Skip to main content

Adult Congenital Heart Disease

  • Chapter
  • First Online:
Rapid Prototyping in Cardiac Disease

Abstract

Advances in medical and surgical care over the past few decades have dramatically improved the survival rate of the adult patients with congenital heart disease (ACHD). This population presents unique challenges for clinical management, often made difficult by limitations of standard 2-dimensional imaging techniques. Cardiac 3D printing is a powerful imaging application that offers several advantages to patient care in the ACHD population. 3D models enable in-depth understanding of complex anatomy, precise pre-surgical planning, and are useful tools for patient counseling, trainee education, and simulation. In the ACHD population, these distinct advantages add value to conventional imaging techniques and offer promise for improving clinical outcomes for a complex and growing population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warnes CA, Liberthson R, Danielson GK, Dore A, Harris L, Hoffman JI, et al. Task force 1: the changing profile of congenital heart disease in adult life. JAC. 2001;37(5):1170–5.

    CAS  Google Scholar 

  2. Gurvitz M, Burns KM, Brindis R, Broberg CS, Daniels CJ, Fuller SMPN, et al. Emerging research directions in adult congenital heart disease: a report from an NHLBI/ACHA working group. J Am Coll Cardiol. 2016;67(16):1956–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Warnes CA, Bhatt AB, Daniels CJ, Gillam LD, Stout KK. COCATS 4 Task force 14: training in the care of adult patients with congenital heart disease. JAC. 2015;65(17):1887–98.

    Google Scholar 

  4. Bhatt AB, Foster E, Kuehl K, Alpert J, Brabeck S, Crumb S, et al. Congenital heart disease in the older adult: a scientific statement from the American heart association. Circ Am Heart Assoc J. 2015;131(21):1884–931.

    Google Scholar 

  5. Farooqi KM, Saeed O, Zaidi A, Sanz J, Nielsen JC, Hsu DT, et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Failure. 2016;4(4):301–11.

    Article  PubMed  Google Scholar 

  6. Yang DH, Kang J-W, Kim N, Song J-K, Lee J-W, Lim T-H. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation. 2015;132(4):300–1.

    Article  PubMed  Google Scholar 

  7. Mahmood F, Owais K, Taylor C, Montealegre-Gallegos M, Manning W, Matyal R, et al. Three-dimensional printing of mitral valve using echocardiographic data. J Am Coll Cardiol (JCMG). 2015;8(2):227–9.

    Article  Google Scholar 

  8. Olivieri LJ, Krieger A, Loke Y-H, Nath DS, Kim PCW, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. YMJE. 2015;28(4):392–7.

    Google Scholar 

  9. Mahmood F, Owais K, Montealegre-Gallegos M, Matyal R, Panzica P, Maslow A, et al. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth. 2014;17(4):279–83.

    Article  PubMed  Google Scholar 

  10. Gosnell J, Pietila T, Samuel BP, Kurup HKN, Haw MP, Vettukattil JJ. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging. 2016.

    Google Scholar 

  11. Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH. 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng. 2016.

    Google Scholar 

  12. Zheng J, Bae KT, Woodard PK, Haacke EM, Li D. Efficacy of slow infusion of gadolinium contrast agent in three-dimensional MR coronary artery imaging. J Magn Reson Imaging. 1999;10(5):800–5.

    Article  CAS  PubMed  Google Scholar 

  13. Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5(4):e007165.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anwar S, Singh GK, Varughese J, Nguyen H, Billadello JJ, Sheybani EF, et al. 3D Printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. JACC Cardiovasc Imaging. 2016.

    Google Scholar 

  15. Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7(1):6–9 (Oxford University Press).

    Google Scholar 

  16. Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg. 2016;22(2):238–40 (Oxford University Press).

    Google Scholar 

  17. Norozi K, Wessel A, Alpers V, Arnhold JO, Geyer S, Zoege M, et al. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol. 2006;97(8):1238–43.

    Article  PubMed  Google Scholar 

  18. Ryan TD, Jefferies JL, Zafar F, Lorts A, Morales DLS. The evolving role of the total artificial heart in the management of end-stage congenital heart disease and adolescents. ASAIO J. 2015;61(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  19. Ross HJ, Law Y, Book WM, Broberg CS, Burchill L, Cecchin F, et al. Transplantation and mechanical circulatory support in congenital heart disease. Circ Am Heart Assoc Inc. 2016;133(8):802–20.

    Google Scholar 

  20. Knobelsdorff-Brenkenhoff von F, Trauzeddel RF, Schulz-Menger J. Cardiovascular magnetic resonance in adults with previous cardiovascular surgery. Eur Heart J Cardiovasc Imaging. 2013.

    Google Scholar 

  21. Partington SL, Valente AM. Cardiac magnetic resonance in adults with congenital heart disease. Methodist Debakey Cardiovasc J. 2013;9(3):156–62 (Methodist DeBakey Heart & Vascular Center).

    Google Scholar 

  22. Saremi F. Cardiac CT and MR for Adult Congenital Heart Disease. 2013.

    Google Scholar 

  23. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31(7):ehp586–805 (The Oxford University Press).

    Google Scholar 

  24. Marcotte F, Poirier N, Pressacco J, Paquet É, Mercier L-A, Dore A, et al. Evaluation of adult congenital heart disease by cardiac magnetic resonance imaging. Congenital Heart Disease. 2009;4(4):216–30 (Blackwell Publishing Inc).

    Google Scholar 

  25. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease): developed in collaboration with the american society of echocardiography, heart rhythm society, international society for adult congenital heart disease, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Circulation. 2008;118(23):e714–833.

    Article  PubMed  Google Scholar 

  26. Farooqi KM, Uppu SC, Nguyen K, Srivastava S, Ko HH, Choueiter N, et al. Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 2015;37(1):90–8 (US:Springer).

    Google Scholar 

  27. Ejaz F, Ryan J, Henriksen M, Stomski L. Color-coded patient-specific physical models of congenital heart disease. Rapid Prototyping. 2014;20(4):336–43.

    Google Scholar 

  28. Giamberti A, Chessa M, Abella R, Butera G, Carlucci C, Nuri H, et al. Morbidity and mortality risk factors in adults with congenital heart disease undergoing cardiac reoperations. Ann Thorac Surg. 2009;88(4):1284–9.

    Article  PubMed  Google Scholar 

  29. Holst KA, Dearani JA, Burkhart HM, Connolly HM, Warnes CA, Li Z, et al. Risk factors and early outcomes of multiple reoperations in adults with congenital heart disease. Ann Thorac Surg. 2011;92(1):122–30.

    Article  PubMed  Google Scholar 

  30. Holst KA, Dearani JA, Burkhart HM, Connolly HM, Warnes CA, Li Z, et al. Reoperative multivalve surgery in adult congenital heart disease. Ann Thorac Surg. 2013;95(4):1383–9.

    Article  PubMed  Google Scholar 

  31. Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O, et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenital Heart Dis. 2015;10(2):185–90.

    Article  Google Scholar 

  32. Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. 2015;8(1):103–4.

    Google Scholar 

  33. Hu A, Wilson T, Ladak H, Haase P, Fung K. Three-dimensional educational computer model of the Larynx: voicing a new direction. Arch Otolaryngol Head Neck Surg. 2009;135(7):677–81 (American Medical Association).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafkat Anwar MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anwar, S., Singh, G.K., Petrucci, O., Eghtesady, P., Woodard, P.K., Billadello, J.J. (2017). Adult Congenital Heart Disease. In: Farooqi, K. (eds) Rapid Prototyping in Cardiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-53523-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53523-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53522-7

  • Online ISBN: 978-3-319-53523-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics