Biol Sci Med Sci. 1998;53(2):M120–5.

    Article  CAS  PubMed  Google Scholar 

  91. Koceja DM, Markus CA, Trimble MH. Postural modulation of the soleus H reflex in young and old subjects. Electroencephalogr Clin Neurophysiol. 1995;97(6):387–93.

    Article  CAS  PubMed  Google Scholar 

  92. Koceja DM, Mynark RG. Comparison of heteronymous monosynaptic Ia facilitation in young and elderly subjects in supine and standing positions. Int J Neurosci. 2000;103(1–4):1–17.

    Article  CAS  PubMed  Google Scholar 

  93. Kido A, Tanaka N, Stein RB. Spinal excitation and inhibition decrease as humans age. Can J Physiol Pharmacol. 2004;82(4):238–48.

    Article  CAS  PubMed  Google Scholar 

  94. Baudry S, Duchateau J. Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance. J Physiol. 2012;590(Pt 21):5541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsuruike M, Koceja DM, Yabe K, Shima N. Age comparison of H-reflex modulation with the Jendrassik maneuver and postural complexity. Clin Neurophysiol. 2003;114(5):945–53.

    Article  PubMed  Google Scholar 

  96. Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72(2):479–93.

    CAS  PubMed  Google Scholar 

  97. Visser JE, Bloem BR. Role of the basal ganglia in balance control. Neural Plast. 2005;12(2–3):161–74. discussion 263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Drijkoningen D, Leunissen I, Caeyenberghs K, Hoogkamer W, Sunaert S, Duysens J, et al. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients. Hum Brain Mapp. 2015;36(12):4897–909.

    Article  PubMed  Google Scholar 

  99. Choi P, Ren M, Phan TG, Callisaya M, Ly JV, Beare R, et al. Silent infarcts and cerebral microbleeds modify the associations of white matter lesions with gait and postural stability: population-based study. Stroke. 2012;43(6):1505–10.

    Article  PubMed  Google Scholar 

  100. Murray ME, Senjem ML, Petersen RC, Hollman JH, Preboske GM, Weigand SD, et al. Functional impact of white matter hyperintensities in cognitively normal elderly subjects. Arch Neurol. 2010;67(11):1379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rosano C, Aizenstein HJ, Studenski S, Newman AB. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2007;62(9):1048–55.

    Article  PubMed  Google Scholar 

  102. Cham R, Perera S, Studenski SA, Bohnen NI. Striatal dopamine denervation and sensory integration for balance in middle-aged and older adults. Gait Posture. 2007;26(4):516–25.

    Article  PubMed  Google Scholar 

  103. Beauchet O, Barden J, Liu-Ambrose T, Chester VL, Szturm T, Allali G. The relationship between hippocampal volume and static postural sway: results from the GAIT study. Age (Dordr). 2016;38(1):19-016–9883-4.

    Google Scholar 

  104. Goble DJ, Coxon JP, Van Impe A, Geurts M, Doumas M, Wenderoth N, et al. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. J Neurosci. 2011;31(45):16344–52.

    Article  CAS  PubMed  Google Scholar 

  105. Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K. Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging. 2012;33(6):1073–84.

    Article  PubMed  Google Scholar 

  106. Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, et al. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci. 2000;12(1):174–87.

    Article  CAS  PubMed  Google Scholar 

  107. Ward NS, Frackowiak RS. Age-related changes in the neural correlates of motor performance. Brain. 2003;126(Pt 4):873–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage. 2002;17(3):1394–402.

    Article  PubMed  Google Scholar 

  109. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article  CAS  PubMed  Google Scholar 

  110. Cliff M, Joyce DW, Lamar M, Dannhauser T, Tracy DK, Shergill SS. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading. Cortex. 2013;49(5):1304–13.

    Article  PubMed  Google Scholar 

  111. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex. 2004;14(4):364–75.

    Article  PubMed  Google Scholar 

  112. Baudry S, Penzer F, Duchateau J. Vision and proprioception do not influence the excitability of the corticomotoneuronal pathway during upright standing in young and elderly adults. Neuroscience. 2014;268:247–54.

    Article  CAS  PubMed  Google Scholar 

  113. Remaud A, Bilodeau M, Tremblay F. Age and muscle-dependent variations in corticospinal excitability during standing tasks. PLoS One. 2014;9(10):e110004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. McChesney JW, Woollacott MH. The effect of age-related declines in proprioception and total knee replacement on postural control. J Gerontol A Biol Sci Med Sci. 2000;55(11):M658–66.

    Article  CAS  PubMed  Google Scholar 

  115. Aartolahti E, Hakkinen A, Lonnroos E, Kautiainen H, Sulkava R, Hartikainen S. Relationship between functional vision and balance and mobility performance in community-dwelling older adults. Aging Clin Exp Res. 2013;25(5):545–52.

    Article  PubMed  Google Scholar 

  116. Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011;41(5):377–400.

    Article  PubMed  Google Scholar 

  117. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52(7):1121–9.

    Article  PubMed  Google Scholar 

  118. Serrador JM, Lipsitz LA, Gopalakrishnan GS, Black FO, Wood SJ. Loss of otolith function with age is associated with increased postural sway measures. Neurosci Lett. 2009;465(1):10–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Smith AE, Ridding MC, Higgins RD, Wittert GA, Pitcher JB. Cutaneous afferent input does not modulate motor intracortical inhibition in ageing men. Eur J Neurosci. 2011;34(9):1461–9.

    Article  PubMed  Google Scholar 

  120. Smith AE, Ridding MC, Higgins RD, Wittert GA, Pitcher JB. Age-related changes in short-latency motor cortex inhibition. Exp Brain Res. 2009;198(4):489–500.

    Article  PubMed  Google Scholar 

  121. Stevens-Lapsley JE, Thomas AC, Hedgecock JB, Kluger BM. Corticospinal and intracortical excitability of the quadriceps in active older and younger healthy adults. Arch Gerontol Geriatr. 2013;56(1):279–84.

    Article  PubMed  Google Scholar 

  122. McGinley M, Hoffman RL, Russ DW, Thomas JS, Clark BC. Older adults exhibit more intracortical inhibition and less intracortical facilitation than young adults. Exp Gerontol. 2010;45(9):671–8.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kossev AR, Schrader C, Dauper J, Dengler R, Rollnik JD. Increased intracortical inhibition in middle-aged humans; a study using paired-pulse transcranial magnetic stimulation. Neurosci Lett. 2002;333(2):83–6.

    Article  CAS  PubMed  Google Scholar 

  124. Bashir S, Perez JM, Horvath JC, Pena-Gomez C, Vernet M, Capia A, et al. Differential effects of motor cortical excitability and plasticity in young and old individuals: a Transcranial Magnetic Stimulation (TMS) study. Front Aging Neurosci. 2014;6:111.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kantak SS, Wittenberg GF, Liao WW, Magder LS, Rogers MW, Waller SM. Posture-related modulations in motor cortical excitability of the proximal and distal arm muscles. Neurosci Lett. 2013;533:65–70.

    Article  CAS  PubMed  Google Scholar 

  126. Duckrow RB, Abu-Hasaballah K, Whipple R, Wolfson L. Stance perturbation-evoked potentials in old people with poor gait and balance. Clin Neurophysiol. 1999;110(12):2026–32.

    Article  CAS  PubMed  Google Scholar 

  127. Fujiwara K, Maekawa M, Kiyota N, Yaguchi C. Adaptation changes in dynamic postural control and contingent negative variation during backward disturbance by transient floor translation in the elderly. J Physiol Anthropol. 2012;31:12-6805–31-12.

    Google Scholar 

  128. Maekawa M, Fujiwara K, Kiyota N, Yaguchi C. Adaptation changes in dynamic postural control and contingent negative variation during repeated transient forward translation in the elderly. J Physiol Anthropol. 2013;32:24-6805–32-24.

    Google Scholar 

  129. Hortobagyi T, Devita P. Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev. 2006;34(1):29–35.

    Article  PubMed  Google Scholar 

  130. Benjuya N, Melzer I, Kaplanski J. Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J Gerontol A Biol Sci Med Sci. 2004;59(2):166–71.

    Article  PubMed  Google Scholar 

  131. Nagai K, Yamada M, Uemura K, Yamada Y, Ichihashi N, Tsuboyama T. Differences in muscle coactivation during postural control between healthy older and young adults. Arch Gerontol Geriatr. 2011;53(3):338–43.

    Article  PubMed  Google Scholar 

  132. Engelhart D, Pasma JH, Schouten AC, Aarts RG, Meskers CG, Maier AB, et al. Adaptation of multijoint coordination during standing balance in healthy young and healthy old individuals. J Neurophysiol. 2016;115(3):1422–35.

    Article  CAS  PubMed  Google Scholar 

  133. Rivner MH, Swift TR, Malik K. Influence of age and height on nerve conduction. Muscle Nerve. 2001;24(9):1134–41.

    Article  CAS  PubMed  Google Scholar 

  134. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, et al. Neurophysiological correlates of age-related changes in human motor function. Neurology. 2002;58(4):630–5.

    Article  CAS  PubMed  Google Scholar 

  135. Nardone A, Siliotto R, Grasso M, Schieppati M. Influence of aging on leg muscle reflex responses to stance perturbation. Arch Phys Med Rehabil. 1995;76(2):158–65.

    Article  CAS  PubMed  Google Scholar 

  136. McGregor KM, Zlatar Z, Kleim E, Sudhyadhom A, Bauer A, Phan S, et al. Physical activity and neural correlates of aging: a combined TMS/fMRI study. Behav Brain Res. 2011;222(1):158–68.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rovio S, Spulber G, Nieminen LJ, Niskanen E, Winblad B, Tuomilehto J, et al. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging. 2010;31(11):1927–36.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by startup funds provided by the University Medical Center Groningen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Papegaaij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Papegaaij, S., Hortobágyi, T. (2017). Age-Related Changes in the Neural Control of Standing Balance. In: Barbieri, F., Vitório, R. (eds) Locomotion and Posture in Older Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-48980-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48980-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48979-7

  • Online ISBN: 978-3-319-48980-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics