Skip to main content

Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity

  • Chapter
  • First Online:
Neurotoxicity of Metals

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 18))

Abstract

The antagonism of mercury toxicity by selenium has been well documented. Mercury is a toxic metal, widespread in the environment. The main target organs (kidneys, lungs, or brain) of mercury vary depending on its chemical forms (inorganic or organic). Selenium is a semimetal essential to mammalian life as part of the amino acid selenocysteine, which is required to the synthesis of the selenoproteins. This chapter has the aim of disclosing the role of selenide or hydrogen selenide (Se−2 or HSe) as central metabolite of selenium and as an important antidote of the electrophilic mercury forms (particularly, Hg2+ and MeHg). Emphasis will be centered on the neurotoxicity of electrophile forms of mercury and selenium. The controversial participation of electrophile mercury and selenium forms in the development of some neurodegenerative disease will be briefly presented. The potential pharmacological use of organoseleno compounds (Ebselen and diphenyl diselenide) in the treatment of mercury poisoning will be considered. The central role of thiol (−SH) and selenol (−SeH) groups as the generic targets of electrophile mercury forms and the need of new in silico tools to guide the future biological researches will be commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderman LC, Bergin JJ. Hydrogen selenide poisoning: an illustrative case with review of the literature. Arch Environ Health. 1986;41:354–8.

    Article  CAS  PubMed  Google Scholar 

  • Aldosary BM, Sutter ME, Schwartz M, Morgan BW. Case series of selenium toxicity from a nutritional supplement. Clin Toxicol. 2012;50:57–64.

    Article  CAS  Google Scholar 

  • Alexander J, Thomassen Y, Aaseth J. Increased urinary excretion of selenium among workers exposed to elemental mercury vapor. J Appl Toxicol. 1983;3:143–5.

    Article  CAS  PubMed  Google Scholar 

  • Asaduzzaman AM, Schreckenbach G. Degradation mechanism of methyl selenoamino acid complexes: a computational study. Inorg Chem. 2011;50:2366–72.

    Article  CAS  PubMed  Google Scholar 

  • Aschner M. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: relationship to the neutral amino acid carrier. Basic Clinic Pharmacol Toxicol. 1989;65:17–20.

    Article  CAS  Google Scholar 

  • Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res. 2007;40:285–91.

    Article  CAS  PubMed  Google Scholar 

  • Atchison WD, Hare MF. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1984;8:622–9.

    Google Scholar 

  • Barbosa AC, de Souza J, Dórea JG, Jardim WF, Fadini OS. Mercury Biomagnification in a tropical black water, Rio Negro, Brazil. Arch Environ Contam Toxicol. 2003;45:235–46.

    Article  CAS  PubMed  Google Scholar 

  • Barwick M, Maher W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res. 2003;56:471–502.

    Article  CAS  PubMed  Google Scholar 

  • Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, Manning-Boğ AB, Berry MJ, White LR, Ross GW. Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson's brain. Mol Neurodegener. 2011;21:8.

    Article  CAS  Google Scholar 

  • Benz MR, Lee SH, Kellner L, Döhlemann C, Berweck S. Hyperintense lesions in brain MRI after exposure to a mercuric chloride-containing skin whitening cream. Eur J Pediatr. 2011;170:747–50.

    Article  PubMed  Google Scholar 

  • Berlin M, Fazackerley J, Nordberg G, Kand M. The uptake of mercury in the brains of mammals exposed to mercury vapor and to mercuric salts. Arch Environ Health. 1969;18:719–29.

    Article  CAS  PubMed  Google Scholar 

  • Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev. 2016; doi:10.1016/j.ccr.2016.10.009.

  • Blaurock-Busch E, Amin OR, Dessoki HH, Rabah T. Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica (Buchar). 2012;7:38–48.

    Google Scholar 

  • Bowles KC, Apte SC, Maher WA, Kawei M, Smith R. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Can J Fish Aquat Sci. 2001;58:888–97.

    Article  CAS  Google Scholar 

  • Branco V, Caito S, Farina M, Rocha JBT, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. J Toxicol Environ Health Part B. 2007; doi:10.1080/10937404.2017.1289834.

  • Brandão F, Cappello T, Raimundo J, Santos MA, Maisano M, Mauceri A, Pacheco M, Pereira P. Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach: bioaccumulation, metabolomic profiles and oxidative stress. Metallomics. 2015;7:1352–63.

    Article  PubMed  CAS  Google Scholar 

  • Brandão R, Moresco RN, Bellé LP, Leite MR, de Freitas ML, Bianchini A, Nogueira CW. Diphenyl diselenide potentiates nephrotoxicity induced by mercuric chloride in mice. J Appl Toxicol. 2011;31:773–82.

    Article  PubMed  CAS  Google Scholar 

  • Bridges CC, Zalups RK. Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol. 2016; doi:10.1007/s00204-016-1803-y.

  • Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem. 2014;289:9662–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burk RF, Hill KE, Read R, Bellew T. Response of rat selenoprotein P to selenium administration and fate of its selenium. Am J Phys. 1991;261:26–30.

    Google Scholar 

  • Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Wanqi Zhang W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014;

    Google Scholar 

  • Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015;7:1213–28.

    Article  CAS  PubMed  Google Scholar 

  • Carlson BA, Xu MX, Gladyshev VN, Hatfield DL. Um34 in selenocysteine tRNA is required for the expression of stress-related selenoproteins in mammals. Top Curr Genet. 2005;12:431–8.

    Article  CAS  Google Scholar 

  • Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188:301–8.

    Article  CAS  PubMed  Google Scholar 

  • Chan TY. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin Toxicol. 2011;49:886–91.

    Article  CAS  Google Scholar 

  • Chapman PM. Selenium – a potential time bomb or just another contaminant. Hum Ecol Risk Assessm. 1999;5:1123–38.

    Article  CAS  Google Scholar 

  • Chapple CE, Guigó R. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes. PLoS One. 2008;4(7) doi:10.1371/journal.pone.0002968.

  • Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr. 2012;21:320–6.

    PubMed  Google Scholar 

  • Chmielnicka J, Komsta-Szumska E, Jedrychowski R. Organ and subcellular distribution of mercury in rats as dependent on the time of exposure to sodium selenite. Environ Res. 1979;20:80–6.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34:369–403.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson TW. The three modern faces of mercury. Environ Health Perspect. 2002;110:11–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50:757–64.

    Article  CAS  PubMed  Google Scholar 

  • Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC. Lack of glutathione peroxidase-1 exacerbates Abeta-mediated neurotoxicity in cortical neurons. J Neural Transm. 2006;113:645–57.

    Article  CAS  PubMed  Google Scholar 

  • Curtis JT, Chen Y, Buck DJ, Davis RL. Chronic inorganic mercury exposure induces sex-specific changes in central TNF expression: importance in autism? Neurosci Lett. 2011;504:40–4.

    Article  CAS  PubMed Central  Google Scholar 

  • Dalla Corte CL, Wagner C, Sudati JH, Comparsi B, Leite GO, Busanello A, Soares FAA, Aschner M, Rocha JBT. Effects of diphenyl Diselenide on methylmercury toxicity in rats. BioMed Res Intern. 2013; doi:10.1155/2013/983821.

  • de Freitas AS, Funck VR, Rotta Mdos S, Bohrer D, Mörschbächer V, Puntel RL, Nogueira CW, Farina M, Aschner M, Rocha JB. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull. 2009;79:77–84.

    Article  PubMed  CAS  Google Scholar 

  • de Freitas ML, da Silva AR, Roman SS, Brandão R. Effects of 4,4′-dichloro-diphenyl diselenide (ClPhSe)2 on toxicity induced by mercuric chloride in mice: a comparative study with diphenyl diselenide (PhSe)2. Environ Toxicol Pharmacol. 2012;34:985–94.

    Article  PubMed  CAS  Google Scholar 

  • De Palma G, Catalani S, Franco A, Brighenti M, Apostoli P. Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J Autism Dev Disord. 2012;42:342–53.

    Article  PubMed  Google Scholar 

  • Diamond AM, Choin IS, Grain PF, Hashizumell T, Pomerantzll SC, Cruz R, Steer CJ, Hill KE, Burk RF, McCloskey HDL. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of Selenocysteine tRNA[Ser]Sec. J Biol Chem. 1993;268:14215–23.

    CAS  PubMed  Google Scholar 

  • Dong W, Liu J, Wei L, Jingfeng Y, Chernick M, Hinton DE. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. Peer J. 2016;23:2282.

    Article  Google Scholar 

  • Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the drosophila phylogeny. Nature. 2007;450:203–18.

    Article  CAS  Google Scholar 

  • Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem. 2006;385:1304–23.

    Article  CAS  PubMed  Google Scholar 

  • Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T. Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci. 2007;262:131–44.

    Article  CAS  PubMed  Google Scholar 

  • El-Demerdash FM. Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health B. 2001;36:489–99.

    Article  CAS  PubMed  Google Scholar 

  • Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005;5:865–71.

    Article  CAS  PubMed  Google Scholar 

  • Erken HA, Koç ER, Yazıcı H, Yay A, Önder GÖ, Sarıcı SF. Selenium partially prevents cisplatin-induced neurotoxicity: a preliminary study. Neurotoxicology. 2014;42:71–5.

    Article  CAS  PubMed  Google Scholar 

  • Esaki N, Nakamura T, Tanaka H, Soda K. Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution, purification, and properties of pig liver enzyme. J Biol Chem. 1982;257:4386–91.

    CAS  PubMed  Google Scholar 

  • Fagan S, Owens R, Ward P, Connolly C, Doyle S, Murphy R. Biochemical comparison of commercial selenium yeast preparations. Biol Trace Elem Res. 2015;166:245–59.

    Article  CAS  PubMed  Google Scholar 

  • Falnoga I, Tušek-Žnidarič M. Selenium–mercury interactions in man and animals. Biol Trace Elem Res. 2007;119:212–20.

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Frizzo ME, Soares FA, Schwalm FD, Dietrich MO, Zeni G, Rocha JBT, Souza DO. Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice. Toxicol Lett. 2003a;144:351–7.

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Dahm KC, Schwalm FD, Brusque AM, Frizzo ME, Zeni G, Souza DO, Rocha JBT. Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci. 2003b;73:135–40.

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Applied Pharmacol. 2011a;256:405–17.

    Article  CAS  Google Scholar 

  • Farina M, Rocha JBT, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011b;89:555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farina M, Aschner M, Rocha JBT. The catecholaminergic neurotransmitter system in methylmercuryinduced neurotoxicity

    Google Scholar 

  • Feng S, Xu Z, Wang F, Yang T, Liu W, Deng Y, Xu B. Sulforaphane prevents methylmercury-induced oxidative damage and excitotoxicity through activation of the Nrf2-ARE pathway. Mol Neurobiol. 2016;7:1–17.

    Google Scholar 

  • Fiuza Tda L, Oliveira CS, da Costa M, Oliveira VA, Zeni G, Pereira ME. Effectiveness of (PhSe)2 in protect against the HgCl2 toxicity. J Trace Elem Med Biol. 2015;29:255–62.

    Article  PubMed  CAS  Google Scholar 

  • Fordyce F. Selenium geochemistry and health. Ambio. 2007;36:94–7.

    Article  CAS  PubMed  Google Scholar 

  • Forstrom JW, Zakowski JJ, Tappel AL. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978;27:2639–44.

    Article  Google Scholar 

  • Frost DV. The two faces of selenium – can selenophobia be cured? Crit Rev Toxicol. 1972;

    Google Scholar 

  • Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, Kopittke PM, Loeschner K, Larsen EH, Woods G, Brownlow A, Read FL, Feldmann J, Krupp EM. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep. 2016; doi:10.1038/srep34361.

  • Gardaneh M, Gholami M, Maghsoudi N. Synergy between glutathione peroxidase-1and astrocytic growth factors suppresses free radical generation and protects dopaminergic neurons against 6-hydroxydopamine. Rejuvenation Res. 2011;14:195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gbetoh MH, Amyot M. Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada. Environ Res. 2016;150:403–10.

    Article  CAS  PubMed  Google Scholar 

  • Glaser V, Nazari EM, Müller YM, Feksa L, Wannmacher CM, Rocha JB, De Bem AF, Farina M, Latini A. Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex. Int J Dev Neurosci. 2010;28:631–7.

    Article  CAS  PubMed  Google Scholar 

  • Glaser V, Moritz B, Schmitz A, Dafré AL, Nazari EM, Rauh Müller YM, Feksa L, Straliottoa MR, de Bem AF, Farina M, da Rocha JB, Latini A. Protective effects of diphenyl diselenide in a mouse model of brain toxicity. Chem Biol Interact. 2013;206:18–26.

    Article  CAS  PubMed  Google Scholar 

  • Glaser V, Martins Rde P, Vieira AJ, Oliveira Ede M, Straliotto MR, Mukdsi JH, Torres AI, de Bem AF, Farina M, da Rocha JB, De Paul AL, Latini A. Diphenyl diselenide administration enhances cortical mitochondrial number and activity by increasing hemeoxygenase type 1 content in a methylmercury-induced neurotoxicity mouse model. Mol Cell Biochem. 2014;390:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Glynn AW, Ilback N-G, Brabencova D, Carlsson L, Enqvist E-C, Netzel E, Oskarsson A. Influence of sodium selenite on 203Hg absorption, distribution, and elimination in male mice exposed to methyl203Hg. Biol Trace Elem Res. 1993;39:97–107.

    Article  Google Scholar 

  • Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Sci Total Environ. 2004;326:1–31.

    Article  CAS  PubMed  Google Scholar 

  • Hassan W, Oliveira CS, Noreen H, Kamdem JP, Nogueira CW, Rocha JBT. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr Org Chem. 2015;20:218–31.

    Article  CAS  Google Scholar 

  • Hawkes WC, Tappel AL. In vitro synthesis of glutathione peroxidase from selenite. Translational incorporation of selenocysteine. Biochim Biophys Acta. 1983;739:225–34.

    Article  CAS  PubMed  Google Scholar 

  • Hawkes WC, Lyons DE, Tappel AL. Identification of a selenocysteine-specific aminoacyl transfer RNA from rat liver. Biochim Biophys Acta. 1982;31:183–91.

    Article  Google Scholar 

  • Hatfield DL, Lee BJ, Diamond AM. Selenium induces changes in the selenocysteine tRNA[Ser]sec population in mammalian cells. Nucleic Acids Res. 1991;19:939–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN. Selenocysteine incorporation machinery and the role of selenoproteins in development and health progress nucleic acid. Res Mol Biol. 2006;81:97–142.

    CAS  Google Scholar 

  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci. 2014;39:112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath JC, Banna KM, Reed MN, Pesek EF, Cole N, Li J, Newland MC. Dietary selenium protects against selected signs of aging and methylmercury exposure. Neurotoxicology. 2010;31:169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heverly-Coulson GS, Boyd RJ. Reduction of hydrogen peroxide by glutathione peroxidase mimics: reaction mechanism and energetics. J Phys Chem A. 2010;114:1996–2000.

    Article  CAS  PubMed  Google Scholar 

  • Hilt B, Svendsen K, Syversen T, Aas O, Qvenild T, Sletvold H, Melø I. Occurrence of cognitive symptoms in dental assistants with previous occupational exposure to metallic mercury. Neurotoxicology. 2009;30:1202–6.

    Article  CAS  PubMed  Google Scholar 

  • Hongo T, Suzuki T, Himeno S, Watanabe C, Satoh H, Shimada Y. Does mercury vapor exposure increase urinary selenium excretion? Ind Health. 1985;23:163–5.

    Article  CAS  PubMed  Google Scholar 

  • Horn MJ, Jones DB. Isolation from Astragalus pectinatus of a crystalline amino acid complex containing selenium and sulfur. J Biol Chem. 1940;139:649–60.

    Google Scholar 

  • Horowitz HM, Jacob DJ, Amos HM, Streets DG, Sunderland EM. Historical mercury releases from commercial products: global environmental implications. Environ Sci Technol. 2014;48:10242–50.

    Article  CAS  PubMed  Google Scholar 

  • Housecroft C, Sharpe AG. Inorganic chemistry. 4th ed. Harlow: Pearson Education Limited; 2012. chapter 15

    Google Scholar 

  • Howard MT, Carlson BA, Anderson CB, Hatfield DL. Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem. 2013;2:122–8.

    Google Scholar 

  • Huang JQ, Ren FZ, Jiang YY, Lei X. Characterization of Selenoprotein M and its response to selenium deficiency in chicken brain. Biol Trace Elem Res. 2016;170:449–58.

    Article  CAS  PubMed  Google Scholar 

  • Huber RE, Criddle RS. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys. 1967;122:164–73.

    Article  CAS  PubMed  Google Scholar 

  • Hursh JB, Sichak SP, Clarkson TW. In vitro oxidation of mercury by the blood. Pharmacol Toxicol. 1988;63:26–273.

    Google Scholar 

  • Imam SZ, Newport GD, Islam F, Slikker W, Ali SF. Selenium, an antioxidant, protects against methamphetamine-induced dopaminergic neurotoxicity. Brain Res. 1999;818:575–8.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara Y, Tsuji M, Kawamoto T, Yamazaki T (2016) Involvement of reactive oxygen species derived from mitochondria in neuronal injury elicited by methylmercury. J Clin Biochem Nutr 16-19.

    Google Scholar 

  • Ishitobi H, Stern S, Thurston SW, Zareba G, Langdon M, Gelein R, Weiss B. Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor. Environ Health Perspec. 2010;118:242–8.

    Article  CAS  Google Scholar 

  • Iwata H, Masukawa T, Kito H, Hayashi M. Degradation of methylmercury by selenium. Life Sci. 1982;31:859–66.

    Article  CAS  PubMed  Google Scholar 

  • Karaboduk H, Uzunhisarcikli M, Kalender Y. Protective effects of sodium selenite and vitamin e on mercuric chloride-induced cardiotoxicity in male rats. Braz Arch Biol Technol. 2015;58:229–38.

    Article  CAS  Google Scholar 

  • Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW Jr, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN. Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem. 2011;286:33203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern JK, Geier DA, Bjørklund G, King PG, Homme KG, Haley BE, Sykes LK, Geier MR. Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide. Neuro Endocrinol Lett. 2014;35:535–52.

    Google Scholar 

  • Kern JK, Geier DA, Deth RC, Sykes LK, Hooker BS, Love JM, Bjørklund G, Chaigneau CG, Haley BE, Geier MR. Systematic assessment of research on Autism Spectrum Disorder and mercury reveals conflicts of interest and the need for transparency in autism research. Sci Eng Ethics. 2015; doi:10.1007/s11948-015-9713-6.

  • Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol. 2016;37:8–24.

    Article  CAS  PubMed  Google Scholar 

  • Khan MAK, Wang F. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem. 2009;28:1567–77.

    Article  CAS  PubMed  Google Scholar 

  • Kim IY, Stadtman TC. Selenophosphate synthetase: Detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii (mammalian selenophosphate synthetase). Proc Natl Acad Sci USA. 1995;92:7710–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Chai YG, Ryu JC. Selenoprotein W as molecular target of methylmercury in human neuronal cells is down-regulated by GSH depletion. Biochem Biophys Res Commun. 2005;20:1095–10200.

    Article  CAS  Google Scholar 

  • Kim YN, Kim YA, Yang AR, Lee BH. Relationship between blood mercury level and risk of cardiovascular diseases: results from the fourth Korea National Health and nutrition examination survey (KNHANES IV) 2008-2009. Prev Nutr Food Sci. 2014;19:333–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick M, Benoit J, Everett W, Gibson J, Rist M, Fredette N. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice. NeuroToxicol. 2015;50:170–8.

    Article  CAS  Google Scholar 

  • Korbas M, O’Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers G, Clarkson TW, George GN. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem Neurosci. 2010;1:810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen AKB, Thomsen JF, Mikkelsen S. A review of mercury exposure among artisanal small-scale gold miners in developing countries. Int Arch Occup Environ Health. 2014;87:579–90.

    Article  CAS  PubMed  Google Scholar 

  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmi Priya MD, Geetha A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res. 2011;142:148–58.

    Article  CAS  PubMed  Google Scholar 

  • Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL. Identification of a selenocysteinyl-tRNAser in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989;264:9724–7.

    CAS  PubMed  Google Scholar 

  • Lemly AD. Assessing the toxic threat of selenium to fish and aquatic birds. Environ Monit Assess. 1996;43:19–35.

    Article  CAS  PubMed  Google Scholar 

  • Letz R, Gerr F, Cragle D, Green RC, Watkins J, Fidler AT. Residual neurologic deficits 30 years after occupational exposure to elemental mercury. Neurotoxicology. 2000;21:459–74.

    CAS  PubMed  Google Scholar 

  • Li N, Reddy PS, Thyagaraju K, Reddy AP, Hsu BL, Scholz RW, Tu C-P D, Reddy CC. Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency. J Biol Chem. 1990;265:108–13.

    CAS  PubMed  Google Scholar 

  • Li YF, Dong Z, Chen C, Li B, Gao Y, Qu L, Wang T, Fu X, Zhao Y, Chai Z. Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environ Sci Technol. 2012;46:11313–8.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Jing YH, Yin J, Mu JY, Yao TT, Gao LP. Downregulation of thioredoxin reductase 1 expression in the substantia nigra pars compacta of Parkinson's disease mice. Neural Regener Res. 2013;8:3275–83.

    CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN. Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis. Protein Sci. 2008;17:176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN. Eukaryotic selenoproteins and selenoproteomes. Biochim at Biophys Acta. 2009;1790:1424–8.

    Article  CAS  Google Scholar 

  • Lohren H, Bornhorst J, Gallab H, Schwerdtle T. The blood–cerebrospinal fluid barrier – first evidence for an active transport of organic mercury compounds out of the brain. Metallomics. 2015;7:1420–30.

    Article  CAS  PubMed  Google Scholar 

  • Magos L, Clarkson TW. Overview of the clinical toxicity of mercury. Ann Clin Biochem. 2006;43:257–68.

    Article  CAS  PubMed  Google Scholar 

  • Magos L, Webb M. The effect of selenium on the brain uptake of methylmercury. Arch Toxicol. 1977;38:201–7.

    Article  CAS  PubMed  Google Scholar 

  • Malagoli M, Schiavon M, Dall'Acqua S, Pilon-Smits EA. Effects of selenium biofortification on crop nutritional quality. Front Plant Sci. 2015;21:280.

    Google Scholar 

  • Maquat LE. Evidence that selenium deficiency results in the cytoplasmic decay of GPx1 mRNA dependent on pre-mRNA splicing proteins bound to the mRNA exon-exon junction. Biofactors. 2001;14:37–42.

    Article  CAS  PubMed  Google Scholar 

  • Marques RC, Bernardi JVE, Abreu L, Dórea JG. Neurodevelopment outcomes in children exposed to organic mercury from multiple sources in a tin-ore mine environment in Brazil. Arch Environ Contam Toxicol. 2015;68:432–41.

    Article  CAS  PubMed  Google Scholar 

  • Metanis N, Beld J, Hilvert D. Chapter 19: The chemistry of selenocysteine. In: Patai S, editor. The chemistry of organic selenium and tellurium compounds, vol. 3. New York: Wiley; 1995.

    Google Scholar 

  • Moraes-Silva L, Siqueira LF, Oliveira VA, Oliveira CS, Ineu RP, Pedroso TF, Fonseca MM, Pereira ME. Preventive effect of CuCl2 on behavioral alterations and mercury accumulation in central nervous system induced by HgCl2 in newborn rats. J Biochem Mol Toxicol. 2014;28:328–35.

    Article  CAS  PubMed  Google Scholar 

  • Moretto MB, Franco J, Posser T, Nogueira CW, Zeni G, Rocha JBT. Ebselen protects Ca2+ influx blockage but does not protect glutamate uptake inhibition caused by Hg2+. Neurochem Res. 2004;29:1801–6.

    Article  CAS  PubMed  Google Scholar 

  • Moretto MB, Funchal C, Santos AQ, Gottfried C, Boff B, Zeni G, Pessoa-Pureur R, Souza D, Wofchuk S, Rocha JBT. Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology. 2005;214:57–66.

    Article  CAS  PubMed  Google Scholar 

  • Muntean M, Janssens-Maenhout G, Song S, Selin NE, Olivier JGJ, Guizzardi D, Maas R, Dentener F. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Sci Total Environ. 2014;494–495:337–50.

    Article  PubMed  CAS  Google Scholar 

  • Mutter J, Naumann J, Schneider R, Walach H, Haley B. Mercury and autism: accelerating evidence. Neuroendocrinol Lett. 2005;26:439–6.

    PubMed  Google Scholar 

  • Mutter J, Curth A, Naumann J, Deth R, Walach H. Does inorganic mercury play a role in Alzheimer's disease? A systematic review and an integrated molecular mechanism. J Alzheimers Dis. 2010;22:357–74.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama A, Hill KE, Austin LM, Motley AK, Burk RF. All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr. 2007;137:690–3.

    CAS  PubMed  Google Scholar 

  • Naganuma A, Ishii Y, Imura N. Effect of administration sequence of mercuric chloride and sodium selenite on their fates and toxicities in mice. Ecotoxicol Environ Saf. 1984;8:572–80.

    Article  CAS  PubMed  Google Scholar 

  • NAS. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. A report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Washington, DC: National Academy of Sciences, Institute of Medicine, Food and Nutrition Board; 2000.

    Google Scholar 

  • Nauser T, Steinmann D, Koppenol WH. Why do proteins use selenocysteine instead of cysteine? Amino Acids. 2012;42:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Alarcon M, López-Martínez MC. Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ. 2000;249:347–71.

    Article  CAS  PubMed  Google Scholar 

  • Newland MC, Reed MN, LeBlanc A, Donlin W. Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury. Neurotoxicology. 2006;27:710–20.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CW, Zeni G, Rocha JB. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004;104:6255–86.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CW, Rocha JBT. Diphenyl diselenide: a Janus faced compound. J Braz Chem Soc. 2010;21:2055–71.

    Article  CAS  Google Scholar 

  • Nogueira CW, Rocha JBT. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol. 2011;85:1313–59.

    Article  CAS  PubMed  Google Scholar 

  • Orct T, Lazarus M, Ljubojević M, Sekovanić A, Sabolić I, Blanuša M. Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium. Biometals. 2015;28:701–12.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa-Wong AN, Mj B, Seale LA. Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Forum Nutr. 2016;8:1–19.

    Google Scholar 

  • Oliveira CS, Joshee L, Zalups RK, Bridges CC. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging. Exp Gerontol. 2016;75:16–23.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CS, Joshee L, Zalups RK, Pereira ME, Bridges CC. Disposition of inorganic mercury in pregnant rats and their offspring. Toxicology. 2015;335:62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oz SG, Tozlu M, Yalcin SS, Sozen T, Guven GS. Mercury vapor inhalation and poisoning of a family. Inhal Toxicol. 2012;24:652–8.

    Article  PubMed  CAS  Google Scholar 

  • Pamphlett R, Kum Jew S. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2013;9:1–13.

    Google Scholar 

  • Parizek J, Ostadalova I. The protective effect of small amounts of selenite in sublimate intoxication. Experientia. 1967;23:142–3.

    Article  CAS  PubMed  Google Scholar 

  • Peixoto NC, Pereira ME. Effectiveness of ZnCl2 in protecting against nephrotoxicity induced by HgCl2 in newborn rats. Ecotoxicol Environ Saf. 2007;66:441–6.

    Article  CAS  PubMed  Google Scholar 

  • Peixoto NC, Roza T, Morsch VM, Pereira ME. Behavioral alterations induced by HgCl2 depend on the postnatal period of exposure. Int J Dev Neurosci. 2007;25:39–46.

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP. Shape control of CdSe nanocrystals. Nature. 2000;404:59–61.

    Article  CAS  PubMed  Google Scholar 

  • Peregrino CP, Moreno MV, Miranda SV, Rubio AD, Leal LO. Mercury levels in locally manufactured Mexican skin-lightening creams. Int J Environ Res Public Health. 2011;8:2516–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters MM, Hill KE, Burk RF, Weeber EJ. Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener. 2006;1:1–13.

    Article  CAS  Google Scholar 

  • Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66:229–39.

    Article  CAS  PubMed  Google Scholar 

  • Pitts MW, Reeves MA, Hashimoto AC, Ogawa A, Kremer P, Seale LA, Berry MJ. Deletion of selenoprotein M leads to obesity without cognitive deficits. J Biol Chem. 2013;288:26121–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power JH, Blumbergs PC. Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol. 2009;117:63–73.

    Article  CAS  PubMed  Google Scholar 

  • Ralston NV, Raymond LJ. Dietary selenium's protective effects against methylmercury toxicity. Toxicology. 2010;278:112–23.

    Article  CAS  PubMed  Google Scholar 

  • Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Bellinger FP, Berry MJ. Selenoprotein W expression and regulation in mouse brain and neurons. Brain Behavior. 2013;3:562–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Seale LA, Bellinger FP, Berry MJ. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes, Brain and Behav. 2012;11:601–13.

    Article  CAS  Google Scholar 

  • Rocha JBT, Piccoli BC, Oliveira CS. Biological and chemical interest in selenium: a brief historical account. ARKIVOC. 2017; doi:10.3998/ark.5550190.p009.784.

  • Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res. 2012;1:85–102.

    Article  CAS  Google Scholar 

  • Roos DH, Puntel RL, Santos MM, Souza DO, Farina M, Nogueira CW, Aschner M, Burger ME, Barbosa NB, Rocha JB. Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol In Vitro. 2009;23:302–7.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld I, Beath OA. Selenium: geobotany, biochemistry, toxicity, and nutrition. Chapter 3. New York: Academic Press INC; 1964.

    Google Scholar 

  • Rowens B, Guerrero-Betancourt D, Gottlieb CA, Boyes RJ, Eichenhorn MS. Respiratory failure and death following acute inhalation of mercury vapor. A clinical and histologic perspective. Chest J. 1991;99:185–90.

    Article  CAS  Google Scholar 

  • Rueli RHLH, Parubrub AC, Dewing AST, Hashimoto AC, Bellinger MT, Weeber EJ, Uyehara-Lock JH, White LR, Berry MJ, Bellinger FP. Increased selenoprotein P in choroid plexus and cerebrospinal fluid in Alzheimer's disease brain. J Alzheimer’s Disease. 2015;44:379–83.

    CAS  Google Scholar 

  • Ruszkiewicz JA, Bowman AB, Farina M, Rocha JB, Aschner M. Sex-and structure-specific differences in antioxidant responses to methylmercury during early development. Neurotoxicology. 2016;56:118–26.

    Article  CAS  PubMed  Google Scholar 

  • Savaskan NE, Borchert A, Bräuer AU, Kuhn H. Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med. 2007;15:191–201.

    Article  CAS  Google Scholar 

  • Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG, Nikonorov AA, Tinkov AA. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J Trace Elem Med Biol. 2016a; doi:10.1016/j.jtemb.2016.09.009.

  • Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG, Tinkov AA. Analysis of hair trace elements in children with autism Spectrum disorders and communication disorders. Biol Trace Elem Res. 2016b; doi:10.1007/s12011-016-0878-x.

  • Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Bjørklund G, Skalnaya MG, Nikonorov AA, Tinkov AA. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis. 2016c; doi:10.1007/s11011-016-9899-6.

  • Sugiura Y, Hojo Y, Tamai Y, Tanaka H. Letter: selenium protection against mercury toxicity. Binding of methylmercury by the selenohydryl-containing ligand. J Am Chem Soc. 1976;98:2339–41.

    Article  CAS  PubMed  Google Scholar 

  • Sunde RA, Evenson JK. Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J Biol Chem. 1987;15:933–7.

    Google Scholar 

  • Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys. 2013;536:152–7.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Himeno S, Hongo T, Watanabe C, Satoh H. Mercury-selenium interaction in workers exposed to elemental mercury vapor. J Appl Toxicol. 1986;6:149–53.

    Article  CAS  PubMed  Google Scholar 

  • Tabatadze T, Zhorzholiani L, Kherkheulidze M, Kandelaki E, Ivanashvili T. Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med News. 2015;248:77–82.

    Google Scholar 

  • Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodo J. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci U S A. 1999;96:4131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp GA, Millam J. The distribution of 75Se in brains of selenium-deficient rats. J Neurochem. 1975;24:593–5.

    Article  CAS  PubMed  Google Scholar 

  • Trelease SF, Di Somma AA, Jacobs AL. Seleno-amino acid found in Astragalus bisulcatus. Science. 1960;132:618.

    Article  CAS  PubMed  Google Scholar 

  • Tsuda T, Yorifuji T, Takaob S, Miyai M, Babazono A. Minamata disease: catastrophic poisoning due to a failed public health response. J Public Health Policy. 2009;30:54–67.

    Article  PubMed  Google Scholar 

  • United Nations Environment Programme (UNEP). Global Mercury Assessment. Sources, emissions, releases and environmental transport. UNEP: Geneva, Switzerland; 2013. p. 2013.

    Google Scholar 

  • Uzunhisarcikli M, Aslanturk A, Kalender S, Apaydin FG, Bas H. Mercuric chloride induced hepatotoxic and hematologic changes in rats: The protective effects of sodium selenite and vitamin E. Toxicol Ind Health. 2015:0748233715572561.

    Google Scholar 

  • Usuki F, Yamashita A, Fujimura M. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem. 2011;286:6641–9.

    Article  CAS  PubMed  Google Scholar 

  • Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. Rev Environ Health. 2001;16:233–51.

    Article  CAS  PubMed  Google Scholar 

  • Vinceti M, Maraldi T, Bergomi M, Malagoli C. Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health. 2009;24:231–48.

    Article  CAS  PubMed  Google Scholar 

  • Vinceti M, Bonvicini F, Rothman KJ, Vescovi L, Wang F. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case–control study. Environ Health. 2010;9:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinceti M, Crespi CM, Malagoli C, Bottecchi I, Ferrari A, Sieri S, Krogh V, Alber D, Bergomi M, Seidenari S, Pellacani G. A case–control study of the risk of cutaneous melanoma associated with three selenium exposure indicators. Tumori. 2012;98:287–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvivini F, Arcolin E, Georgoulopoulou E, Michalke B. Cerebrospinal fluido f newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology. 2013;38:25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett. 2014;230:295–303.

    Article  CAS  PubMed  Google Scholar 

  • Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.

    Article  CAS  PubMed  Google Scholar 

  • Warfvinge K. Mercury distribution in the neonatal and adult cerebellum after mercury vapor exposure of pregnant squirrel monkeys. Environ Res. 2000;83:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Forum Nutr. 2015;7:4199–239.

    CAS  Google Scholar 

  • WHO (World Health Organization) (2003) Selenium in drinking-water: Background document for development of WHO guidelines for drinking-water quality.

    Google Scholar 

  • WHO (World Health Organization) (2007) Exposure to mercury: a major public health concern. Environmental Health Criteria. Geneva: World Health Organization.

    Google Scholar 

  • Wu Y, Guo X, Wang W, Chen X, Zhao Z, Xia X, Yang Y. Red pigments and Boraginaceae leaves in mortuary ritual of late Neolithic China: a case study of Shengedaliang site. Microsc Res Tech. 2016; doi:10.1002/jemt.22791.

  • Yamamoto R, Suzuki T, Satoh H, Kawais K. Generation and dose as modifying factors of inorganic mercury accumulation in brain, liver, and kidneys of rats fed methylmercury. Environ Res. 1986;41:309–18.

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science. 2008;322:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med. 2016; doi:10.1186/s40557-015-0086-8.

  • Yu WH, Zhang N, Qi JF, Sun C, Wang YH, Lin M. Arsenic and mercury containing traditional chinese medicine (Realgar and cinnabar) strongly inhibit organic anion transporters, Oat1 and Oat3, in vivo in mice. Biomed Res Int. 2015; doi:10.1155/2015/863971.

  • Zalups RK. Molecular interactions with mercury in the kidney. Pharmacol Rev. 2000;52:113–43.

    CAS  PubMed  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014;201:1183–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, Louis VLS, Sunderland EM. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci USA. 2016;113:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. T. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oliveira, C.S., Piccoli, B.C., Aschner, M., Rocha, J.B.T. (2017). Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity. In: Aschner, M., Costa, L. (eds) Neurotoxicity of Metals. Advances in Neurobiology, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-60189-2_4

Download citation

Publish with us

Policies and ethics